Knowledge (XXG)

Multi-state modeling of biomolecules

Source 📝

355:. It asks questions about whether a combinatorially complex model, once specified, is computationally tractable, given the large number of states and the even larger number of possible transitions between states, whether it can be stored electronically, and whether it can be evaluated in a reasonable amount of computing time. This problem is called the "computation problem". Among the approaches that have been proposed to tackle combinatorial complexity in multi-state modeling, some are mainly concerned with addressing the specification problem, some are focused on finding effective methods of computation. Some tools address both specification and computation. The sections below discuss rule-based approaches to the specification problem and particle-based approaches to solving the computation problem. A wide range of computational tools exist for multi-state modeling. 729:, and their progress is tracked through the course of the entire simulation. Because particle-based rule evaluation keeps track of individual particles rather than populations, it comes at a higher computational cost when modeling systems with a high total number of particles, but a small number of kinds (or pools) of particles. In cases of combinatorial complexity, however, the modeling of individual particles is an advantage because, at any given point in the simulation, only existing molecules, their states and the reactions they can undergo need to be considered. Particle-based rule evaluation does not require the generation of complete or partial reaction networks at the start of the simulation or at any other point in the simulation and is therefore called "network-free". 343: 334:. The reaction rate is the same for two molecules that differ only in features which do not affect this reaction. Thus, the number of parameters will be much smaller than the number of reactions. (In the coffee shop example, adding an extra shot of espresso will cost 40 cent, no matter what size the beverage is and whether or not it has milk in it). It is such "local rules" that are usually discovered in laboratory experiments. Thus, a multi-state model can be conceptualised in terms of combinations of modular features and local rules. This means that even a model that can account for a vast number of molecular species and reactions is not necessarily conceptually complex. 713: 330:) quickly leads to a large number of possible beverages (24 in this case; each additional binary choice will double that number). Although it is difficult for us to grasp the total numbers of possible combinations, it is usually not conceptually difficult to understand the (much smaller) set of features or modifications and the effect each of them has on the function of the biomolecule. The rate at which a molecule undergoes a particular reaction will usually depend mainly on a single feature or a small subset of features. It is the presence or absence of those features that dictates the 646:
simulation methods implementing numerical integration of ordinary and partial differential equations or the Gillespie stochastic algorithm, all possible pools of molecules and the reactions they undergo are defined at the start of the simulation, even if they are empty. Such "generate-first" methods scale poorly with increasing numbers of molecular states. For instance, it has recently been estimated that even for a simple model of CaMKII with just 6 states per subunits and 10 subunits, it would take 290 years to generate the entire reaction network on a 2.54 GHz Intel
797:
the user can specify a rule-based model, but can designate some species to be treated as populations (rather than particles) in the subsequent simulation. This method combines the computational advantages of particle-based modeling for multi-state systems with relatively low molecule numbers and of population-based modeling for systems with high molecule numbers and a small number of possible states. Specification of HPP models is supported by BioNetGen, and simulations can be performed with NFSim.
1105: 474:, where molecules are represented as nodes (or collections of nodes) and chemical bonds as edges. A reaction rule, then, corresponds to a graph rewriting rule. BNGL provides a syntax for specifying these graphs and the associated rules as structured strings. BioNetGen can then use these rules to generate ordinary differential equations (ODEs) to describe each biochemical reaction. Alternatively, it can generate a list of all possible species and reactions in 451:. This description of the system in terms of modular rules relies on the assumption that only a subset of features or attributes are relevant for a particular reaction rule. Where this assumption holds, a set of reactions can be coarse-grained into one reaction rule. This coarse-graining preserves the important properties of the underlying reactions. For instance, if the reactions are based on chemical kinetics, so are the rules derived from them. 766:(for instance, for holoenzymes consisting of several subunits), and reactions can be "neighbor-sensitive", i.e. the probability of a reaction for a given entity is affected by the value of a state flag on a neighboring entity. These properties make StochSim ideally suited to modeling multi-state molecules arranged in holoenzymes or complexes of specified size. Indeed, StochSim has been used to model clusters of 806: 455:
specified model into a dedicated simulation engine. However, many solutions to the specification problem also contain a method of interpreting the specified model. This is done by providing a method to simulate the model or a method to convert it into a form that can be used for simulations in other programs.
833:
One example of a particle-based simulator that allows for a representation of cellular compartments is SRSim. SRSim is integrated in the LAMMPS molecular dynamics simulator and allows the user to specify the model in BNGL. SRSim allows users to specify the geometry of the particles in the simulation,
753:
simulator used mainly to model chemical reactions and other molecular transitions. The algorithm used in StochSim is different from the more widely known Gillespie stochastic algorithm in that it operates on individual entities, not entity pools, making it particle-based rather than population-based.
645:
In population-based approaches, one can think of the system being modeled as being in a given state at any given time point, where a state is defined according to the nature and size of the populated pools of molecules. This means that the space of all possible states can become very large. With some
417:
Enumerating all possible states is a lengthy and potentially error-prone process. For macromolecular complexes that can adopt multiple states, enumerating each state quickly becomes tedious, if not impossible. Moreover, the addition of a single additional modification or feature to the model of the
462:
that can be used to encode macromolecules with internal states and binding sites and to specify rules by which they interact. The κ-calculus is merely concerned with providing a language to encode multi-state models, not with interpreting the models themselves. A simulator compatible with Kappa
426:
It is clear that an explicit description, which lists all possible molecular species (including all their possible states), all possible reactions or transitions these species can undergo, and all parameters governing these reactions, very quickly becomes unwieldy as the complexity of the biological
796:
It is easy to imagine a biological system where some components are complex multi-state molecules, whereas others have few possible states (or even just one) and exist in large numbers. A hybrid approach has been proposed to model such systems: Within the Hybrid Particle/Population (HPP) framework,
435:
and parameters that apply to many types of molecular species into one reaction template. It might also add a set of conditions that govern reaction parameters, i.e. the likelihood or rate at which a reaction occurs, or whether it occurs at all. Only properties of the molecule or complex that matter
317:
The existence (or potential existence) of such large numbers of molecular species is a combinatorial phenomenon: It arises from a relatively small set of features or modifications (such as post-translational modification or complex formation) that combine to dictate the state of the entire molecule
121:
In addition, several types of modifications can co-exist, exerting a combined influence on a biological macromolecule at any given time. Thus, a biomolecule or complex of biomolecules can often adopt a very large number of functionally distinct states. The number of states scales exponentially with
511:
ML-Rules is similar to React(C), but provides the added possibility of nesting: A component species of the model, with all its attributes, can be part of a higher-order component species. This enables ML-Rules to capture multi-level models that can bridge the gap between, for instance, a series of
307:
Of course, not all of the possible states of a multi-state molecule or complex will necessarily be populated. Indeed, in systems where the number of possible states is far greater than that of molecules in the compartment (e.g. the cell), they cannot be. In some cases, empirical information can be
716:
Principles of particle-based modeling. In particle-based modeling, each particle is tracked individually through the simulation. At any point, a particle only "sees" the rules that apply to it. This figure follows two molecular particles (one of type A in red, one of type B in blue) through three
350:
The combinatorial complexity of signaling systems involving multi-state proteins poses two kinds of problems. The first problem is concerned with how such a system can be specified; i.e. how a modeler can specify all complexes, all changes those complexes undergo and all parameters and conditions
736:
of the model at the simulation stage, and thereby saves time and computational power. The simulation follows each particle, and at each simulation step, a particle only "sees" the reactions (or rules) that apply to it. This depends on the state of the particle and, in some implementation, on the
443:
from a protein might depend on the conformational state of the protein, but not on its subcellular localization. An implicit description would therefore list two dissociation processes (with different rates, depending on conformational state), but would ignore attributes referring to subcellular
548:
Some rule-based specification systems and their associated network generation and simulation tools have been designed to accommodate spatial heterogeneity, in order to allow for the realistic simulation of interactions within biological compartments. For instance, the Simmune project includes a
454:
Many rule-based specification methods exist. In general, the specification of a model is a separate task from the execution of the simulation. Therefore, among the existing rule-based model specification systems, some concentrate on model specification only, allowing the user to then export the
42:
such multi-state systems poses two problems: The problem of how to describe and specify a multi-state system (the "specification problem") and the problem of how to use a computer to simulate the progress of the system over time (the "computation problem"). To address the specification problem,
699:
Methods have been proposed to reduce the size of the state space. One is to consider only the states adjacent to the present state (i.e. the states that can be reached within the next iteration) at each time point. This eliminates the need for enumerating all possible states at the beginning.
552:
The Stochastic Simulator Compiler (SSC) allows for rule-based, modular specification of interacting biomolecules in regions of arbitrarily complex geometries. Again, the system is represented using graphs, with chemical interactions or diffusion events formalised as graph-rewriting rules. The
700:
Instead, reactions are generated "on-the-fly" at each iteration. These methods are available both for stochastic and deterministic algorithms. These methods still rely on the definition of an (albeit reduced) reaction network - in contrast to the "network-free" methods discussed below.
482:. One can also make use of BioNetGen's own ODE-based simulation software and its capability to generate reactions on-the-fly during a stochastic simulation. In addition, a model specified in BNGL can be read by other simulation software, such as DYNSTOC, RuleMonkey, and NFSim. 578:
Thus, by only considering states and features important for a particular reaction, rule-based model specification eliminates the need to explicitly enumerate every possible molecular state that can undergo a similar reaction, and thereby allows for efficient specification.
549:
spatial component: Users can specify their multi-state biomolecules and interactions within membranes or compartments of arbitrary shape. The reaction volume is then divided into interfacing voxels, and a separate reaction network generated for each of these subvolumes.
615:
Some of the best-known classes of simulation approaches in computational biology belong to the population-based family, including those based on the numerical integration of ordinary and partial differential equations and the Gillespie stochastic simulation algorithm.
