Knowledge

Multigrid method

Source đź“ť

1888: 106:. The coarse problem, while cheaper to solve, is similar to the fine grid problem in that it also has short- and long-wavelength errors. It can also be solved by a combination of relaxation and appeal to still coarser grids. This recursive process is repeated until a grid is reached where the cost of direct solution there is negligible compared to the cost of one relaxation sweep on the fine grid. This multigrid cycle typically reduces all error components by a fixed amount bounded well below one, independent of the fine grid mesh size. The typical application for multigrid is in the numerical solution of 2405:
models in science and engineering described by partial differential equations. In view of the subspace correction framework, BPX preconditioner is a parallel subspace correction method where as the classic V-cycle is a successive subspace correction method. The BPX-preconditioner is known to be naturally more parallel and in some applications more robust than the classic V-cycle multigrid method. The method has been widely used by researchers and practitioners since 1990.
147: 2470:
as well as quasi-optimal spaces was derived. Also, they proved that, under appropriate assumptions, the abstract two-level AMG method converges uniformly with respect to the size of the linear system, the coefficient variation, and the anisotropy. Their abstract framework covers most existing AMG methods, such as classical AMG, energy-minimization AMG, unsmoothed and smoothed aggregation AMG, and spectral AMGe.
1558: 2462:(AMG) construct their hierarchy of operators directly from the system matrix. In classical AMG, the levels of the hierarchy are simply subsets of unknowns without any geometric interpretation. (More generally, coarse grid unknowns can be particular linear combinations of fine grid unknowns.) Thus, AMG methods become black-box solvers for certain classes of 2616:
that appear in the nearly singular operator) independent convergence rate of the multigrid method applied to such nearly singular systems, i.e., in each grid, a space decomposition based on which the smoothing is applied, has to be constructed so that the null space of the singular part of the nearly
2466:. AMG is regarded as advantageous mainly where geometric multigrid is too difficult to apply, but is often used simply because it avoids the coding necessary for a true multigrid implementation. While classical AMG was developed first, a related algebraic method is known as smoothed aggregation (SA). 215:
There are many choices of multigrid methods with varying trade-offs between speed of solving a single iteration and the rate of convergence with said iteration. The 3 main types are V-Cycle, F-Cycle, and W-Cycle. These differ in which and how many coarse-grain cycles are performed per fine iteration.
2469:
In an overview paper by Jinchao Xu and Ludmil Zikatanov, the "algebraic multigrid" methods are understood from an abstract point of view. They developed a unified framework and existing algebraic multigrid methods can be derived coherently. Abstract theory about how to construct optimal coarse space
2404:
Originally described in Xu's Ph.D. thesis and later published in Bramble-Pasciak-Xu, the BPX-preconditioner is one of the two major multigrid approaches (the other is the classic multigrid algorithm such as V-cycle) for solving large-scale algebraic systems that arise from the discretization of
220:, F-Cycle takes 83% more time to compute than a V-Cycle iteration while a W-Cycle iteration takes 125% more. If the problem is set up in a 3D domain, then a F-Cycle iteration and a W-Cycle iteration take about 64% and 75% more time respectively than a V-Cycle iteration ignoring 243:
Any geometric multigrid cycle iteration is performed on a hierarchy of grids and hence it can be coded using recursion. Since the function calls itself with smaller sized (coarser) parameters, the coarsest grid is where the recursion stops. In cases where the system has a high
1565:
This approach has the advantage over other methods that it often scales linearly with the number of discrete nodes used. In other words, it can solve these problems to a given accuracy in a number of operations that is proportional to the number of unknowns.
2611:
operator. There were many works to attempt to design a robust and fast multigrid method for such nearly singular problems. A general guide has been provided as a design principle to achieve parameters (e.g., mesh size and physical parameters such as
117:
may be recast as a multigrid method. In these cases, multigrid methods are among the fastest solution techniques known today. In contrast to other methods, multigrid methods are general in that they can treat arbitrary regions and
2923: 2450:, that is, it adjusts the grid as the computation proceeds, in a manner dependent upon the computation itself. The idea is to increase resolution of the grid only in regions of the solution where it is needed. 3249:
Young-Ju Lee, Jinbiao Wu, Jinchao Xu and Ludmil Zikatanov, Robust Subspace Correction Methods for Nearly Singular Systems, Mathematical Models and Methods in Applied Sciences, Vol. 17, No 11, pp. 1937-1963
216:
The V-Cycle algorithm executes one coarse-grain V-Cycle. F-Cycle does a coarse-grain V-Cycle followed by a coarse-grain F-Cycle, while each W-Cycle performs two coarse-grain W-Cycles per iteration. For a
2506:
Nearly singular problems arise in a number of important physical and engineering applications. Simple, but important example of nearly singular problems can be found at the displacement formulation of
2458:
Practically important extensions of multigrid methods include techniques where no partial differential equation nor geometrical problem background is used to construct the multilevel hierarchy. Such
2362:
time as well as in the case where the multigrid method is used as a solver. Multigrid preconditioning is used in practice even for linear systems, typically with one cycle per iteration, e.g., in
2120: 2211: 2373:
If the matrix of the original equation or an eigenvalue problem is symmetric positive definite (SPD), the preconditioner is commonly constructed to be SPD as well, so that the standard
1884: 1773: 1984: 2043: 3410: 2440:. These wavelet methods can be combined with multigrid methods. For example, one use of wavelets is to reformulate the finite element approach in terms of a multilevel method. 1687: 2537: 2617:
singular operator has to be included in the sum of the local null spaces, the intersection of the null space and the local spaces resulting from the space decompositions.
