Knowledge (XXG)

Möbius ladder

Source 📝

29: 508: 415:. The edges from the cycle from which the ladder is formed can be distinguished from the rungs of the ladder, because each cycle edge belongs to a single 4-cycle, while each rung belongs to two such cycles. Therefore, there is no symmetry taking a cycle edge to a rung edge or vice versa. 572:
to be a nonplanar graph for which every nontrivial minor is planar; he shows that 3-connected almost-planar graphs are Möbius ladders or members of a small number of other families, and that other almost-planar graphs can be formed from these by a sequence of simple operations.
594:
first synthesized molecular structures in the form of a Möbius ladder, and since then this structure has been of interest in chemistry and chemical stereography, especially in view of the ladder-like form of DNA molecules. With this application in mind,
611:: it cannot be converted into its mirror image by a continuous deformation of space without passing one edge through another. On the other hand, Möbius ladders with an even number of rungs all do have embeddings into 447:, it is not bipartite. The endpoints of each rung are an even distance apart in the initial cycle, so adding each rung creates an odd cycle. In this case, because the graph is 3-regular but not bipartite, by 366:, meaning that it cannot be drawn without crossings in the plane but removing one vertex allows the remaining graph to be drawn without crossings. These graphs have 484:
have the most spanning trees among all cubic graphs with the same number of vertices. However, the 10-vertex cubic graph with the most spanning trees is the
1075: 1544: 1375:
Integer Programming and Combinatorial Optimization: 8th International IPCO Conference, Utrecht, The Netherlands, June 13–15, 2001, Proceedings
638:
approaches to problems of set packing and linear ordering. Certain configurations within these problems can be used to define facets of the
823: 230: 1370: 607:. In particular, as she shows, every three-dimensional embedding of a Möbius ladder with an odd number of rungs is topologically 1202: 790: 1432:
Proceedings of the Twenty-Second Southeastern Conference on Combinatorics, Graph Theory, and Computing (Baton Rouge, LA, 1991)
1239: 1125: 367: 1414: 646: 901:
Deng, Wen-Ji; Xu, Ji-Huan; Liu, Ping (2002). "Period halving of persistent currents in mesoscopic Möbius ladders".
1272: 1036: 997: 864: 1549: 903: 390: 162: 1487:
Walba, D.; Richards, R.; Haltiwanger, R. C. (1982). "Total synthesis of the first molecular Möbius strip".
832: 955: 267: 190: 52: 43: 1337: 922: 522: 97: 992: 837: 635: 496: 65: 1475: 1353: 1327: 1311:"Persistent currents in a Möbius ladder: A test of interchain coherence of interacting electrons" 1297: 1197: 1161: 1100: 1061: 1022: 980: 938: 912: 889: 862:
Borndörfer, Ralf; Weismantel, Robert (2000). "Set packing relaxations of some integer programs".
821:
Bolotashvili, G.; Kovalev, M.; Girlich, E. (1999). "New facets of the linear ordering polytope".
643: 1377:. Lecture Notes in Computer Science. Vol. 2081. Berlin: Springer-Verlag. pp. 333–347. 448: 1517: 1318: 619: 1496: 1459: 1378: 1345: 1281: 1248: 1211: 1134: 1084: 1045: 1006: 964: 930: 873: 842: 799: 631: 492: 460: 452: 375: 114: 1471: 1439: 1422: 1390: 1310: 1293: 1262: 1225: 1188: 1148: 1096: 1057: 1018: 976: 885: 854: 813: 393:– they have symmetries taking any vertex to any other vertex – but (with the exceptions of 1467: 1435: 1418: 1386: 1366: 1289: 1258: 1221: 1184: 1144: 1092: 1053: 1034:
Grötschel, M.; Jünger, M.; Reinelt, G. (1985b). "Facets of the linear ordering polytope".
1014: 972: 881: 850: 809: 781: 580: 436: 412: 275: 202: 158: 134: 124: 622:
ring in experiments to study the effects of conductor topology on electron interactions.
318: 1341: 926: 1112: 485: 379: 322: 178: 1394: 1253: 28: 1538: 1479: 1026: 984: 942: 934: 893: 804: 785: 474: 288: 1357: 1301: 1270:
De Mier, Anna; Noy, Marc (2004). "On graphs determined by their Tutte polynomials".
1065: 1520: 1447: 1116: 1104: 950: 658: 596: 559: 526: 360: 326: 239: 1413:. Proceedings of Symposia in Applied Mathematics. Vol. 45. Providence, RI: 1234: 663: 271: 262: 206: 154: 507: 1285: 1157: 1088: 846: 541: 363: 166: 1382: 1349: 583:
minor can be derived by a sequence of simple operations from Möbius ladders.