841:
MCell allows individual molecules to be traced in arbitrarily complex geometric environments which are defined by the user. This allows for simulations of biomolecules in realistic reconstructions of living cells, including cells with complex geometries like those of
813:
within the spine. Although other types of calcium-regulated molecules were included in the simulations, only CaMKII molecules are visualized. They are shown in red when bound to calmodulin and in black when unbound. The simulation compartment is a reconstruction of a
532:
and movement of cells. Models specified in ML-Rules can be simulated using the James II simulation framework. A similar nested language to represent multi-level biological systems has been proposed by Oury and Plotkin. A specification formalism based on molecular
703:
Even with "on-the-fly" network generation, networks generated for population-based rule evaluation can become quite large, and thus difficult - if not impossible - to handle computationally. An alternative approach is provided by particle-based rule evaluation.
71:
and MCell. Modelers can thus choose from a variety of tools; the best choice depending on the particular problem. Development of faster and more powerful methods is ongoing, promising the ability to simulate ever more complex signaling processes in the future.
658:
Even if a large reaction system can be successfully generated, its simulation using population-based rule evaluation can run into computational limits. In a recent study, a powerful computer was shown to be unable to simulate a protein with more than 8
877:
of complexes, and hence, of multi-state molecules. This can in some cases be circumvented by adjusting the diffusion constants of ligands that interact with the complex, by using checkpointing functions or by combining simulations at different levels.
853:. Each slot stands for a particular modification, and any number of slots can be assigned to a molecule. Each slot can be occupied by a particular state. The states are not necessarily binary. For instance, a slot describing binding of a particular 761:
representing a particular modification. Reactions can be made dependent on a set of state flags set to particular values. In addition, the outcome of a reaction can include a state flag being changed. Moreover, entities can be arranged in geometric
469:
is a software suite that provides both specification and simulation capacities. Rule-based models can be written down using a specified syntax, the BioNetGen language (BNGL). The underlying concept is to represent biochemical systems as
595:
through a series of time steps until a specified end time. One way to classify simulation algorithms is by looking at the level of analysis at which the rules are applied: they can be population-based, single-particle-based or hybrid.
489:(MWC) type regulation mechanism, whose interactions are governed by their internal state, as well as by external modifications. A very useful feature of ANC is that it automatically computes dependent parameters, thereby imposing 4147: 784:
Another particle-based stochastic simulator that can read BNGL input files is RuleMonkey. Its simulation algorithm differs from the algorithms underlying both StochSim and DYNSTOC in that the simulation time step is variable.
51:, the Allosteric Network Compiler and others. To tackle the computation problem, they have turned to particle-based methods that have in many cases proved more computationally efficient than population-based methods based on 4137: 788:
The Network-Free Stochastic Simulator (NFSim) differs from those described above by allowing for the definition of reaction rates as arbitrary mathematical or conditional expressions and thereby facilitates selective
776:
An extension to StochSim includes a particle-based simulator DYNSTOC, which uses a StochSim-like algorithm to simulate models specified in the BioNetGen language (BNGL), and improves the handling of molecules within
650:
processor. In addition, the model generation step in generate-first methods does not necessarily terminate, for instance when the model includes assembly of proteins into complexes of arbitrarily large size, such as
717:
steps in a hypothetical simulation following a simple set of rules (given on the right). At each step, the rules that potentially apply to the particle under consideration are highlighted in that particle's colour.
4132: 622:
describe changes in molecular concentrations over time in a deterministic manner. Simulations based on differential equations usually do not attempt to solve those equations analytically, but employ a suitable
2632:
Danos V, Feret J, Fontana W, Harmer R, Krivine J (2007). Rule-Based Modelling of Cellular Signalling. Proceedings of the Eighteenth International Conference on Concurrency Theory, CONCUR 2007, Lisbon, Portugal
2191:
Stiles JR, Bartol TM (2001). Computational Neuroscience: Realistic Modeling for Experimentalists. In: De Schutter, E (ed). Computational Neuroscience: Realistic Modeling for Experimentalists. CRC Press, Boca
872:
relationships between neighboring subunits or members of a macromolecular complex. One drawback of this method for representing protein complexes, compared to Meredys, is that MCell does not allow for the
1719:
Hogg, J. S., Harris, L. A., Stover, L. J., Nair, N. S., & Faeder, J. R. (2013). Exact hybrid particle/population simulation of rule-based models of biochemical systems. arXiv preprint arXiv:1301.6854.
868:: A "state dimension" and one or more "spatial dimensions". The "state dimension" is used to describe the multiple possible states making up a multi-state protein, while the spatial dimension(s) describe 93:
that can act as complex computational devices. These networks rely on the ability of single proteins to exist in a variety of functionally different states achieved through multiple mechanisms, including
2749:
Chylek LA, Stites EC, Posner RG, Hlavacek WS (2013) Innovations of the rule-based modeling approach. In Systems Biology: Integrative Biology and Simulation Tools, Volume 1 (Prokop A, Csukás B, Editors),
740:
Some particle-based simulation packages use an ad-hoc formalism for specification of reactants, parameters and rules. Others can read files in a recognised rule-based specification format such as BNGL.
860:
The slot-and-state syntax in MCell can also be used to model multimeric proteins or macromolecular complexes. When used in this way, a slot is a placeholder for a subunit or a molecular component of a
158:, and for several proteins and/or nucleic acid species to assemble into larger complexes. A molecular species with several of those features can therefore exist in a large number of possible states. 575:
Models involving multi-state and multi-component species can also be specified in Level 3 of the Systems Biology Markup Language (SBML) using the multi package. A draft specification is available.
3008:
John, M., Lhoussaine, C., Niehren, J., & Versari, C. (2011). Biochemical reaction rules with constraints. In Programming Languages and Systems (pp. 338-357). Springer Berlin Heidelberg.
864:, and the state of the slot will indicate whether a specific protein component is absent or present in the complex. A way to think about this is that MCell macromolecules can have several 418:
complex under investigation will double the number of possible states (if the modification is binary), and it will more than double the number of transitions that need to be specified.
308:
used to rule out certain states if, for instance, some combinations of features are incompatible. In the absence of such information, however, all possible states need to be considered
834:
as well as interaction sites. It is therefore especially good at simulating the assembly and structure of complex biomolecular complexes, as evidenced by a recent model of the inner
3808:
Tschernyschkow S, Herda S, Gruenert G, Döring V, Görlich D, Hofmeister A, et al. (September 2013). "Rule-based modeling and simulations of the inner kinetochore structure".
504:
show that it can express the stochastic π calculus. They also provide a stochastic simulation algorithm based on the Gillespie stochastic algorithm for models specified in
444:
localization, because they do not affect the rate of ligand dissociation, nor are they affected by it. This specification rule has been summarized as "Don't care, don't write".
436:
to a given reaction (either affecting the reaction or being affected by it) are explicitly mentioned, and all other properties are ignored in the specification of the reaction.
485:
Another tool that generates full reaction networks from a set of rules is the Allosteric Network Compiler (ANC). Conceptually, ANC sees molecules as allosteric devices with a
2132:"Miniature endplate current rise times less than 100 microseconds from improved dual recordings can be modeled with passive acetylcholine diffusion from a synaptic vesicle" 886:
A (by no means exhaustive) selection of models of biological systems involving multi-state molecules and using some of the tools discussed here is give in the table below.
38:
that can undergo several functionally significant modifications that are mutually compatible. Thus, they can exist in a very large number of functionally different states.
252: 3170: 694: 447:
Since it is not written in terms of reactions, but in terms of more general "reaction rules" encompassing sets of reactions, this kind of specification is often called
287: 3433:"SBML Level 3 Package Specification: Multistate, Multicomponent and Multicompartment Species Package for SBML Level 3 (Multi). Version 1, Release 01 (Draft, Rev 369)" 368:
The most naïve way of specifying, e.g., a protein in a biological model is to specify each of its states explicitly and use each of them as a molecular species in a
63:. Given current computing technology, particle-based methods are sometimes the only possible option. Particle-based simulators further fall into two categories: Non- 793:
of models. RuleMonkey and NFsim implement distinct but related simulation algorithms. A detailed review and comparison of both tools is given by Yang and Hlavacek.
346:
An overview of tools discussed that are used for the rule-based specification and particle-based evaluation (spatial or non-spatial) of multi-state biomolecules.
181:
receptors of four different kinds interact in groups of three, and each individual receptor can exist in at least two possible conformations and has up to eight
342: 612:
in the same state are pooled together. Application of a specific rule reduces or increases the size of one of the pools, possibly at the expense of another.
737:
states of its neighbours in a holoenzyme or complex. As the simulation proceeds, the states of particles are updated according to the rules that are fired.
4142: 564:. A model (or part of a model) is represented as a Python programme. This allows users to store higher-order biochemical processes such as catalysis or 822:
is shown in red, the spine head and neck in gray, and the parent dendrite in yellow. The figure was generated by visualizing the simulation results in
2094:
Grunert G, Dittrich P (2011). "Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems".
3159:
J. Himmelspach and A. M. Uhrmacher, "Plug'n simulate," Proceedings of the 40th Annual Simulation Symposium. IEEE Computer Society, 2007, pp. 137-143.
512:
biochemical processes and the macroscopic behaviour of a whole cell or group of cells. For instance, a proof-of-concept model of cell division in
130:
who model or simulate such biomolecules, because it raises questions about how such large numbers of states can be represented and simulated.
2111: 1446: 1892:
Sneddon MW, Faeder JR, Emonet T (February 2011). "Efficient modeling, simulation and coarse-graining of biological complexity with NFsim".
591:
on a biological model, any simulation software evaluates a set of rules, starting from a specified set of initial conditions, and usually
865: 351:
governing those changes in a robust and efficient way. This problem is called the "specification problem". The second problem concerns
849:
MCell uses an ad-hoc formalism within MCell itself to specify a multi-state model: In MCell, it is possible to assign "slots" to any
254:
distinct molecular species, yet the authors note several points at which the model could be further extended. A more recent model of
3843:
Shimizu TS, Aksenov SV, Bray D (May 2003). "A spatially extended stochastic model of the bacterial chemotaxis signalling pathway".