2557: 2319: 2381:
can still be used. Such imposed SPD constraints may complicate the construction of the preconditioner, e.g., requiring coordinated pre- and post-smoothing. However,
1922: 1641: 1614: 2360: 2272: 2243: 98:
The main idea of multigrid is to accelerate the convergence of a basic iterative method (known as relaxation, which generally reduces short-wavelength error) by a
3305: 2510:
for nearly incompressible materials. Typically, the major problem to solve such nearly singular systems boils down to treat the nearly singular operator given by
1713: 2605: 2577: 2147: 1816: 1793: 1587: 232:, W-Cycle can show superiority in its rate of convergence per iteration over F-Cycle. The choice of smoothing operators are extremely diverse as they include 126:
or other special properties of the equation. They have also been widely used for more-complicated non-symmetric and nonlinear systems of equations, like the
3501: 3451: 2422: 87:
exhibit different rates of convergence for short- and long-wavelength components, suggesting these different scales be treated differently, as in a
3880: 3427: 3401: 2414: 123: 2873:
Bramble, James H., Joseph E. Pasciak, and Jinchao Xu. "Parallel multilevel preconditioners." Mathematics of Computation 55, no. 191 (1990): 1–22.
107: 3725: 3495: 3343: 3160: 3133: 3104: 3075: 3048: 3021: 2988: 2959: 2933: 2905: 2785: 2758: 2702: 2671: 2644: 3795: 3652: 3507: 3374: 2802:
Efficient solution of symmetric eigenvalue problems using multigrid preconditioners in the locally optimal block conjugate gradient method
248:, the correction procedure is modified such that only a fraction of the prolongated coarser grid solution is added onto the finer grid. 3300: 2952:
Hyperbolic problems: theory, numerics, applications: proceedings of the Ninth International Conference on Hyperbolic Problems of 2002
225: 3313: 3200: 3720: 3703: 3854: 3640: 3621: 3610: 3587: 1561:
Assuming a 2-dimensional problem setup, the computation moves across grid hierarchy differently for various multigrid cycles.
2413:
Multigrid methods can be generalized in many different ways. They can be applied naturally in a time-stepping solution of
3593: 2418: 2051: 190: 180: 3710: 3326:
R. P. Fedorenko (1964), The speed of convergence of one iterative process. USSR Comput. Math. Math. Phys. 4, p. 227.
2155: 3675: 2580: 3715: 2882:
Xu, Jinchao. "Iterative methods by space decomposition and subspace correction." SIAM review 34, no. 4 (1992): 581-613.
2801: 3875: 3394: 3832: 1775:
is the ratio of grid points on "neighboring" grids and is assumed to be constant throughout the grid hierarchy, and
3817: 3693: 3369: 113:
Multigrid methods can be applied in combination with any of the common discretization techniques. For example, the
3459: 3441: 3360:
Repository for multigrid, multilevel, multiscale, aggregation, defect correction, and domain decomposition methods
3479: 2389: 217: 1569:
Assume that one has a differential equation which can be solved approximately (with a given accuracy) on a grid
1070:% Recursive W-cycle multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 575:% Recursive F-cycle multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 281:% Recursive V-Cycle Multigrid for solving the Poisson equation (\nabla^2 phi = f) on a uniform grid of spacing h 3802: 3688: 3418: 2608: 2447: 1824: 76: 3464: 2483: 1718: 170: 1930: 3844: 3822: 3807: 3790: 3698: 3683: 3599: 2584: 2487: 1992: 135: 3764: 3535: 3387: 2366:. Its main advantage versus a purely multigrid solver is particularly clear for nonlinear problems, e.g., 1887: 3812: 3658: 3574: 2479: 114: 64: 39: 3379: 1646: 3849: 3522: 3274: 3263: 2723: 2513: 221: 131: 1798:
The following recurrence relation is then obtained for the effort of obtaining the solution on grid
3616: 3530: 2430: 553:. This multigrid cycle is slower than V-Cycle per iteration but does result in faster convergence. 154:
There are many variations of multigrid algorithms, but the common features are that a hierarchy of
80: 2542: 1044:
Similarly the procedures can modified as shown in the MATLAB style pseudo code for 1 iteration of
3839: 3780: 2847: 2827: 2491: 2374: 119: 48: 3038: 3012:. Vol. 20 of Lecture Notes in Computational Science and Engineering. Springer. p. 140 2661: 2613: 2277: 102:
correction of the fine grid solution approximation from time to time, accomplished by solving a
2498:
parallel-in-time integration method can also be reformulated as a two-level multigrid in time.