1525: 1430:
Valdes, L. (1991). "Extremal properties of spanning trees in cubic graphs".
608: 444: 423: 317:
four-cycles which link together by their shared edges to form a topological
1216: 1139: 1120: 1411:
New scientific applications of geometry and topology (Baltimore, MD, 1992)
1332: 1073:
Gubser, Bradley S. (1996). "A characterization of almost-planar graphs".
917: 639: 603:) studies the mathematical symmetries of embeddings of Möbius ladders in 42:. For an animation showing the transformation between the two views, see 1500: 1166: 1463: 1049: 1010: 995:; Jünger, M.; Reinelt, G. (1985a). "On the acyclic subgraph polytope". 968: 877: 1371:"Fences are futile: on relaxations for the linear ordering problem" 649:
of the problem; these facets are called Möbius ladder constraints.
506: 371: 386:
explores embeddings of these graphs onto higher genus surfaces.
459:
show that the Möbius ladders are uniquely determined by their
266:
by adding edges (called "rungs") connecting opposite pairs of
1175:
Li, De-ming (2005). "Genus distributions of Möbius ladders".
1434:. Congressus Numerantium. Vol. 85. pp. 143–160. 1309:
Mila, Frédéric; Stafford, C. A.; Capponi, Sylvain (1998).
749: 544:
operations to combine planar graphs and the Möbius ladder
591: 761: 757: 521:
Möbius ladders play an important role in the theory of
1450:(1937). "Über eine Eigenschaft der ebenen Komplexe". 1160:(1999). "On some extremal problems in graph theory". 618:
Möbius ladders have also been used as the shape of a
753: 756:; Grötschel, Jünger, and Reinelt ( 733: 525:. The earliest result of this type is a theorem of 216: 150: 133: 123: 113: 96: 64: 51: 21: 709: 495:of the Möbius ladders may be computed by a simple 1198:"A characterization of graphs with no cube minor" 321:. Möbius ladders were named and first studied by 579:shows that almost all graphs that do not have a 370:one, and can be embedded without crossings on a 1409:Simon, Jonathan (1992). "Knots and chemistry". 615:that can be deformed into their mirror images. 765: 693: 8: 1235:"Counting structures in the Möbius ladder" 750:Bolotashvili, Kovalev & Girlich (1999) 456: 278:, so-named because (with the exception of 27: 16:Cycle graph with all opposite nodes linked 1331: 1252: 1215: 1165: 1138: 916: 836: 803: 737: 330: 1489:Journal of the American Chemical Society 1076:Combinatorics, Probability and Computing 953:(1989). "Symmetries of Möbius ladders". 784:; Damerell, R. M.; Sands, D. A. (1972). 681: 592:Walba, Richards & Haltiwanger (1982) 674: 576: 697: 630:Möbius ladders have also been used in 600: 565: 530: 18: 721: 7: 824:SIAM Journal on Discrete Mathematics 734:Mila, Stafford & Capponi (1998) 754:Borndörfer & Weismantel (2000) 710:Biggs, Damerell & Sands (1972) 383: 14: 1177:Northeastern Mathematics Journal 488:, which is not a Möbius ladder. 1203:Journal of Combinatorial Theory 791:Journal of Combinatorial Theory 33:Two views of the Möbius ladder 1126:Canadian Mathematical Bulletin 786:"Recursive families of graphs" 231:Table of graphs and parameters 1: 1545:Parametric families of graphs 1415:American Mathematical Society 1254:10.1016/S0012-365X(97)00086-1 540:minor can be formed by using 378:. Thus, they are examples of 805:10.1016/0095-8956(72)90016-0 766:Newman & Vempala (2001) 694:Jakobson & Rivin (1999) 1566: 1233:McSorley, John P. (1998). 