1359:
Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W (July 2006). "Rules for modeling signal-transduction systems".
147: 114:
can undergo a variety of transformations, including protein binding, binding of other nucleic acids, conformational change and
95: 4177: 52: 712: 3483:"CaMKII activation and dynamics are independent of the holoenzyme structure: an infinite subunit holoenzyme approximation" 561: 56: 471: 297: 721:
In particle-based (sometimes called "agent-based") simulations, proteins, nucleic acids, macromolecular complexes or
431:, rather than explicit, ways of specifying a biological signaling system. An implicit description is one that groups 2830:"The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models" 1243:"BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains" 1135: 3654:"The efficiency of reactant site sampling in network-free simulation of rule-based models for biochemical systems" 830:
Spatial particle-based methods differ from the methods described above by their explicit representation of space.
314:. In such cases, computational modeling can be used to uncover to what extent the different states are populated. 4162: 2647:"Specification, annotation, visualization and simulation of a large rule-based model for ERBB receptor signaling" 2476:"Purification and characterization of a calmodulin-dependent protein kinase that is highly concentrated in brain" 726: 553:
compiler then generates the entire reaction network before launching a stochastic reaction-diffusion algorithm.
521: 513: 310: 4172: 1017: 440: 638:
of which is computed from reaction rates and from the numbers of molecules, in accordance with the stochastic
3197: 4157: 3281:
Angermann BR, Klauschen F, Garcia AD, Prustel T, Zhang F, Germain RN, Meier-Schellersheim M (January 2012).
3224:"Key role of local regulation in chemosensing revealed by a new molecular interaction-based modeling method" 123: 64: 2207:"Fast Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on Surfaces" 1120: 3065: 2878: 1988:"Meredys, a multi-compartment reaction-diffusion simulator using multistate realistic molecular complexes" 1534:
Lok L, Brent R (January 2005). "Automatic generation of cellular reaction networks with Moleculizer 1.0".
1424: 1368: 630:
The stochastic Gillespie algorithm changes the composition of pools of molecules through a progression of
568:
as macros and re-use them as needed. The models can be simulated and analysed using Python libraries, but
204:
rings. Each subunit can exist in at least two distinct conformations, and each subunit features various
43:
modelers have in recent years moved away from explicit specification of all possible states, and towards
4152: 2914:
Monod J, Wyman J, Changeux JP (May 1965). "On the nature of allosteric transitions: A plausible model".
619: 538: 373: 151: 127: 103: 67:
simulators such as StochSim, DYNSTOC, RuleMonkey, and NFSim and spatial simulators, including Meredys,
3432: 1419:
Faeder JR, Blinov ML, Hlavacek WS (2009). "Rule-Based Modeling of Biochemical Systems with BioNetGen".
3544:, Allard J, Wollman R (April 2012). "Cell polarity: quantitative modeling as a tool in cell biology". 1291:
Faeder JR, Blinov ML, Goldstein B, Hlavacek WS (2005). "Rule-Based Modeling of Biochemical Networks".
1104: 4030: 3774: 3665: 3608: 3553: 3494: 3235: 2962: 2773: 2582: 2332: 2274: 2218: 2143: 1669: 1488: 1300: 861: 819: 778: 486: 143: 107: 24: 3070: 2883: 2571:"Structural analysis and stochastic modelling suggest a mechanism for calmodulin trapping by CaMKII" 1429: 216:, for a total of around one billion possible states per hexameric ring. A model of coupling of the 1373: 1092: 1087: 993: 588: 448: 139: 60: 44: 39: 31: 227: 154:. Furthermore, it is common for a protein to be composed of several - identical or nonidentical - 3790: 3577: 3463: 3201: 3083: 2546: 2456: 2404: 2358: 2298: 1917: 1659: 1593: 1559: 1394: 1316: 857:
to a protein of interest could take the states "unbound", "partially bound", and "fully bound".
823: 624: 542: 3283:"Computational modeling of cellular signaling processes embedded into dynamic spatial contexts" 666: 466: 48: 4167: 4109: 4058: 3999: 3950: 3909: 3860: 3825: 3743: 3691: 3634: 3569: 3520: 3413: 3364: 3312: 3263: 3139: 2988: 2931: 2896: 2851: 2801: 2732: 2678: 2610: 2538: 2497: 2448: 2396: 2350: 2290: 2244: 2171: 2107: 2073: 2019: 1968: 1909: 1865: 1809: 1755: 1695: 1621: 1551: 1516: 1452: 1442: 1386: 1264: 1172: 1154: 810: 763: 432: 428: 377: 301: 290: 265: 4099: 4089: 4078:"Spatial rule-based modeling: a method and its application to the human mitotic kinetochore" 4048: 4038: 3989: 3981: 3940: 3899: 3891: 3852: 3817: 3782: 3762: 3733: 3725: 3681: 3673: 3624: 3616: 3561: 3510: 3502: 3455: 3403: 3395: 3354: 3346: 3302: 3294: 3253: 3243: 3193: 3185: 3129: 3119: 3075: 3031: 2978: 2970: 2923: 2888: 2841: 2791: 2781: 2722: 2712: 2668: 2658: 2600: 2590: 2528: 2517:"Structure of the autoinhibited kinase domain of CaMKII and SAXS analysis of the holoenzyme" 2487: 2438: 2388: 2340: 2282: 2234: 2226: 2205:
Kerr RA, Bartol TM, Kaminsky B, Dittrich M, Chang JC, Baden SB, et al. (October 2008).
2161: 2151: 2099: 2063: 2053: 2009: 1999: 1958: 1948: 1901: 1855: 1845: 1799: 1791: 1745: 1685: 1677: 1611: 1603: 1543: 1506: 1496: 1434: 1378: 1308: 1254: 1218: 1180: 1162: 1144: 850: 758: 609: 534: 173: 165: 1582:"Rule-based modelling and simulation of biochemical systems with molecular finite automata" 68: 2869:
Finney A, Hucka M (December 2003). "Systems biology markup language: Level 2 and beyond".
1423:. Methods in Molecular Biology. Vol. 500. Totowa, NJ: Humana Press. pp. 113–67. 1126: 1034: 815: 790: 660: 639: 569: 557: 459: 209: 205: 155: 115: 3446:
Tolle DP, Le Novère N (2006). "Particle-Based Stochastic Simulation in Systems Biology".
372:
framework that allows transitions from state to state. For instance, if a protein can be
289:) distinct molecular species. The problem of combinatorial explosion is also relevant to 4034: 3778: 3669: 3612: 3557: 3498: 3335:"Efficient stochastic simulation of reaction-diffusion processes via direct compilation" 3239: 2966: 2777: 2645:
Creamer MS, Stites EC, Aziz M, Cahill JA, Tan CW, Berens ME, et al. (August 2012).
2586: 2336: 2278: 2222: 2147: 1673: 1492: 1304: 4104: 4077: 4053: 4018: 3994: 3969: 3904: 3879: 3738: 3714:"Extracellular sheets and tunnels modulate glutamate diffusion in hippocampal neuropil" 3713: 3686: 3677: 3653: 3629: 3596: 3515: 3506: 3482: 3408: 3383: 3359: 3334: 3307: 3282: 3258: 3223: 3134: 3107: 2983: 2950: 2825: 2796: 2761: 2727: 2700: 2673: 2646: 2605: 2570: 2239: 2206: 2068: 2041: 2014: 1987: 1963: 1936: 1860: 1833: 1804: 1779: 1690: 1647: 1616: 1581: 1511: 1476: 1167: 1130: 854: 722: 565: 490: 323: 99: 86: 3856: 3620: 2927: 2492: 2475: 1750: 1733: 655:
filaments. In these cases, a termination condition needs to be specified by the user.
4126: 3821: 3541: 2166: 2131: 1937:"Simulation tools for particle-based reaction-diffusion dynamics in continuous space" 1832:
Colvin J, Monine MI, Gutenkunst RN, Hlavacek WS, Von Hoff DD, Posner RG (July 2010).
1013: 529: 385: 331: 35: 3945: 3895: 3794: 3581: 3467: 3350: 3222:
Meier-Schellersheim M, Xu X, Angermann B, Kunkel EJ, Jin T, Germain RN (July 2006).
2846: 2829: 2408: 1795: 1563: 1259: 1242: 380:
states (e.g. open or closed) and be located in two possible subcellular areas (e.g.
3970:"A rule-based kinetic model of RNA polymerase II C-terminal domain phosphorylation" 3712:
Kinney JP, Spacek J, Bartol TM, Bajaj CL, Harris KM, Sejnowski TJ (February 2013).
3087: 2701:"Modular, rule-based modeling for the design of eukaryotic synthetic gene circuits" 2550: 2460: 2302: 2265:
Bray D (July 1995). "Protein molecules as computational elements in living cells".
1921: 1398: 1320: 388:-bound), then the eight possible resulting states can be explicitly enumerated as: 217: 111: 3927:
Hoops S, Sahle S, Gauges R, Lee C, Pahle J, Simus N, et al. (December 2006).
3205: 3056:
Gillespie DT (1977). "Exact Stochastic Simulation of Coupled Chemical Reactions".
2362: 1778:
Colvin J, Monine MI, Faeder JR, Hlavacek WS, Von Hoff DD, Posner RG (April 2009).
757:
In StochSim, each molecular species can be equipped with a number of binary state
537:(MFA) framework can then be used to generate and simulate a system of ODEs or for 3248: 2595: 2103: 2042:"Rule-based spatial modeling with diffusing, geometrically constrained molecules" 1501: 1149: 208:
and ligand binding sites. A recent model incorporated conformational states, two
3597:"Binding and diffusion of CheR molecules within a cluster of membrane receptors" 2974: 1438: 835: 635: 352: 319: 182: 20: 19:
refers to a series of techniques used to represent and compute the behaviour of
4023:
Proceedings of the National Academy of Sciences of the United States of America
3459: 2766:
Proceedings of the National Academy of Sciences of the United States of America
2533: 2516: 2136:
Proceedings of the National Academy of Sciences of the United States of America
1681: 1477:"Scalable rule-based modelling of allosteric proteins and biochemical networks" 1111: 3189: 3036: 3019: 1953: 1607: 1223: 1206: 770: 750: 733: 369: 221: 213: 178: 4019:"CD4 and CD8 binding to MHC molecules primarily acts to enhance Lck delivery" 2425:
Hlavacek WS, Faeder JR, Blinov ML, Perelson AS, Goldstein B (December 2003).