2482:. Of particular interest here are parallel-in-time multigrid methods: in contrast to classical 2396:
for symmetric eigenvalue problems are all shown to be robust if the preconditioner is not SPD.
3885: 3469: 3339: 3309: 3196: 3156: 3150: 3129: 3100: 3092: 3071: 3044: 3017: 3005: 2984: 2955: 2943: 2929: 2901: 2893: 2864:
Xu, Jinchao. Theory of multilevel methods. Vol. 8924558. Ithaca, NY: Cornell University, 1989.
2781: 2754: 2698: 2688: 2667: 2640: 2507: 2426: 2378: 127: 84: 3121: 3065: 2976: 2634: 3785: 3664: 3632: 3232: 3175:
Xu, J. and Zikatanov, L., 2017. Algebraic multigrid methods. Acta Numerica, 26, pp.591-721.
2837: 2385: 2126: 1891:
Example of Convergence Rates of Multigrid Cycles in comparison to other smoothing operators.
245: 229: 166: 88: 3275:
On the convergence of a relaxation method with natural constraints on the elliptic operator
1900: 1619: 1592: 3827: 3770: 3759: 2463: 2382: 2336: 2330: 2248: 2219: 233: 1692: 2727: 146: 3605: 3552: 2590: 2562: 2329:
A multigrid method with an intentionally reduced tolerance can be used as an efficient
2132: 1801: 1778: 1572: 237: 155: 103: 92: 72: 3869: 3474: 197: 3364: 3331: 2851: 2816:"Nonsymmetric Preconditioning for Conjugate Gradient and Steepest Descent Methods 1" 255:
These steps can be used as shown in the MATLAB style pseudo code for 1 iteration of
3646: 3563: 3540: 2947: 224:. Typically, W-Cycle produces similar convergence to F-Cycle. However, in cases of 2775: 2742: 1795:
is some constant modeling the effort of computing the result for one grid point.
17: 3557: 3435: 3280: 2842: 2815: 3188: 2367: 2333:
for an external iterative solver, e.g., The solution may still be obtained in
3270: 68: 60: 3330:
Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. (2007).
3236: 1557: 2898:
Numerical solution of partial differential equations on parallel computers
205:– interpolating a correction computed on a coarser grid into a finer grid. 2495: 2437: 150:
Visualization of iterative Multigrid algorithm for fast O(n) convergence.
3743: 3320: 3284: 3176: 3582: 2814:
Bouwmeester, Henricus; Dougherty, Andrew; Knyazev, Andrew V. (2015).
2393: 3298:
William L. Briggs, Van Emden Henson, and Steve F. McCormick (2000),
1385:% stop recursion at smallest grid size, otherwise continue recursion 1184:% stop recursion at smallest grid size, otherwise continue recursion 890:% stop recursion at smallest grid size, otherwise continue recursion 689:% stop recursion at smallest grid size, otherwise continue recursion 395:% stop recursion at smallest grid size, otherwise continue recursion 91:
approach to multigrid. MG methods can be used as solvers as well as
2690:
Multigrid finite element methods for electromagnetic field modeling
2832: 2363: 2804:. Electronic Transactions on Numerical Analysis, 15, 38–55, 2003. 3737: 3731: 3546: 2274:
i.e. W-cycle multigrid used on a 1D problem; it would result in
2245:
time. It should be mentioned that there is one exception to the
3383: 2981:
Multiscale and multiresolution methods: theory and applications
211:– Adding prolongated coarser grid solution onto the finer grid. 3332:"Section 20.6. Multigrid Methods for Boundary Value Problems" 3321:
A relaxation method for solving elliptic difference equations
3223:
Horton, Graham (1992). "The time-parallel multigrid method".
2478:
Multigrid methods have also been adopted for the solution of
2539:
robustly with respect to the positive, but small parameter
1048:
for an even superior rate of convergence in certain cases:
3006:"Wavelet-based numerical homogenization with applications" 165:– reducing high frequency errors, for example using a few 3285:
Multi-Level Adaptive Solutions to Boundary-Value Problems
3193:
Computing Methods in Applied Sciences and Engineering, VI
2925:
Computational fluid dynamics: principles and applications
3359: 3008:. In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). 2979:. In Timothy J. Barth; Tony Chan; Robert Haimes (eds.). 2944:"Multigrid for Atmospheric Data Assimilation: Analysis" 3338:(3rd ed.). New York: Cambridge University Press. 2892:
F. HĂĽlsemann; M. Kowarschik; M. Mohr; U. RĂĽde (2006).
2425:
is underway. Multigrid methods can also be applied to
75:. They are an example of a class of techniques called 3149:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
3091:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
3037:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
2660:
U. Trottenberg; C. W. Oosterlee; A. SchĂĽller (2001).
2593: 2565: 2545: 2516: 2436:
Another set of multiresolution methods is based upon
2339: 2280: 2251: 2222: 2158: 2135: 2054: 1995: 1933: 1903: 1827: 1804: 1781: 1721: 1695: 1649: 1622: 1595: 1575: 3411:
Numerical methods for partial differential equations
3264:
An iterative method of solving elliptic net problems
2417:, or they can be applied directly to time-dependent 2115:{\displaystyle W_{1}=KN_{1}\sum _{p=0}^{n}\rho ^{p}} 3752: 3674: 3631: 3573: 3521: 3488: 3450: 3426: 3417: 2206:{\displaystyle W_{1}<KN_{1}{\frac {1}{1-\rho }}} 35: 3336:Numerical Recipes: The Art of Scientific Computing 2599: 2571: 2551: 2531: 2354: 2313: 2266: 2237: 2205: 2141: 2114: 2037: 1978: 1916: 1878: 1810: 1787: 1767: 1707: 1681: 1635: 1608: 1581: 3323:. USSR Comput. Math. Math. Phys. 1, p. 1092. 1616:. Assume furthermore that a solution on any grid 2636:Practical Fourier analysis for multigrid methods 158:(grids) is considered. The important steps are: 3126:Matrix-based multigrid: theory and applications 1897:And in particular, we find for the finest grid 3306:Society for Industrial and Applied Mathematics 2896:. In Are Magnus Bruaset; Aslak Tveito (eds.). 3395: 8: 2749:. McGraw-Hill Higher Education. p. 478 2747:Scientific Computing: An Introductory Survey 30: 3266:. USSR Comp. Math. Math. Phys. 11, 171–182. 3225:Communications in Applied Numerical Methods 2977:"Multiscale scientific computation: review" 1989:Combining these two expressions (and using 3423: 3402: 3388: 3380: 3277:. USSR Comp. Math. Math. Phys. 6, 101–13. 2841: 2831: 2633:Roman Wienands; Wolfgang Joppich (2005). 2592: 2564: 2544: 2515: 2423:hyperbolic partial differential equations 2421:. Research on multilevel techniques for 2338: 2279: 2250: 2221: 2185: 2179: 2163: 2157: 2134: 2106: 2096: 2085: 2075: 2059: 2053: 2029: 2013: 2000: 1994: 1970: 1951: 1938: 1932: 1908: 1902: 1879:{\displaystyle W_{k}=W_{k+1}+\rho KN_{k}} 1870: 1845: 1832: 1826: 1803: 1780: 1753: 1744: 1732: 1720: 1694: 1673: 1654: 1648: 1627: 1621: 1600: 1594: 1574: 2415:parabolic partial differential equations 1886: 1768:{\displaystyle \rho =N_{i+1}/N_{i}<1} 1556: 250: 145: 27:Method of solving differential equations 2687:Yu Zhu; Andreas C. Cangellaris (2006). 2625: 2216:that is, a solution may be obtained in 1979:{\displaystyle W_{1}=W_{2}+\rho KN_{1}} 108:elliptic partial differential equations 3010:Multiscale and Multiresolution Methods 2502:Multigrid for nearly singular problems 2494:in temporal direction. The well known 2038:{\displaystyle N_{k}=\rho ^{k-1}N_{1}} 29: 3067:Numerical Analysis of Wavelet Methods 3004:Björn Engquist; Olof Runborg (2002). 2942:Achi Brandt and Rima Gandlin (2003). 1643:may be obtained with a given effort 83:of behavior. For example, many basic 79:, very useful in problems exhibiting 7: 3653:Moving particle semi-implicit method 3564:Weighted essentially non-oscillatory 2777:An Introduction to Multigrid Methods 3502:Finite-difference frequency-domain 2743:"Section 11.5.7 Multigrid Methods" 1689:from a solution on a coarser grid 25: 2800:Andrew V Knyazev, Klaus Neymeyr. 2400:Bramble–Pasciak–Xu preconditioner 1682:{\displaystyle W_{i}=\rho KN_{i}} 1589:with a given grid point density 183:after the smoothing operation(s). 2720:Analysis of the multigrid method 3855:Method of fundamental solutions 3641:Smoothed-particle hydrodynamics 3155:. Academic Press. p. 417. 3099:. Academic Press. p. 356. 3093:"Chapter 9: Adaptive Multigrid" 2718:Shah, Tasneem Mohammad (1989). 