935:10.1088/0256-307X/19/7/333 626:Combinatorial optimization 1286:10.1007/s00373-003-0534-z 1089:10.1017/S0963548300002005 847:10.1137/S0895480196300145 738:Deng, Xu & Liu (2002) 229: 26: 1383:10.1007/3-540-45535-3_26 1350:10.1103/PhysRevB.57.1457 1273:Graphs and Combinatorics 1037:Mathematical Programming 998:Mathematical Programming 865:Mathematical Programming 457:De Mier & Noy (2004) 1121:"On the Möbius ladders" 904:Chinese Physics Letters 1217:10.1006/jctb.2000.1968 1196:Maharry, John (2000). 1140:10.4153/CMB-1967-046-4 533:) that graphs with no 518: 270:in the cycle. It is a 1452:Mathematische Annalen 956:Mathematische Annalen 587:Chemistry and physics 510: 1240:Discrete Mathematics 348:, the Möbius ladder 256:, is formed from an 1501:10.1021/ja00375a051 1417:. pp. 97–130. 1342:1998PhRvB..57.1457M 927:2002ChPhL..19..988D 636:integer programming 570:almost-planar graph 497:recurrence relation 389:Möbius ladders are 252:, for even numbers 1518:Weisstein, Eric W. 1464:10.1007/BF01594196 1156:Jakobson, Dmitry; 1050:10.1007/BF01582010 1011:10.1007/BF01582009 969:10.1007/BF01446435 878:10.1007/PL00011381 644:linear programming 551:; for this reason 519: 466:The Möbius ladder 1495:(11): 3219–3221. 1365:Newman, Alantha; 1319:Physical Review B 511:The Wagner graph 493:Tutte polynomials 461:Tutte polynomials 391:vertex-transitive 236: 235: 163:Vertex-transitive 1557: 1531: 1530: 1504: 1483: 1443: 1426: 1405: 1403: 1402: 1393:. Archived from 1367:Vempala, Santosh 1361: 1335: 1333:cond-mat/9705119 1326:(3): 1457–1460. 1315: 1305: 1266: 1256: 1247:(1–3): 137–164. 1229: 1219: 1192: 1171: 1169: 1152: 1142: 1108: 1069: 1030: 988: 946: 920: 918:cond-mat/0209421 897: 858: 840: 817: 807: 768: 747: 741: 731: 725: 719: 713: 707: 701: 691: 685: 679: 632:computer science 527:Klaus Wagner 453:chromatic number 410: 401: 376:projective plane 358: 347: 316: 309: 298: 286: 265: 260: 255: 251: 225: 211: 199: 187: 175: 145: 115:Chromatic number 108: 92: 91: 89: 88: 85: 82: 59: 41: 31: 19: 1565: 1564: 1560: 1559: 1558: 1556: 1555: 1554: 1535: 1534: 1521:"Möbius Ladder" 1516: 1515: 1512: 1507: 1486: 1446: 1429: 1408: 1400: 1398: 1364: 1313: 1308: 1269: 1232: 1195: 1174: 1167:math.CO/9907050 1155: 1113:Guy, Richard K. 1111: 1072: 1033: 991: 949: 900: 861: 820: 780: 776: 771: 748: 744: 732: 728: 720: 716: 708: 704: 692: 688: 682:McSorley (1998) 680: 676: 672: 655: 628: 620:superconducting 589: 557: 550: 539: 517: 505: 483: 472: 449:Brooks' theorem 434: 413:edge-transitive 411:) they are not 409: 403: 400: 394: 380:toroidal graphs 368:crossing number 357: 349: 342: 341:For every even 339: 311: 308: 300: 297: 291: 285: 279: 276:circulant graph 258: 257: 253: 250: 246: 224: 220: 209: 201: 194: 191:Edge-transitive 189: 182: 177: 170: 165: 161: 157: 140: 125:Chromatic index 103: 86: 83: 78: 77: 75: 70: 57: 47: 40: 34: 17: 12: 11: 5: 1563: 1561: 1553: 1552: 1550:Regular graphs 1547: 1537: 1536: 1533: 1532: 1511: 1510:External links 1508: 1506: 1505: 1484: 1444: 1427: 1406: 1362: 1306: 1280:(1): 105–119. 1267: 1230: 1210:(2): 179–201. 1193: 1172: 1153: 1133:(4): 493–496. 1109: 1083:(3): 227–245. 1070: 1031: 989: 963:(2): 271–283. 947: 911:(7): 988–991. 898: 872:(3): 425–450. 859: 838:10.1.1.41.8722 831:(3): 326–336. 818: 798:(2): 123–131. 