2058: 1850: 1158: 4076:
Ibrahim B, Henze R, Gruenert G, Egbert M, Huwald J, Dittrich P (July 2013).
4043: 3565: 3124: 2786: 2663: 2392: 2156: 1648:"Kinetic Monte Carlo method for rule-based modeling of biochemical networks" 1382: 874: 592: 525: 294: 197: 193: 47:
that allow for implicit model specification, including the κ-calculus,
4113: 4062: 4003: 3985: 3954: 3913: 3864: 3829: 3786: 3747: 3695: 3638: 3573: 3524: 3417: 3368: 3316: 3267: 3143: 2992: 2935: 2900: 2855: 2805: 2736: 2717: 2682: 2614: 2542: 2452: 2400: 2354: 2248: 2077: 2040:
Gruenert G, Ibrahim B, Lenser T, Lohel M, Hinze T, Dittrich P (June 2010).
2023: 2004: 1972: 1913: 1869: 1813: 1759: 1699: 1625: 1555: 1520: 1456: 1390: 1268: 1176: 604:
In Population-based rule evaluation, rules are applied to populations. All
478:, which can then be exported to simulation software packages that can read 4017:
Artyomov MN, Lis M, Devadas S, Davis MM, Chakraborty AK (September 2010).
2501: 2294: 2175: 2130:
Stiles JR, Van Helden D, Bartol TM, Salpeter EE, Salpeter MM (June 1996).
1184: 805: 318:
or complex, in the same way that the existence of just a few choices in a
4094: 869: 767: 605: 327: 3079: 2951:"How to impose microscopic reversibility in complex reaction mechanisms" 3399: 3298: 2892: 2098:. Lecture Notes in Computer Science. Vol. 6501. pp. 240–256. 1905: 1312: 381: 201: 90: 3729: 2515:
Rosenberg OS, Deindl S, Sung RJ, Nairn AC, Kuriyan J (December 2005).
2443: 2426: 2230: 3928: 3878:
Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED (March 2009).
3171:"Multi-level modelling via stochastic multi-level multiset rewriting" 2345: 2320: 2286: 1834:"RuleMonkey: software for stochastic simulation of rule-based models" 1002: 967: 846:. The reaction compartment is a reconstruction of a dendritic spine. 843: 631: 517: 259: 189: 186: 4148:
Knowledge (XXG) articles published in peer-reviewed literature (J2W)
1547: 560:, where model specification is embedded in the programming language 458:
An early rule-based specification method is the κ-calculus, a
1664: 1598: 804: 711: 652: 341: 162: 4138:
Knowledge (XXG) articles published in PLOS Computational Biology
3333:
Lis M, Artyomov MN, Devadas S, Chakraborty AK (September 2009).
2699:
Marchisio MA, Colaiacovo M, Whitehead E, Stelling J (May 2013).
1241:
Blinov ML, Faeder JR, Goldstein B, Hlavacek WS (November 2004).
943: 647: 479: 475: 255: 168: 2760:
Feret J, Danos V, Krivine J, Harmer R, Fontana W (April 2009).
696:
phosphorylation states) using ordinary differential equations.
4133:
Knowledge (XXG) articles published in peer-reviewed literature
185:
sites, resulting in billions of potential states. The protein
3763:"Fast parallel algorithms for short-range molecular dynamics" 122:
the number of possible modifications, a phenomenon known as "
27:
that can adopt a large number of possible functional states.
3108:"Rule-based multi-level modeling of cell biological systems" 1646:
Yang J, Monine MI, Faeder JR, Hlavacek WS (September 2008).
2949:
Colquhoun D, Dowsland KA, Beato M, Plested AJ (June 2004).
2379:
Bray D (February 2003). "Genomics. Molecular prodigality".
1109:
This article was adapted from the following source under a
1734:"STOCHSIM: modelling of stochastic biomolecular processes" 572:
models can also be exported into BNGL, kappa, and SBML.
1116: 293:, with a recent model of a relatively simple synthetic 224:
cascade presented by Danos and colleagues accounts for
1475:
Ollivier JF, Shahrezaei V, Swain PS (November 2010).
890:
Examples of multi-state models of biological systems
669: 427:
system increases. Modelers have therefore looked for
268: 230: 3384:"Programming biological models in Python using PySB" 3382:
Lopez CF, Muhlich JL, Bachman JA, Sorger PK (2013).
2427:"The complexity of complexes in signal transduction" 258:
receptor signalling even accounts for more than one
171:
can be a part of 25666 unique protein complexes. In
3968:Aitken S, Alexander RD, Beggs JD (September 2013). 496:An extension of the κ-calculus is provided by 3155: 3153: 2824:Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, 2474:Bennett MK, Erondu NE, Kennedy MB (October 1983). 688: 281: 246: 3198:20.500.11820/2c05ac75-14eb-4939-bf71-5e76b9a942ef 3106:Maus C, Rybacki S, Uhrmacher AM (October 2011). 3051: 3049: 3047: 2694: 2692: 1727: 1725: 3536: 3534: 2762:"Internal coarse-graining of molecular systems" 2420: 2418: 1354: 1352: 1350: 322:(small, medium or large, with or without milk, 81:Multi-state biomolecules in signal transduction 3880:"PROMOT: modular modeling for systems biology" 2640: 2638: 2089: 2087: 2035: 2033: 1887: 1885: 1883: 1881: 1879: 1470: 1468: 1466: 1348: 1346: 1344: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 3707: 3705: 2564: 2562: 2560: 2187: 2185: 2125: 2123: 1935:Schöneberg J, Ullrich A, Noé F (2014-10-24). 1827: 1825: 1823: 1780:"Simulation of large-scale rule-based models" 1773: 1771: 1769: 1580:Yang J, Meng X, Hlavacek WS (November 2010). 161:For instance, it has been estimated that the 8: 3810:Progress in Biophysics and Molecular Biology 3217: 3215: 2819: 2817: 2815: 2628: 2626: 2624: 2569:Stefan MI, Marshall DP, Le Novère N (2012). 1414: 1412: 1410: 1408: 1286: 1284: 1282: 1280: 1278: 1236: 1234: 3595:Levin MD, Shimizu TS, Bray D (April 2002). 3178:Mathematical Structures in Computer Science 3101: 3099: 3097: 3004: 3002: 2374: 2372: 2314: 2312: 2260: 2258: 2200: 2198: 1715: 1713: 1711: 1709: 1200: 1198: 1196: 3328: 3326: 1641: 1639: 1637: 1635: 1575: 1573: 4103: 4093: 4052: 4042: 3993: 3944: 3903: 3737: 3685: 3628: 3514: 3407: 3358: 3306: 3257: 3247: 3133: 3123: 3069: 3035: 2982: 2882: 2845: 2795: 2785: 2726: 2716: 2672: 2662: 2604: 2594: 2532: 2491: 2442: 2344: 2238: 2165: 2155: 2067: 2057: 2013: 2003: 1962: 1952: 1859: 1849: 1803: 1749: 1689: 1663: 1615: 1597: 1510: 1500: 1428: 1372: 1258: 1222: 1166: 1148: 882:Examples of multi-state models in biology 674: 668: 273: 267: 238: 229: 61:Gillespie stochastic simulation algorithm 888: 3974:Journal of the Royal Society, Interface 3431:Zhang F, Meier-Schellersheim M (2013). 1192: 913:Bacterial chemotaxis signalling pathway 809:Screenshot from an MCell simulation of 725:are represented as individual software 142:incorporate a wide array of reversible 89:, signals are processed by networks of 1131:"Multi-state modeling of biomolecules" 34:often rely on complexes of biological 3929:"COPASI--a COmplex PAthway SImulator" 1732:Le Novère N, Shimizu TS (June 2001). 7: 3718:The Journal of Comparative Neurology 3652:Yang J, Hlavacek WS (October 2011). 2211:SIAM Journal on Scientific Computing 1986:Tolle DP, Le Novère N (March 2010). 17:Multi-state modeling of biomolecules 3481:Michalski PJ, Loew LM (June 2012). 2480:The Journal of Biological Chemistry 1129:; Mary B Kennedy (September 2014). 1125:Melanie I Stefan; Thomas M Bartol; 773:receptors, and CaMKII holoenzymes. 