2532:{\displaystyle A+\varepsilon M} 3881:Partial differential equations 3496:Alternating direction-implicit 3189:"Parabolic multi-grid methods" 2894:"Parallel geometric multigrid" 2419:partial differential equations 2349: 2343: 2308: 2305: 2299: 2284: 2261: 2255: 2232: 2226: 1391:smallest_grid_size_is_achieved 1190:smallest_grid_size_is_achieved 896:smallest_grid_size_is_achieved 695:smallest_grid_size_is_achieved 401:smallest_grid_size_is_achieved 1: 3508:Finite-difference time-domain 2722:(Thesis). Oxford University. 2409:Generalized multigrid methods 1472:% Prolongation and correction 1271:% Prolongation and correction 977:% Prolongation and Correction 776:% Prolongation and Correction 482:% Prolongation and Correction 124:separability of the equations 3547:Advection upstream-splitting 3370:Algebraic multigrid tutorial 3187:Hackbusch, Wolfgang (1985). 2552:{\displaystyle \varepsilon } 122:. They do not depend on the 3558:Essentially non-oscillatory 3541:Monotonic upstream-centered 3262:G. P. Astrachancev (1971), 2900:. Birkhäuser. p. 165. 2843:10.1016/j.procs.2015.05.241 2460:algebraic multigrid methods 2392:for SPD linear systems and 2129:, we then find (for finite 110:in two or more dimensions. 3902: 3818:Infinite difference method 3436:Forward-time central-space 3375:Links to AMG presentations 3289:Mathematics of Computation 2314:{\displaystyle O(Nlog(N))} 252: 3721:Poincaré–Steklov operator 3480:Method of characteristics 3304:(2nd ed.), Philadelphia: 2954:. Springer. p. 369. 2928:. Elsevier. p. 305. 2820:Procedia Computer Science 2639:. CRC Press. p. 17. 2474:Multigrid in time methods 2454:Algebraic multigrid (AMG) 2325:Multigrid preconditioning 1331:% Compute residual errors 1106:% Compute Residual Errors 836:% Compute residual errors 611:% Compute Residual Errors 549:The following represents 317:% Compute Residual Errors 3738:Tearing and interconnect 3732:Balancing by constraints 3319:R. P. Fedorenko (1961), 3128:. Springer. p. 66. 3070:. Elsevier. p. 44. 2983:. Springer. p. 53. 2490:methods, they can offer 2448:adaptive mesh refinement 1050: 555: 261: 193:error to a coarser grid. 3845:Computer-assisted proof 3823:Infinite element method 3611:Gradient discretisation 136:Navier-Stokes equations 77:multiresolution methods 3833:Petrov–Galerkin method 3594:Discontinuous Galerkin 3237:10.1002/cnm.1630080906 2601: 2573: 2553: 2533: 2480:initial value problems 2356: 2315: 2268: 2239: 2207: 2143: 2116: 2101: 2039: 1980: 1918: 1892: 1880: 1812: 1789: 1769: 1709: 1683: 1637: 1610: 1583: 1562: 151: 65:differential equations 3813:Isogeometric analysis 3659:Material point method 3122:"Algebraic multigrid" 3120:Yair Shapira (2003). 3064:Albert Cohen (2003). 2774:P. Wesseling (1992). 2693:. Wiley. p. 132 2602: 2574: 2554: 2534: 2429:, or for problems in 2357: 2316: 2269: 2240: 2208: 2144: 2117: 2081: 2040: 1981: 1919: 1917:{\displaystyle N_{1}} 1890: 1881: 1813: 1790: 1770: 1710: 1684: 1638: 1636:{\displaystyle N_{i}} 1611: 1609:{\displaystyle N_{i}} 1584: 1560: 149: 115:finite element method 40:Differential equation 3850:Integrable algorithm 3676:Domain decomposition 3301:A Multigrid Tutorial 2975:Achi Brandt (2002). 2946:. In Thomas Y. Hou; 2741:M. T. Heath (2002). 2591: 2583:operator with large 2563: 2543: 2514: 2355:{\displaystyle O(N)} 2337: 2278: 2267:{\displaystyle O(N)} 2249: 2238:{\displaystyle O(N)} 2220: 2156: 2133: 2052: 1993: 1931: 1901: 1825: 1802: 1779: 1719: 1693: 1647: 1620: 1593: 1573: 226:convection-diffusion 177:Residual Computation 3694:Schwarz alternating 3617:Loubignac iteration 2922:J. Blaz̆ek (2001). 2728:1989STIN...9123418S 2431:statistical physics 2390:flexible CG methods 1708:{\displaystyle i+1} 1542:Computational cost 236:methods and can be 228:problems with high 218:discrete 2D problem 189:– downsampling the 171:Gauss–Seidel method 120:boundary conditions 32: 3876:Numerical analysis 3840:Validated numerics 3365:Multigrid tutorial 3043:. Academic Press. 2666:. Academic Press. 