777: 775: 772: 770: 769: 742: 726: 714: 702: 686: 673: 671: 668: 667: 666: 661: 654: 651: 627: 624: 588: 585: 577:Maharry (2000) 558:is called the 555: 548: 537: 515: 504: 501: 486:Petersen graph 481: 475:spanning trees 470: 430: 407: 398: 353: 338: 335: 304: 295: 283: 248: 234: 233: 227: 226: 222: 218: 214: 213: 152: 148: 147: 137: 131: 130: 127: 121: 120: 117: 111: 110: 100: 94: 93: 68: 62: 61: 55: 49: 48: 38: 32: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1562: 1551: 1548: 1546: 1543: 1542: 1540: 1528: 1527: 1522: 1519: 1514: 1513: 1509: 1502: 1498: 1494: 1490: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1428: 1424: 1420: 1416: 1412: 1407: 1397:on 2004-01-02 1396: 1392: 1388: 1384: 1380: 1376: 1372: 1368: 1363: 1359: 1355: 1351: 1347: 1343: 1339: 1334: 1329: 1325: 1321: 1320: 1312: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1274: 1268: 1264: 1260: 1255: 1250: 1246: 1242: 1241: 1236: 1231: 1227: 1223: 1218: 1213: 1209: 1205: 1204: 1199: 1194: 1190: 1186: 1182: 1178: 1173: 1168: 1163: 1159: 1154: 1150: 1146: 1141: 1136: 1132: 1128: 1127: 1122: 1118: 1117:Harary, Frank 1114: 1110: 1106: 1102: 1098: 1094: 1090: 1086: 1082: 1078: 1077: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1043: 1039: 1038: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 999: 994: 993:Grötschel, M. 990: 986: 982: 978: 974: 970: 966: 962: 958: 957: 952: 951:Flapan, Erica 948: 944: 940: 936: 932: 928: 924: 919: 914: 910: 906: 905: 899: 895: 891: 887: 883: 879: 875: 871: 867: 866: 860: 856: 852: 848: 844: 839: 834: 830: 826: 825: 819: 815: 811: 806: 801: 797: 793: 792: 787: 783: 779: 778: 773: 767: 763: 759: 755: 751: 746: 743: 739: 735: 730: 727: 723: 718: 715: 711: 706: 703: 699: 698:Valdes (1991) 695: 690: 687: 683: 678: 675: 669: 665: 662: 660: 657: 656: 652: 650: 648: 645: 642:describing a 641: 637: 634:, as part of 633: 625: 623: 621: 616: 614: 610: 606: 602: 598: 593: 586: 584: 582: 578: 574: 571: 567: 566:Gubser (1996) 563: 561: 554: 547: 543: 536: 532: 528: 524: 514: 509: 502: 500: 498: 494: 489: 487: 480: 476: 469: 464: 462: 458: 454: 450: 446: 442: 438: 433: 429: 425: 421: 416: 414: 406: 397: 392: 387: 385: 381: 377: 373: 369: 365: 362: 356: 352: 345: 336: 334: 332: 328: 325: and 324: 320: 314: 307: 303: 294: 290: 289:utility graph 282: 277: 273: 269: 264: 245: 244:Möbius ladder 241: 232: 228: 219: 215: 208: 204: 197: 192: 185: 180: 173: 168: 164: 160: 156: 153: 149: 143: 138: 136: 132: 128: 126: 122: 118: 116: 112: 106: 101: 99: 95: 81: 73: 69: 67: 63: 60:(even number) 56: 54: 50: 45: 37: 30: 25: 22:Möbius ladder 20: 1524: 1492: 1488: 1455: 1451: 1431: 1410: 1399:. Retrieved 1395:the original 1374: 1323: 1317: 1277: 1271: 1244: 1238: 1207: 1206:. Series B. 1201: 1183:(1): 70–80. 1180: 1176: 1130: 1124: 1080: 1074: 1041: 1035: 1002: 996: 960: 954: 908: 902: 869: 868:. Series A. 863: 828: 822: 795: 794:. Series B. 789: 782:Biggs, N. L. 745: 729: 722:Simon (1992) 717: 705: 689: 677: 659:Ladder graph 629: 617: 612: 604: 590: 575: 569: 564: 560:Wagner graph 552: 545: 534: 523:graph minors 520: 512: 503:Graph minors 490: 478: 467: 465: 440: 431: 427: 419: 417: 404: 395: 388: 354: 350: 343: 340: 319:Möbius strip 312: 310:has exactly 305: 301: 292: 280: 243: 240:graph theory 237: 195: 183: 171: 141: 139:1 (for even 104: 102:4 (for even 79: 71: 35: 1458:: 570–590. 