134:Examples of combinatorial explosion 961:Eukaryotic synthetic gene circuits 745:Non-spatial particle-based methods 14: 4143:Externally peer reviewed articles 999:Allosteric Network Compiler (ANC) 556:A different approach is taken by 439:For instance, the rate of ligand 3822:10.1016/j.pbiomolbio.2013.03.010 3767:Journal of Computational Physics 2871:Biochemical Society Transactions 2431:Biotechnology and Bioengineering 2319:Endy D, Brent R (January 2001). 1103: 600:Population-based rule evaluation 148:post-translational modifications 96:post-translational modifications 1751:10.1093/bioinformatics/17.6.575 300:featuring 187 species and 1165 212:sites and two modes of binding 53:ordinary differential equations 2321:"Modelling cellular behaviour" 801:Spatial particle-based methods 708:Particle-based rule evaluation 422:Rule-based model specification 57:partial differential equations 1: 3946:10.1093/bioinformatics/btl485 3896:10.1093/bioinformatics/btp029 3857:10.1016/s0022-2836(03)00437-6 3621:10.1016/S0006-3495(02)75531-8 3351:10.1093/bioinformatics/btp387 2928:10.1016/S0022-2836(65)80285-6 2847:10.1093/bioinformatics/btg015 2493:10.1016/S0021-9258(17)44239-6 1796:10.1093/bioinformatics/btp066 1260:10.1093/bioinformatics/bth378 749:StochSim is a particle-based 3845:Journal of Molecular Biology 3678:10.1088/1478-3975/8/5/055009 3507:10.1088/1478-3975/9/3/036010 3249:10.1371/journal.pcbi.0020082 2916:Journal of Molecular Biology 2828:, et al. (March 2003). 2596:10.1371/journal.pone.0029406 2104:10.1007/978-3-642-18123-8_19 1502:10.1371/journal.pcbi.1000975 1211:Theoretical Computer Science 1150:10.1371/JOURNAL.PCBI.1003844 376:-bound or not, exist in two 338:Specification vs computation 247:{\displaystyle \sim 10^{23}} 2975:10.1529/biophysj.103.038679 1439:10.1007/978-1-59745-525-1_5 1067:Cell cycle of fission yeast 4194: 3460:10.2174/157489306777827964 3228:PLOS Computational Biology 3169:Oury N, Plotkin G (2013). 2534:10.1016/j.cell.2005.10.029 1682:10.1103/PhysRevE.78.031910 1481:PLOS Computational Biology 1207:"Formal molecular biology" 1205:Danos V, Laneve C (2004). 1136:PLOS Computational Biology 200:subunits, arranged in two 126:". This is of concern for 3761:Plimpton S (March 1995). 3388:Molecular Systems Biology 3190:10.1017/s0960129512000199 1954:10.1186/s13628-014-0011-5 1608:10.1049/iet-syb.2010.0015 1224:10.1016/j.tcs.2004.03.065 1052:Human mitotic kinetochore 689:{\displaystyle 2^{8}=256} 528:secretion and diffusion, 413:unbound, closed, membrane 359:The specification problem 2059:10.1186/1471-2105-11-307 1851:10.1186/1471-2105-11-404 779:macromolecular complexes 732:This method reduces the 524:binding and activation, 410:unbound, closed, cytosol 282:{\displaystyle 10^{100}} 128:computational biologists 4044:10.1073/pnas.1010568107 3566:10.1126/science.1216380 3125:10.1186/1752-0509-5-166 3037:10.1093/comjnl/38.7.578 3020:"Stochastic π-calculus" 2787:10.1073/pnas.0809908106 2664:10.1186/1752-0509-6-107 2393:10.1126/science.1080010 2157:10.1073/pnas.93.12.5747 1383:10.1126/stke.3442006re6 583:The computation problem 407:unbound, open, membrane 401:bound, closed, membrane 124:combinatorial explosion 3986:10.1098/rsif.2013.0438 3787:10.1006/jcph.1995.1039 2718:10.1186/1752-0509-7-42 2005:10.1186/1752-0509-4-24 996:of allosteric proteins 827: 718: 690: 620:Differential equations 404:unbound, open, cytosol 398:bound, closed, cytosol 364:Explicit specification 347: 326:or not, extra shot of 283: 248: 152:conformational changes 106:, or formation of new 4178:Stochastic simulation 808: 715: 691: 634:reaction events, the 539:stochastic simulation 395:bound, open, membrane 345: 284: 249: 104:conformational change 4095:10.3390/cells2030506 3024:The Computer Journal 1536:Nature Biotechnology 1127:Terrence J Sejnowski 820:postsynaptic density 667: 487:Monod-Wyman-Changeux 392:bound, open, cytosol 266: 228: 21:biological molecules 4035:2010PNAS..10716916A 3779:1995JCoPh.117....1P 3670:2011PhBio...8e5009Y 3613:2002BpJ....82.1809L 3601:Biophysical Journal 3558:2012Sci...336..175M 3499:2012PhBio...9c6010M 3240:2006PLSCB...2...82M 3112:BMC Systems Biology 3080:10.1021/j100540a008 2967:2004BpJ....86.3510C 2955:Biophysical Journal 2778:2009PNAS..106.6453F 2705:BMC Systems Biology 2651:BMC Systems Biology 2587:2012PLoSO...729406S 2337:2001Natur.409..391E 2279:1995Natur.376..307B 2223:2008SJSC...30.3126K 2148:1996PNAS...93.5747S 1992:BMC Systems Biology 1674:2008PhRvE..78c1910Y 1586:IET Systems Biology 1493:2010PLSCB...6E0975O 1305:2005Cmplx..10d..22F 1093:Rule-based modeling 1088:Multiscale modeling 946:receptor signalling 891: 45:rule-based modeling 3400:10.1038/msb.2013.1 3299:10.1038/nmeth.1861 2893:10.1042/bst0311472 2096:Membrane Computing 2046:BMC Bioinformatics 1906:10.1038/nmeth.1546 1838:BMC Bioinformatics 1658:(3 Pt 1): 031910. 1313:10.1002/cplx.20074 889: 828: 818:. The area of the 719: 686: 348: 279: 244: 214:calcium/calmodulin 140:signaling networks 3730:10.1002/cne.23181 3064:(25): 2340–2361. 3018:Priami C (1995). 2444:10.1002/bit.10842 2387:(5610): 1189–90. 2231:10.1137/070692017 2113:978-3-642-18122-1 1652:Physical Review E 1448:978-1-934115-64-0 1079: 1078: 964:BioNetGen, PROMOT 928:CaMKII regulation 897:Biological system 851:molecular species 811:calcium signaling 500:. The authors of 291:synthetic biology 32:signaling systems 4185: 4163:Chemical bonding 4118: 4117: 4107: 4097: 4073: 4067: 4066: 4056: 4046: 4029:(39): 16916–21. 4014: 4008: 4007: 3997: 3980:(86): 20130438. 3965: 3959: 3958: 3948: 3924: 3918: 3917: 3907: 3875: 3869: 3868: 3840: 3834: 3833: 3805: 3799: 3798: 3758: 3752: 3751: 3741: 3709: 3700: 3699: 3689: 3658:Physical Biology 3649: 3643: 3642: 3632: 3592: 3586: 3585: 3538: 3529: 3528: 3518: 3487:Physical Biology 3478: 3472: 3471: 3443: 3437: 3436: 3428: 3422: 3421: 3411: 3379: 3373: 3372: 3362: 3330: 3321: 3320: 3310: 3278: 3272: 3271: 3261: 3251: 3219: 3210: 3209: 3175: 3166: 3160: 3157: 3148: 3147: 3137: 3127: 3103: 3092: 3091: 3073: 3053: 3042: 3041: 3039: 3015: 3009: 3006: 2997: 2996: 2986: 2946: 2940: 2939: 2911: 2905: 2904: 2886: 2877:(Pt 6): 1472–3. 2866: 2860: 2859: 2849: 2821: 2810: 2809: 2799: 2789: 2757: 2751: 2747: 2741: 2740: 2730: 2720: 2696: 2687: 2686: 2676: 2666: 2642: 2633: 2630: 2619: 2618: 2608: 2598: 2566: 2555: 2554: 2536: 2512: 2506: 2505: 2495: 2486:(20): 12735–44. 2471: 2465: 2464: 2446: 2422: 2413: 2412: 2376: 2367: 2366: 2348: 2346:10.1038/35053181 2316: 2307: 2306: 2287:10.1038/376307a0 2273:(6538): 307–12. 2262: 2253: 2252: 2242: 2217:(6): 3126–3149. 2202: 2193: 2189: 2180: 2179: 2169: 2159: 2127: 2118: 2117: 2091: 2082: 2081: 2071: 2061: 2037: 2028: 2027: 2017: 2007: 1983: 1977: 1976: 1966: 1956: 1932: 1926: 1925: 1889: 1874: 1873: 1863: 1853: 1829: 1818: 1817: 1807: 1775: 1764: 1763: 1753: 1729: 1720: 1717: 1704: 1703: 1693: 1667: 1643: 1630: 1629: 1619: 1601: 1577: 1568: 1567: 1531: 1525: 1524: 1514: 1504: 1487:(11): e1000975. 