2597: 2569: 2549: 2529: 2444:Adaptive multigrid 2427:integral equations 2375:conjugate gradient 2352: 2311: 2264: 2235: 2203: 2139: 2112: 2035: 1976: 1914: 1893: 1876: 1808: 1785: 1765: 1705: 1679: 1633: 1606: 1579: 1563: 1400:coarse_level_solve 1199:coarse_level_solve 905:coarse_level_solve 704:coarse_level_solve 410:coarse_level_solve 152: 85:relaxation methods 49:numerical analysis 3863: 3862: 3803:Immersed boundary 3796:Method of moments 3711:Neumann–Dirichlet 3704:abstract additive 3689:Fictitious domain 3633:Meshless/Meshfree 3517: 3516: 3419:Finite difference 3345:978-0-521-88068-8 3162:978-0-12-701070-0 3135:978-1-4020-7485-1 3106:978-0-12-701070-0 3077:978-0-444-51124-9 3050:978-0-12-701070-0 3023:978-3-540-42420-8 2990:978-3-540-42420-8 2961:978-3-540-44333-9 2935:978-0-08-043009-6 2907:978-3-540-29076-6 2787:978-0-471-93083-9 2760:978-0-07-112229-0 2704:978-0-471-74110-7 2673:978-0-12-701070-0 2646:978-1-58488-492-7 2609:positive definite 2600:{\displaystyle M} 2572:{\displaystyle A} 2508:linear elasticity 2379:iterative methods 2201: 2142:{\displaystyle n} 1811:{\displaystyle k} 1788:{\displaystyle K} 1582:{\displaystyle i} 1539: 1538: 1046:W-cycle multigrid 551:F-cycle multigrid 257:V-Cycle Multigrid 45: 44: 18:Multigrid methods 16:(Redirected from 3893: 3808:Analytic element 3791:Boundary element 3684:Schur complement 3665:Particle-in-cell 3600:Spectral element 3424: 3404: 3397: 3390: 3381: 3349: 3251: 3247: 3241: 3240: 3220: 3214: 3213: 3211: 3209: 3184: 3178: 3173: 3167: 3166: 3146: 3140: 3139: 3117: 3111: 3110: 3088: 3082: 3081: 3061: 3055: 3054: 3034: 3028: 3027: 3001: 2995: 2994: 2972: 2966: 2965: 2939: 2918: 2912: 2911: 2889: 2883: 2880: 2874: 2871: 2865: 2862: 2856: 2855: 2845: 2835: 2811: 2805: 2798: 2792: 2791: 2771: 2765: 2764: 2738: 2732: 2731: 2715: 2709: 2708: 2684: 2678: 2677: 2657: 2651: 2650: 2630: 2606: 2604: 2603: 2598: 2578: 2576: 2575: 2570: 2558: 2556: 2555: 2550: 2538: 2536: 2535: 2530: 2488:linear multistep 2386:steepest descent 2361: 2359: 2358: 2353: 2320: 2318: 2317: 2312: 2273: 2271: 2270: 2265: 2244: 2242: 2241: 2236: 2212: 2210: 2209: 2204: 2202: 2200: 2186: 2184: 2183: 2168: 2167: 2148: 2146: 2145: 2140: 2127:geometric series 2121: 2119: 2118: 2113: 2111: 2110: 2100: 2095: 2080: 2079: 2064: 2063: 2044: 2042: 2041: 2036: 2034: 2033: 2024: 2023: 2005: 2004: 1985: 1983: 1982: 1977: 1975: 1974: 1956: 1955: 1943: 1942: 1923: 1921: 1920: 1915: 1913: 1912: 1885: 1883: 1882: 1877: 1875: 1874: 1856: 1855: 1837: 1836: 1817: 1815: 1814: 1809: 1794: 1792: 1791: 1786: 1774: 1772: 1771: 1766: 1758: 1757: 1748: 1743: 1742: 1714: 1712: 1711: 1706: 1688: 1686: 1685: 1680: 1678: 1677: 1659: 1658: 1642: 1640: 1639: 1634: 1632: 1631: 1615: 1613: 1612: 1607: 1605: 1604: 1588: 1586: 1585: 1580: 1554: 1553: 1549: 1533: 1530: 1527: 1524: 1521: 1518: 1515: 1512: 1509: 1506: 1503: 1500: 1499:% Post-smoothing 1497: 1494: 1491: 1488: 1485: 1482: 1479: 1476: 1473: 1470: 1467: 1464: 1461: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1413: 1410: 1407: 1404: 1401: 1398: 1395: 1392: 1389: 1386: 1383: 1380: 1377: 1374: 1371: 1368: 1365: 1362: 1359: 1356: 1353: 1350: 1347: 1344: 1341: 1338: 1335: 1332: 1329: 1326: 1323: 1320: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1284: 1281: 1278: 1275: 1272: 1269: 1266: 1263: 1260: 1257: 1254: 1251: 1248: 1245: 1242: 1239: 1236: 1233: 1230: 1227: 1224: 1221: 1218: 1215: 1212: 1209: 1206: 1203: 1200: 1197: 1194: 1191: 1188: 1185: 1182: 1179: 1176: 1173: 1170: 1167: 1164: 1161: 1158: 1155: 1152: 1149: 1146: 1143: 1140: 1137: 1134: 1131: 1128: 1125: 1122: 1119: 1116: 1113: 1110: 1107: 1104: 1101: 1098: 1095: 1092: 1089: 1086: 1083: 1080: 1077: 1074: 1071: 1068: 1064: 1061: 1058: 1054: 1038: 1035: 1032: 1029: 1026: 1023: 1020: 1017: 1014: 1011: 1008: 