1158:Rivin, Igor 664:Prism graph 568:defines an 207:doubly even 1539:Categories 1448:Wagner, K. 1401:2006-10-08 774:References 647:relaxation 542:clique-sum 364:apex graph 337:Properties 181:(for even 169:(for even 151:Properties 1526:MathWorld 1480:123534907 1044:: 43–60. 1027:206798683 1005:: 28–42. 985:119705062 943:119421223 894:206862305 833:CiteSeerX 477:; it and 445:0 (mod 4) 437:bipartite 424:2 (mod 4) 384:Li (2005) 361:nonplanar 205:(for non- 203:Bipartite 159:Circulant 44:this file 1369:(2001). 1358:35931632 1302:46312268 1119:(1967). 1066:21071064 653:See also 640:polytope 473:has 392 268:vertices 217:Notation 179:Toroidal 53:Vertices 1472:1513158 1440:1152127 1423:1196717 1391:2041937 1338:Bibcode 1294:2048553 1263:1609294 1226:1794690 1189:2124859 1149:0224499 1105:7313209 1097:1411084 1058:0809748 1019:0809747 977:0980598 923:Bibcode 886:1782150 855:1710240 814:0294172 599: ( 529: ( 451:it has 439:. When 329: ( 90:⁠ 76:⁠ 1478:  1470:  1438:  1421:  1389:  1356:  1300:  1292:  1261:  1224:  1187:  1147:  1103:  1095:  1064:  1056:  1025:  1017:  983:  975:  941:  892:  884:  853:  835:  812:  609:chiral 597:Flapan 346:> 4 327:Harary 242:, the 198:= 4, 6 186:> 4 174:> 4 144:> 4 107:> 4 1476:S2CID 1354:S2CID 1328:arXiv 1314:(PDF) 1298:S2CID 1162:arXiv 1101:S2CID 1062:S2CID 1023:S2CID 981:S2CID 939:S2CID 913:arXiv 890:S2CID 762:1985b 758:1985a 670:Notes 418:When 372:torus 359:is a 287:(the 272:cubic 263:cycle 193:(for 155:Cubic 135:Genus 98:Girth 66:Edges 601:1989 581:cube 531:1937 491:The 402:and 331:1967 167:Apex 1497:doi 1493:104 1460:doi 1456:114 1379:doi 1346:doi 1282:doi 1249:doi 1245:184 1212:doi 1135:doi 1085:doi 1046:doi 1007:doi 965:doi 961:283 931:doi 874:doi 843:doi 800:doi 764:); 455:3. 435:is 374:or 333:). 323:Guy 299:), 296:3,3 238:In 1541:: 1523:. 1491:. 1474:. 1468:MR 1466:. 1454:. 1436:MR 1419:MR 1387:MR 1385:. 1373:. 1352:. 1344:. 1336:. 1324:57 1322:. 1316:. 1296:. 1290:MR 1288:. 1278:20 1276:. 1259:MR 1257:. 1243:. 1237:. 1222:MR 1220:. 1208:80 1200:. 1185:MR 1181:21 1179:. 1145:MR 1143:. 1131:10 1129:. 1123:. 1115:; 1099:. 1093:MR 1091:. 1079:. 1060:. 1054:MR 1052:. 1042:33 1040:. 1021:. 1015:MR 1013:. 1003:33 1001:. 979:. 973:MR 971:. 959:. 937:. 929:. 921:. 909:19 907:. 888:. 882:MR 880:. 870:88 851:MR 849:. 841:. 829:12 827:. 810:MR 808:. 796:12 788:. 760:, 752:; 736:; 696:; 562:. 499:. 463:. 443:≡ 426:, 422:≡ 382:. 315:/2 274:, 74:+ 39:16 1529:. 1503:. 1499:: 1482:. 1462:: 1442:. 1425:. 1404:. 1381:: 1360:. 1348:: 1340:: 1330:: 1304:. 1284:: 1265:. 1251:: 1228:. 1214:: 1191:. 1170:. 1164:: 1151:. 1137:: 1107:. 1087:: 1081:5 1068:. 1048:: 1029:. 1009:: 987:. 967:: 945:. 933:: 925:: 915:: 896:. 876:: 857:. 845:: 816:. 802:: 740:. 724:. 712:. 700:. 684:. 613:R 605:R 556:8 553:M 549:8 546:M 538:5 535:K 516:8 513:M 482:6 479:M 471:8 468:M 441:n 432:n 428:M 420:n 408:6 405:M 399:4 396:M 355:n 351:M 344:n 313:n 306:n 302:M 293:K 284:6 281:M 261:- 259:n 254:n 249:n 247:M 223:n 221:M 212:) 210:n 200:) 196:n 188:) 184:n 176:) 172:n 146:) 142:n 129:3 119:3 109:) 105:n 87:2 84:/ 80:n 72:n 58:n 46:. 36:M

Index


this file
Vertices
Edges
Girth
Chromatic number
Chromatic index
Genus
Cubic
Circulant
Vertex-transitive
Apex
Toroidal
Edge-transitive
Bipartite
doubly even
Table of graphs and parameters
graph theory
cycle
vertices
cubic
circulant graph
utility graph
Möbius strip
Guy
Harary
1967
nonplanar
apex graph
crossing number

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.