1472: 1461: 1460: 1432: 1416: 1403: 1402: 1376: 1356: 1325: 1324: 1288: 1273: 1272: 1262: 1238: 1229: 1228: 1226: 1202: 1189: 1188: 1170: 1152: 1121:reviewer reports 1114: 1107: 892: 695: 693: 692: 687: 679: 678: 625:numerical solver 541:using a kinetic 288: 286: 285: 280: 278: 277: 253: 251: 250: 245: 243: 242: 166:scaffold protein 4193: 4192: 4188: 4187: 4186: 4184: 4183: 4182: 4173:Enzyme kinetics 4123: 4122: 4121: 4075: 4074: 4070: 4016: 4015: 4011: 3967: 3966: 3962: 3939:(24): 3067–74. 3926: 3925: 3921: 3877: 3876: 3872: 3842: 3841: 3837: 3807: 3806: 3802: 3760: 3759: 3755: 3711: 3710: 3703: 3651: 3650: 3646: 3594: 3593: 3589: 3552:(6078): 175–9. 3540: 3539: 3532: 3480: 3479: 3475: 3448:Curr. Bioinform 3445: 3444: 3440: 3430: 3429: 3425: 3381: 3380: 3376: 3345:(17): 2289–91. 3332: 3331: 3324: 3280: 3279: 3275: 3221: 3220: 3213: 3173: 3168: 3167: 3163: 3158: 3151: 3105: 3104: 3095: 3071:10.1.1.704.7634 3055: 3054: 3045: 3017: 3016: 3012: 3007: 3000: 2948: 2947: 2943: 2913: 2912: 2908: 2884:10.1.1.466.8001 2868: 2867: 2863: 2823: 2822: 2813: 2759: 2758: 2754: 2748: 2744: 2698: 2697: 2690: 2644: 2643: 2636: 2631: 2622: 2568: 2567: 2558: 2514: 2513: 2509: 2473: 2472: 2468: 2424: 2423: 2416: 2378: 2377: 2370: 2331:(6818): 391–5. 2318: 2317: 2310: 2264: 2263: 2256: 2204: 2203: 2196: 2190: 2183: 2142:(12): 5747–52. 2129: 2128: 2121: 2114: 2093: 2092: 2085: 2039: 2038: 2031: 1985: 1984: 1980: 1934: 1933: 1929: 1891: 1890: 1877: 1831: 1830: 1821: 1777: 1776: 1767: 1731: 1730: 1723: 1718: 1707: 1645: 1644: 1633: 1579: 1578: 1571: 1548:10.1038/nbt1054 1533: 1532: 1528: 1474: 1473: 1464: 1449: 1430:10.1.1.323.9577 1421:Systems Biology 1418: 1417: 1406: 1358: 1357: 1328: 1290: 1289: 1276: 1253:(17): 3289–91. 1240: 1239: 1232: 1204: 1203: 1194: 1143:(9): e1003844. 1124: 1110: 1108: 1101: 1084: 1035:T-cell receptor 884: 816:dendritic spine 803: 791:coarse-graining 747: 723:small molecules 710: 670: 665: 664: 661:phosphorylation 640:master equation 602: 585: 535:finite automata 460:process algebra 424: 366: 361: 340: 269: 264: 263: 234: 226: 225: 210:phosphorylation 206:phosphorylation 136: 116:DNA methylation 83: 78: 12: 11: 5: 4191: 4189: 4181: 4180: 4175: 4170: 4165: 4160: 4158:Cell signaling 4155: 4150: 4145: 4140: 4135: 4125: 4124: 4120: 4119: 4068: 4009: 3960: 3933:Bioinformatics 3919: 3884:Bioinformatics 3870: 3851:(2): 291–309. 3835: 3800: 3753: 3701: 3644: 3607:(4): 1809–17. 3587: 3530: 3473: 3454:(3): 315–320. 3438: 3423: 3374: 3339:Bioinformatics 3322: 3287:Nature Methods 3273: 3211: 3184:(2): 471–503. 3161: 3149: 3093: 3043: 3030:(7): 578–589. 3010: 2998: 2941: 2906: 2861: 2834:Bioinformatics 2811: 2772:(16): 6453–8. 2752: 2742: 2688: 2634: 2620: 2556: 2507: 2466: 2414: 2368: 2308: 2254: 2194: 2181: 2119: 2112: 2083: 2029: 1978: 1941:BMC Biophysics 1927: 1894:Nature Methods 1875: 1819: 1784:Bioinformatics 1765: 1738:Bioinformatics 1721: 1705: 1631: 1569: 1526: 1462: 1447: 1404: 1374:10.1.1.83.1561 1361:Science's STKE 1326: 1274: 1247:Bioinformatics 1230: 1191: 1100: 1097: 1096: 1095: 1090: 1083: 1080: 1077: 1076: 1074: 1071: 1068: 1065: 1062: 1061: 1059: 1056: 1053: 1050: 1047: 1046: 1044: 1041: 1038: 1032: 1029: 1028: 1026: 1023: 1020: 1011: 1008: 1007: 1005: 1000: 997: 991: 988: 987: 985: 982: 979: 976: 973: 972: 970: 965: 962: 959: 956: 955: 953: 950: 947: 941: 938: 937: 935: 932: 929: 926: 923: 922: 920: 917: 914: 911: 908: 907: 904: 901: 898: 895: 883: 880: 802: 799: 746: 743: 709: 706: 685: 682: 677: 673: 601: 598: 584: 581: 566:polymerisation 423: 420: 415: 414: 411: 408: 405: 402: 399: 396: 393: 378:conformational 365: 362: 360: 357: 339: 336: 276: 272: 241: 237: 233: 135: 132: 100:ligand binding 82: 79: 77: 74: 36:macromolecules 13: 10: 9: 6: 4: 3: 2: 4190: 4179: 4176: 4174: 4171: 4169: 4166: 4164: 4161: 4159: 4156: 4154: 4151: 4149: 4146: 4144: 4141: 4139: 4136: 4134: 4131: 4130: 4128: 4115: 4111: 4106: 4101: 4096: 4091: 4088:(3): 506–44. 4087: 4083: 4079: 4072: 4069: 4064: 4060: 4055: 4050: 4045: 4040: 4036: 4032: 4028: 4024: 4020: 4013: 4010: 4005: 4001: 3996: 3991: 3987: 3983: 3979: 3975: 3971: 3964: 3961: 3956: 3952: 3947: 3942: 3938: 3934: 3930: 3923: 3920: 3915: 3911: 3906: 3901: 3897: 3893: 3889: 3885: 3881: 3874: 3871: 3866: 3862: 3858: 3854: 3850: 3846: 3839: 3836: 3831: 3827: 3823: 3819: 3815: 3811: 3804: 3801: 3796: 3792: 3788: 3784: 3780: 3776: 3772: 3768: 3764: 3757: 3754: 3749: 3745: 3740: 3735: 3731: 3727: 3724:(2): 448–64. 3723: 3719: 3715: 3708: 3706: 3702: 3697: 3693: 3688: 3683: 3679: 3675: 3671: 3667: 3664:(5): 055009. 3663: 3659: 3655: 3648: 3645: 3640: 3636: 3631: 3626: 3622: 3618: 3614: 3610: 3606: 3602: 3598: 3591: 3588: 3583: 3579: 3575: 3571: 3567: 3563: 3559: 3555: 3551: 3547: 3543: 3537: 3535: 3531: 3526: 3522: 3517: 3512: 3508: 3504: 3500: 3496: 3493:(3): 036010. 3492: 3488: 3484: 3477: 3474: 3469: 3465: 3461: 3457: 3453: 3449: 3442: 3439: 3434: 3427: 3424: 3419: 3415: 3410: 3405: 3401: 3397: 3393: 3389: 3385: 3378: 3375: 3370: 3366: 3361: 3356: 3352: 3348: 3344: 3340: 3336: 3329: 3327: 3323: 3318: 3314: 3309: 3304: 3300: 3296: 3292: 3288: 3284: 3277: 3274: 3269: 3265: 3260: 3255: 3250: 3245: 3241: 3237: 3233: 3229: 3225: 3218: 3216: 3212: 3207: 3203: 3199: 3195: 3191: 3187: 3183: 3179: 3172: 3165: 3162: 3156: 3154: 3150: 3145: 3141: 3136: 3131: 3126: 3121: 3117: 3113: 3109: 3102: 3100: 3098: 3094: 3089: 3085: 3081: 3077: 3072: 3067: 3063: 3059: 3052: 3050: 3048: 3044: 3038: 3033: 3029: 3025: 3021: 3014: 3011: 3005: 3003: 2999: 2994: 2990: 2985: 2980: 2976: 2972: 2968: 2964: 2961:(6): 3510–8. 2960: 2956: 2952: 2945: 2942: 2937: 2933: 2929: 2925: 2921: 2917: 2910: 2907: 2902: 2898: 2894: 2890: 2885: 2880: 2876: 2872: 2865: 2862: 2857: 2853: 2848: 2843: 2840:(4): 524–31. 2839: 2835: 2831: 2827: 2820: 2818: 2816: 2812: 2807: 2803: 2798: 2793: 2788: 2783: 2779: 2775: 2771: 2767: 2763: 2756: 2753: 2746: 2743: 2738: 2734: 2729: 2724: 2719: 2714: 2710: 2706: 2702: 2695: 2693: 2689: 2684: 2680: 2675: 2670: 2665: 2660: 2656: 2652: 2648: 2641: 2639: 2635: 2629: 2627: 2625: 2621: 2616: 2612: 2607: 2602: 2597: 2592: 2588: 2584: 2581:(1): e29406. 2580: 2576: 2572: 2565: 2563: 2561: 2557: 2552: 2548: 2544: 2540: 2535: 2530: 2527:(5): 849–60. 2526: 2522: 2518: 2511: 2508: 2503: 2499: 2494: 2489: 2485: 2481: 2477: 2470: 2467: 2462: 2458: 2454: 2450: 2445: 2440: 2437:(7): 783–94. 2436: 2432: 2428: 2421: 2419: 2415: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2375: 2373: 2369: 2364: 2360: 2356: 2352: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2315: 2313: 2309: 2304: 2300: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2261: 2259: 2255: 2250: 2246: 2241: 2236: 2232: 2228: 2224: 2220: 2216: 2212: 2208: 2201: 2199: 2195: 2188: 2186: 2182: 2177: 2173: 2168: 2163: 2158: 2153: 2149: 2145: 2141: 2137: 2133: 2126: 2124: 2120: 2115: 2109: 2105: 2101: 2097: 2090: 2088: 2084: 2079: 2075: 2070: 2065: 2060: 2055: 2051: 2047: 2043: 2036: 2034: 2030: 2025: 2021: 2016: 2011: 2006: 2001: 1997: 1993: 1989: 1982: 1979: 1974: 1970: 1965: 1960: 1955: 1950: 1946: 1942: 1938: 1931: 1928: 1923: 1919: 1915: 1911: 1907: 1903: 1900:(2): 177–83. 