1005: 1004:% Post-smoothing 1002: 999: 996: 993: 990: 987: 984: 981: 978: 975: 972: 969: 966: 963: 960: 957: 954: 951: 948: 945: 942: 939: 936: 933: 930: 927: 924: 921: 918: 915: 912: 909: 906: 903: 900: 897: 894: 891: 888: 885: 882: 879: 876: 873: 870: 867: 864: 861: 858: 855: 852: 849: 846: 843: 840: 837: 834: 831: 828: 825: 822: 819: 816: 813: 810: 807: 804: 801: 798: 795: 792: 789: 786: 783: 780: 777: 774: 771: 768: 765: 762: 759: 756: 753: 750: 747: 744: 741: 738: 735: 732: 729: 726: 723: 720: 717: 714: 711: 708: 705: 702: 699: 696: 693: 690: 687: 684: 681: 678: 675: 672: 669: 666: 663: 660: 657: 654: 651: 648: 645: 642: 639: 636: 633: 630: 627: 624: 621: 618: 615: 612: 609: 606: 603: 600: 597: 594: 591: 588: 585: 582: 579: 576: 573: 569: 566: 563: 559: 543: 540: 537: 534: 531: 528: 525: 522: 519: 516: 513: 510: 509:% Post-Smoothing 507: 504: 501: 498: 495: 492: 489: 486: 483: 480: 477: 474: 471: 468: 465: 462: 459: 456: 453: 450: 447: 444: 441: 438: 435: 432: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 381: 378: 375: 372: 369: 366: 363: 360: 357: 354: 351: 348: 345: 342: 339: 336: 333: 330: 327: 324: 321: 318: 315: 312: 309: 306: 303: 300: 297: 294: 291: 288: 285: 282: 279: 275: 272: 269: 265: 251: 246:condition number 89:Fourier analysis 53:multigrid method 33: 31:Multigrid method 21: 3901: 3900: 3896: 3895: 3894: 3892: 3891: 3890: 3866: 3865: 3864: 3859: 3828:Galerkin method 3771:Method of lines 3748: 3716:Neumann–Neumann 3670: 3627: 3569: 3536:High-resolution 3513: 3484: 3446: 3413: 3408: 3356: 3346: 3329: 3283:(April 1977), " 3259: 3254: 3248: 3244: 3222: 3221: 3217: 3207: 3205: 3203: 3186: 3185: 3181: 3174: 3170: 3163: 3148: 3147: 3143: 3136: 3119: 3118: 3114: 3107: 3090: 3089: 3085: 3078: 3063: 3062: 3058: 3051: 3036: 3035: 3031: 3024: 3003: 3002: 2998: 2991: 2974: 2973: 2969: 2962: 2941: 2936: 2921: 2919: 2915: 2908: 2891: 2890: 2886: 2881: 2877: 2872: 2868: 2863: 2859: 2813: 2812: 2808: 2799: 2795: 2788: 2773: 2772: 2768: 2761: 2740: 2739: 2735: 2717: 2716: 2712: 2705: 2686: 2685: 2681: 2674: 2659: 2658: 2654: 2647: 2632: 2631: 2627: 2623: 2614:Poisson's ratio 2607:is a symmetric 2589: 2588: 2561: 2560: 2541: 2540: 2512: 2511: 2504: 2476: 2464:sparse matrices 2456: 2411: 2402: 2335: 2334: 2327: 2276: 2275: 2247: 2246: 2218: 2217: 2190: 2175: 2159: 2154: 2153: 2131: 2130: 2102: 2071: 2055: 2050: 2049: 2025: 2009: 1996: 1991: 1990: 1966: 1947: 1934: 1929: 1928: 1904: 1899: 1898: 1866: 1841: 1828: 1823: 1822: 1800: 1799: 1777: 1776: 1749: 1728: 1717: 1716: 1691: 1690: 1669: 1650: 1645: 1644: 1623: 1618: 1617: 1596: 1591: 1590: 1571: 1570: 1555: 1551: 1547: 1545: 1544: 1535: 1534: 1531: 1528: 1525: 1522: 1519: 1516: 1513: 1510: 1507: 1504: 1501: 1498: 1495: 1492: 1489: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1447: 1444: 1441: 1438: 1435: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1402: 1399: 1396: 1393: 1390: 1387: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1357: 1354: 1351: 1348: 1345: 1342: 1339: 1336: 1333: 1330: 1327: 1324: 1321: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1285: 1282: 1279: 1276: 1273: 1270: 1267: 1264: 1261: 1258: 1255: 1252: 1249: 1246: 1243: 1240: 1237: 1234: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1201: 1198: 1195: 1192: 1189: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1087: 1084: 1081: 1078: 1075: 1073:% Pre-smoothing 1072: 1069: 1066: 1062: 1059: 1056: 1052: 1040: 1039: 1036: 1033: 1030: 1027: 1024: 1021: 1018: 1015: 1012: 1009: 1006: 1003: 1000: 997: 994: 991: 988: 985: 982: 979: 976: 973: 970: 967: 964: 961: 958: 955: 952: 949: 946: 943: 940: 937: 934: 931: 928: 925: 922: 919: 916: 913: 910: 907: 904: 901: 898: 895: 892: 889: 886: 883: 880: 877: 874: 871: 868: 865: 862: 859: 856: 