1899: 1895: 1888: 1886: 1884: 1882: 1880: 1876: 1871: 1867: 1862: 1857: 1852: 1847: 1843: 1839: 1835: 1828: 1826: 1824: 1820: 1815: 1811: 1806: 1801: 1797: 1793: 1789: 1785: 1781: 1774: 1772: 1770: 1766: 1761: 1757: 1752: 1747: 1743: 1739: 1735: 1728: 1726: 1722: 1716: 1714: 1712: 1710: 1706: 1701: 1697: 1692: 1687: 1683: 1679: 1675: 1671: 1666: 1661: 1657: 1653: 1649: 1642: 1640: 1638: 1636: 1632: 1627: 1623: 1618: 1613: 1609: 1605: 1600: 1595: 1592:(6): 453–66. 1591: 1587: 1583: 1576: 1574: 1570: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1537: 1530: 1527: 1522: 1518: 1513: 1508: 1503: 1498: 1494: 1490: 1486: 1482: 1478: 1471: 1469: 1467: 1463: 1458: 1454: 1450: 1444: 1440: 1436: 1431: 1426: 1422: 1415: 1413: 1411: 1409: 1405: 1400: 1396: 1392: 1388: 1384: 1380: 1375: 1370: 1366: 1362: 1355: 1353: 1351: 1349: 1347: 1345: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1327: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1287: 1285: 1283: 1281: 1279: 1275: 1270: 1266: 1261: 1256: 1252: 1248: 1244: 1237: 1235: 1231: 1225: 1220: 1216: 1212: 1208: 1201: 1199: 1197: 1193: 1190: 1186: 1182: 1178: 1174: 1169: 1164: 1160: 1156: 1151: 1146: 1142: 1138: 1137: 1132: 1128: 1122: 1118: 1113: 1106: 1098: 1094: 1091: 1089: 1086: 1085: 1081: 1075: 1072: 1069: 1066: 1064: 1063: 1060: 1057: 1054: 1051: 1049: 1048: 1045: 1042: 1039: 1036: 1033: 1031: 1030: 1027: 1024: 1021: 1019: 1018:Dictyostelium 1015: 1012: 1010: 1009: 1006: 1004: 1001: 998: 995: 994:Cooperativity 992: 990: 989: 986: 983: 980: 978:RNA signaling 977: 975: 974: 971: 969: 966: 963: 960: 958: 957: 954: 951: 948: 945: 942: 940: 939: 936: 933: 930: 927: 925: 924: 921: 918: 915: 912: 910: 909: 905: 902: 900:Specification 899: 896: 894: 893: 887: 881: 879: 876: 871: 867: 863: 858: 856: 852: 847: 845: 839: 837: 831: 825: 821: 817: 812: 807: 800: 798: 794: 792: 786: 782: 780: 774: 772: 769: 765: 760: 755: 752: 744: 742: 738: 735: 730: 728: 724: 714: 707: 705: 701: 697: 683: 680: 675: 671: 662: 656: 654: 649: 643: 641: 637: 633: 628: 626: 621: 617: 613: 611: 607: 599: 597: 594: 590: 587:When running 582: 580: 576: 573: 571: 567: 563: 559: 554: 550: 546: 544: 540: 536: 531: 530:cell division 527: 523: 519: 515: 514:fission yeast 509: 507: 503: 499: 494: 493:correctness. 492: 491:thermodynamic 488: 483: 481: 477: 473: 468: 464: 461: 456: 452: 450: 445: 442: 437: 434: 430: 421: 419: 412: 409: 406: 403: 400: 397: 394: 391: 390: 389: 387: 383: 379: 375: 371: 363: 358: 356: 354: 344: 337: 335: 333: 332:reaction rate 329: 325: 321: 315: 313: 312: 305: 303: 299: 296: 292: 274: 270: 261: 257: 239: 235: 231: 223: 219: 215: 211: 207: 203: 199: 195: 191: 188: 184: 180: 176: 175: 170: 167: 164: 159: 157: 153: 149: 145: 141: 133: 131: 129: 125: 119: 117: 113: 112:nucleic acids 110:. Similarly, 109: 105: 101: 97: 92: 88: 80: 75: 73: 70: 66: 62: 58: 54: 50: 46: 41: 37: 33: 28: 26: 22: 18: 4153:Biomolecules 4085: 4081: 4071: 4026: 4022: 4012: 3977: 3973: 3963: 3936: 3932: 3922: 3890:(5): 687–9. 3887: 3883: 3873: 3848: 3844: 3838: 3816:(1): 33–45. 3813: 3809: 3803: 3770: 3766: 3756: 3721: 3717: 3661: 3657: 3647: 3604: 3600: 3590: 3549: 3545: 3490: 3486: 3476: 3451: 3447: 3441: 3426: 3391: 3387: 3377: 3342: 3338: 3293:(3): 283–9. 3290: 3286: 3276: 3231: 3227: 3181: 3177: 3164: 3115: 3111: 3061: 3057: 3027: 3023: 3013: 2958: 2954: 2944: 2919: 2915: 2909: 2874: 2870: 2864: 2837: 2833: 2769: 2765: 2755: 2745: 2708: 2704: 2654: 2650: 2578: 2574: 2524: 2520: 2510: 2483: 2479: 2469: 2434: 2430: 2384: 2380: 2328: 2324: 2270: 2266: 2214: 2210: 2139: 2135: 2095: 2049: 2045: 1995: 1991: 1981: 1944: 1940: 1930: 1897: 1893: 1841: 1837: 1790:(7): 910–7. 1787: 1783: 1744:(6): 575–6. 1741: 1737: 1655: 1651: 1589: 1585: 1542:(1): 131–6. 1539: 1535: 1529: 1484: 1480: 1420: 1367:(344): re6. 1364: 1360: 1299:(4): 22–41. 1296: 1292: 1250: 1246: 1214: 1210: 1140: 1134: 1102: 1014:Chemosensing 885: 859: 848: 840: 832: 829: 795: 787: 783: 775: 756: 748: 739: 731: 720: 702: 698: 657: 644: 629: 618: 614: 608:of the same 603: 586: 577: 574: 555: 551: 547: 510: 505: 501: 497: 495: 484: 465: 457: 453: 449:"rule-based" 446: 441:dissociation 438: 425: 416: 367: 349: 316: 309: 306: 298:gene circuit 218:EGF receptor 172: 160: 144:interactions 137: 120: 84: 76:Introduction 29: 16: 15: 3058:J Phys Chem 903:Computation 870:topological 836:kinetochore 771:chemotactic 636:probability 589:simulations 545:algorithm. 543:Monte Carlo 353:computation 320:coffee shop 183:methylation 138:Biological 30:Biological 4127:Categories 3773:(1): 1–9. 3542:Mogilner A 3234:(7): e82. 2922:: 88–118. 1293:Complexity 1217:: 69–110. 1099:References 1037:activation 906:Reference 866:dimensions 751:stochastic 734:complexity 632:randomness 463:is KaSim. 370:simulation 295:eukaryotic 222:MAP kinase 196:of twelve 179:chemotaxis 85:In living 3066:CiteSeerX 2879:CiteSeerX 2750:Springer. 1947:(1): 11. 1665:0712.3773 1599:1007.1315 1425:CiteSeerX 1369:CiteSeerX 1185:Q18145441 1159:1553-734X 1115:license ( 1112:CC BY 4.0 1055:BioNetGen 949:BioNetGen 875:diffusion 768:bacterial 606:molecules 593:iterating 526:pheromone 516:includes 467:BioNetGen 433:reactions 382:cytosolic 302:reactions 232:∼ 202:hexameric 198:catalytic 194:dodecamer 108:complexes 59:, or the 49:BioNetGen 25:complexes 4168:Proteins 4114:24709796 4063:20837541 4004:23804443 3955:17032683 3914:19147665 3865:12758077 3830:23562479 3795:15881414 3748:22740128 3696:21832806 3639:11916840 3582:10491696 3574:22499937 3525:22683827 3468:41366617 3418:23423320 3369:19578038 3317:22286385 3268:16854213 3144:22005019 2993:15189850 2936:14343300 2901:14641091 2856:12611808 2826:Kitano H 2806:19346467 2737:23705868 2683:22913808 2615:22279535 2575:PLOS ONE 2543:16325579 2453:14708119 2409:34035288 2401:12595679 2355:11201753 2249:20151023 2078:20529264 2024:20233406 1973:25737778 1914:21186362 1870:20673321 1814:19213740 1760:11395441 1700:18851068 1626:21073243 1564:23696958 1556:15637632 1521:21079669 1457:19399430 1391:16849649 1269:15217809 1181:Wikidata 1177:25254957 1082:See also 1073:JAMES II 1070:ML-Rules 934:StochSim 931:StochSim 919:StochSim 916:StochSim 506:React(C) 498:React(C) 429:implicit 386:membrane 328:espresso 311:a priori 156:subunits 91:proteins 40:Modeling 4105:3972674 4054:2947881 4031:Bibcode 3995:3730697 3905:2647835 3775:Bibcode 3739:3540825 3687:3168694 3666:Bibcode 3630:1301978 3609:Bibcode 3554:Bibcode 3546:Science 3516:3507550 3495:Bibcode 3409:3588907 3394:: 646. 3360:2734316 3308:3448286 3259:1513273 3236:Bibcode 3135:3306009 3118:: 166. 3088:2606191 2984:1304255 2963:Bibcode 2797:2672529 2774:Bibcode 2728:3680069 2674:3485121 2657:: 107. 2606:3261145 2583:Bibcode 2551:2654357 2502:6313675 2461:9092264 2381:Science 2333:Bibcode 2303:4326068 2295:7630396 2275:Bibcode 2240:2819163 2219:Bibcode 2176:8650164 2144:Bibcode 2069:2911456 2052:: 307. 2015:2848630 1964:4347613 1922:5412795 1861:2921409 1844:: 404. 1805:2660871 1691:2652652 1670:Bibcode 1617:3070173 1512:2973810 1489:Bibcode 1399:1816082 1321:9307441 1301:Bibcode 1168:4201162 1025:Simmune 1022:Simmune 862:complex 844:neurons 824:Blender 727:objects 663:sites ( 610:species 502:React C 174:E. coli 65:spatial 4112:  4102:  4061:  4051:  4002:  3992:  3953:  3912:  3902:  3863:  3828:  3793:  3746:  3736:  3694:  3684:  3637:  3627:  3580:  3572:  3523:  3513:  3466:  3416:  3406:  3367:  3357:  3315:  3305:  3266:  3256:  3206:702281 3204:  3142:  3132:  3086:  3068:  2991:  2981:  2934:  2899:  2881:  2854:  2804:  2794:  2735:  2725:  2711:: 42. 2681:  2671:  2613:  2603:  2549:  2541:  2500:  2459:  2451:  2407:  2399:  2363:480515 2361:  2353:  2325:Nature 2301:  2293:  2267:Nature 2247:  2237:  2192:Raton. 2174:  2164:  2110:  2076:  2066:  2022:  2012:  1998:: 24. 1971:  1961:  1920:  1912:  1868:  1858:  1812:  1802:  1758:  1698:  1688:  1624:  1614:  1562:  1554:  1519:  1509:  1455:  1445:  1427:  1397:  1389:  1371:  1319:  1267:  1183:  1175:  1165:  1157:  1003:MATLAB 968:COPASI 855:ligand 764:arrays 562:Python 518:cyclin 472:graphs 374:ligand 260:googol 190:CaMKII 187:kinase 4082:Cells 3791:S2CID 3578:S2CID 3464:S2CID 3202:S2CID 3174:(PDF) 3084:S2CID 2547:S2CID 2457:S2CID 2405:S2CID 2359:S2CID 2299:S2CID 2167:39132 1918:S2CID 1660:arXiv 1594:arXiv 1560:S2CID 1395:S2CID 1317:S2CID 1058:SRSim 984:KaSim 981:Kappa 952:NFSim 759:flags 653:actin 324:decaf 220:to a 192:is a 163:yeast 87:cells 69:SRSim 4110:PMID 4059:PMID 4000:PMID 3951:PMID 3910:PMID 3861:PMID 3826:PMID 3744:PMID 3692:PMID 3635:PMID 3570:PMID 3521:PMID 3414:PMID 3365:PMID 3313:PMID 3264:PMID 3140:PMID 2989:PMID 2932:PMID 2897:PMID 2852:PMID 2802:PMID 2733:PMID 2679:PMID 2611:PMID 2539:PMID 2521:Cell 2498:PMID 2449:PMID 2397:PMID 2351:PMID 2291:PMID 2245:PMID 2172:PMID 2108:ISBN 2074:PMID 2020:PMID 1969:PMID 1910:PMID 1866:PMID 1810:PMID 1756:PMID 1696:PMID 1622:PMID 1552:PMID 1517:PMID 1453:PMID 1443:ISBN 1387:PMID 1365:2006 1265:PMID 1173:PMID 1155:ISSN 1123:): 1117:2014 944:ERBB 648:Xeon 570:PySB 558:PySB 522:cdc2 480:SBML 476:SBML 256:ErbB 169:Ste5 150:and 4100:PMC 4090:doi 4049:PMC 4039:doi 4027:107 3990:PMC 3982:doi 3941:doi 3900:PMC 3892:doi 3853:doi 3849:329 3818:doi 3814:113 3783:doi 3771:117 3734:PMC 3726:doi 3722:521 3682:PMC 3674:doi 3625:PMC 3617:doi 3562:doi 3550:336 3511:PMC 3503:doi 3456:doi 3404:PMC 3396:doi 3355:PMC 3347:doi 3303:PMC 3295:doi 3254:PMC 3244:doi 3194:hdl 3186:doi 3130:PMC 3120:doi 3076:doi 3032:doi 2979:PMC 2971:doi 2924:doi 2889:doi 2842:doi 2792:PMC 2782:doi 2770:106 2723:PMC 2713:doi 2669:PMC 2659:doi 2601:PMC 2591:doi 2529:doi 2525:123 2488:doi 2484:258 2439:doi 2389:doi 2385:299 2341:doi 2329:409 2283:doi 2271:376 2235:PMC 2227:doi 2162:PMC 2152:doi 2100:doi 2064:PMC 2054:doi 2010:PMC 2000:doi 1959:PMC 1949:doi 1902:doi 1856:PMC 1846:doi 1800:PMC 1792:doi 1746:doi 1686:PMC 1678:doi 1612:PMC 1604:doi 1544:doi 1507:PMC 1497:doi 1435:doi 1379:doi 1309:doi 1255:doi 1219:doi 1215:325 1163:PMC 1145:doi 1119:) ( 1043:SSC 1040:SSC 1016:in 684:256 384:or 275:100 23:or 4129:: 4108:. 4098:. 4084:. 4080:. 4057:. 4047:. 4037:. 4025:. 4021:. 3998:. 3988:. 3978:10 3976:. 3972:. 3949:. 3937:22 3935:. 3931:. 3908:. 3898:. 3888:25 3886:. 3882:. 3859:. 3847:. 3824:. 3812:. 3789:. 3781:. 3769:. 3765:. 3742:. 3732:. 3720:. 3716:. 3704:^ 3690:. 3680:. 3672:. 3660:. 3656:. 3633:. 3623:. 3615:. 3605:82 3603:. 3599:. 3576:. 3568:. 3560:. 3548:. 3533:^ 3519:. 3509:. 3501:. 3489:. 3485:. 3462:. 3450:. 3412:. 3402:. 3390:. 3386:. 3363:. 3353:. 3343:25 3341:. 3337:. 3325:^ 3311:. 3301:. 3289:. 3285:. 3262:. 3252:. 3242:. 3230:. 3226:. 3214:^ 3200:. 3192:. 3182:23 3180:. 3176:. 3152:^ 3138:. 3128:. 3114:. 3110:. 3096:^ 3082:. 3074:. 3062:81 3060:. 3046:^ 3028:38 3026:. 3022:. 3001:^ 2987:. 2977:. 2969:. 2959:86 2957:. 2953:. 2930:. 2920:12 2918:. 2895:. 2887:. 2875:31 2873:. 2850:. 2838:19 2836:. 2832:. 2814:^ 2800:. 2790:. 2780:. 2768:. 2764:. 2731:. 2721:. 2707:. 2703:. 2691:^ 2677:. 2667:. 2653:. 2649:. 2637:^ 2623:^ 2609:. 2599:. 2589:. 2577:. 2573:. 2559:^ 2545:. 2537:. 2523:. 2519:. 2496:. 2482:. 2478:. 2455:. 2447:. 2435:84 2433:. 2429:. 2417:^ 2403:. 2395:. 2383:. 2371:^ 2357:. 2349:. 2339:. 2327:. 2323:. 2311:^ 2297:. 2289:. 2281:. 2269:. 2257:^ 2243:. 2233:. 2225:. 2215:30 2213:. 2209:. 2197:^ 2184:^ 2170:. 2160:. 2150:. 2140:93 2138:. 2134:. 2122:^ 2106:. 2086:^ 2072:. 2062:. 2050:11 2048:. 2044:. 2032:^ 2018:. 2008:. 1994:. 1990:. 1967:. 1957:. 1943:. 1939:. 1916:. 1908:. 1896:. 1878:^ 1864:. 1854:. 1842:11 1840:. 1836:. 1822:^ 1808:. 1798:. 1788:25 1786:. 1782:. 1768:^ 1754:. 1742:17 1740:. 1736:. 1724:^ 1708:^ 1694:. 1684:. 1676:. 1668:. 1656:78 1654:. 1650:. 1634:^ 1620:. 1610:. 1602:. 1588:. 1584:. 1572:^ 1558:. 1550:. 1540:23 1538:. 1515:. 1505:. 1495:. 1483:. 1479:. 1465:^ 1451:. 1441:. 1433:. 1407:^ 1393:. 1385:. 1377:. 1363:. 1329:^ 1315:. 1307:. 1297:10 1295:. 1277:^ 1263:. 1251:20 1249:. 1245:. 1233:^ 1213:. 1209:. 1195:^ 1179:. 1171:. 1161:. 1153:. 1141:10 1139:. 1133:. 838:. 781:. 642:. 627:. 508:. 304:. 271:10 240:23 236:10 177:, 146:, 118:. 102:, 98:, 55:, 4116:. 4092:: 4086:2 4065:. 4041:: 4033:: 4006:. 3984:: 3957:. 3943:: 3916:. 3894:: 3867:. 3855:: 3832:. 3820:: 3797:. 3785:: 3777:: 3750:. 3728:: 3698:. 3676:: 3668:: 3662:8 3641:. 3619:: 3611:: 3584:. 3564:: 3556:: 3527:. 3505:: 3497:: 3491:9 3470:. 3458:: 3452:1 3435:. 3420:. 3398:: 3392:9 3371:. 3349:: 3319:. 3297:: 3291:9 3270:. 3246:: 3238:: 3232:2 3208:. 3196:: 3188:: 3146:. 3122:: 3116:5 3090:. 3078:: 3040:. 3034:: 2995:. 2973:: 2965:: 2938:. 2926:: 2903:. 2891:: 2858:. 2844:: 2808:. 2784:: 2776:: 2739:. 2715:: 2709:7 2685:. 2661:: 2655:6 2617:. 2593:: 2585:: 2579:7 2553:. 2531:: 2504:. 2490:: 2463:. 2441:: 2411:. 2391:: 2365:. 2343:: 2335:: 2305:. 2285:: 2277:: 2251:. 2229:: 2221:: 2178:. 2154:: 2146:: 2116:. 2102:: 2080:. 2056:: 2026:. 2002:: 1996:4 1975:. 1951:: 1945:7 1924:. 1904:: 1898:8 1872:. 1848:: 1816:. 1794:: 1762:. 1748:: 1702:. 1680:: 1672:: 1662:: 1628:. 1606:: 1596:: 1590:4 1566:. 1546:: 1523:. 1499:: 1491:: 1485:6 1459:. 1437:: 1401:. 1381:: 1323:. 1311:: 1303:: 1271:. 1257:: 1227:. 1221:: 1187:. 1147:: 826:. 681:= 676:8 672:2 520:/ 262:(

Index

biological molecules
complexes
signaling systems
macromolecules
Modeling
rule-based modeling
BioNetGen
ordinary differential equations
partial differential equations
Gillespie stochastic simulation algorithm
spatial
SRSim
cells
proteins
post-translational modifications
ligand binding
conformational change
complexes
nucleic acids
DNA methylation
combinatorial explosion
computational biologists
signaling networks
interactions
post-translational modifications
conformational changes
subunits
yeast
scaffold protein
Ste5

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.