853: 850: 847: 844: 841: 838: 835: 832: 829: 826: 823: 820: 817: 814: 811: 808: 805: 802: 799: 796: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 748: 745: 742: 739: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 691: 688: 685: 682: 679: 676: 673: 670: 667: 664: 661: 658: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 604: 601: 598: 595: 592: 589: 586: 583: 580: 578:% Pre-smoothing 577: 574: 571: 567: 564: 561: 557: 545: 544: 541: 538: 535: 532: 529: 526: 523: 520: 517: 514: 511: 508: 505: 502: 499: 496: 493: 490: 487: 484: 481: 478: 475: 472: 469: 466: 463: 460: 457: 454: 451: 448: 445: 442: 439: 436: 433: 430: 427: 424: 421: 418: 415: 412: 409: 406: 403: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 358: 355: 352: 349: 346: 343: 340: 337: 334: 331: 328: 325: 322: 319: 316: 313: 310: 307: 304: 301: 298: 295: 292: 289: 286: 284:% Pre-Smoothing 283: 280: 277: 273: 270: 267: 263: 234:Krylov subspace 156:discretizations 144: 93:preconditioners 81:multiple scales 73:discretizations 28: 23: 22: 15: 12: 11: 5: 3899: 3897: 3889: 3888: 3883: 3878: 3868: 3867: 3861: 3860: 3858: 3857: 3852: 3847: 3842: 3837: 3836: 3835: 3825: 3820: 3815: 3810: 3805: 3800: 3799: 3798: 3788: 3783: 3778: 3773: 3768: 3765:Pseudospectral 3762: 3756: 3754: 3750: 3749: 3747: 3746: 3741: 3735: 3729: 3723: 3718: 3713: 3708: 3707: 3706: 3701: 3691: 3686: 3680: 3678: 3672: 3671: 3669: 3668: 3662: 3656: 3650: 3644: 3637: 3635: 3629: 3628: 3626: 3625: 3619: 3614: 3608: 3603: 3597: 3591: 3585: 3579: 3577: 3575:Finite element 3571: 3570: 3568: 3567: 3561: 3555: 3553:Riemann solver 3550: 3544: 3538: 3533: 3527: 3525: 3519: 3518: 3515: 3514: 3512: 3511: 3505: 3499: 3492: 3490: 3486: 3485: 3483: 3482: 3477: 3472: 3467: 3462: 3460:Lax–Friedrichs 3456: 3454: 3448: 3447: 3445: 3444: 3442:Crank–Nicolson 3439: 3432: 3430: 3421: 3415: 3414: 3409: 3407: 3406: 3399: 3392: 3384: 3378: 3377: 3372: 3367: 3362: 3355: 3354:External links 3352: 3351: 3350: 3344: 3327: 3324: 3317: 3296: 3278: 3267: 3258: 3255: 3253: 3252: 3242: 3231:(9): 585–595. 3215: 3201: 3179: 3168: 3161: 3141: 3134: 3112: 3105: 3083: 3076: 3056: 3049: 3029: 3022: 2996: 2989: 2967: 2960: 2934: 2913: 2906: 2884: 2875: 2866: 2857: 2806: 2793: 2786: 2766: 2759: 2733: 2710: 2703: 2679: 2672: 2652: 2645: 2624: 2622: 2619: 2596: 2568: 2548: 2528: 2525: 2522: 2519: 2503: 2500: 2475: 2472: 2455: 2452: 2410: 2407: 2401: 2398: 2383:preconditioned 2351: 2348: 2345: 2342: 2331:preconditioner 2326: 2323: 2310: 2307: 2304: 2301: 2298: 2295: 2292: 2289: 2286: 2283: 2263: 2260: 2257: 2254: 2234: 2231: 2228: 2225: 2214: 2213: 2199: 2196: 2193: 2189: 2182: 2178: 2174: 2171: 2166: 2162: 2138: 2123: 2122: 2109: 2105: 2099: 2094: 2091: 2088: 2084: 2078: 2074: 2070: 2067: 2062: 2058: 2032: 2028: 2022: 2019: 2016: 2012: 2008: 2003: 1999: 1987: 1986: 1973: 1969: 1965: 1962: 1959: 1954: 1950: 1946: 1941: 1937: 1911: 1907: 1895: 1894: 1873: 1869: 1865: 1862: 1859: 1854: 1851: 1848: 1844: 1840: 1835: 1831: 1807: 1784: 1764: 1761: 1756: 1752: 1747: 1741: 1738: 1735: 1731: 1727: 1724: 1704: 1701: 1698: 1676: 1672: 1668: 1665: 1662: 1657: 1653: 1630: 1626: 1603: 1599: 1578: 1543: 1540: 1537: 1536: 1298:% Re-smoothing 1051: 1041: 803:% Re-smoothing 556: 546: 262: 238:preconditioned 230:PĂ©clet numbers 213: 212: 206: 194: 184: 181:residual error 174: 143: 140: 128:LamĂ© equations 104:coarse problem 43: 42: 37: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3898: 3887: 3884: 3882: 3879: 3877: 3874: 3873: 3871: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3834: 3831: 3830: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3797: 3794: 3793: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3766: 3763: 3761: 3758: 3757: 3755: 3751: 3745: 3742: 3739: 3736: 3733: 3730: 3727: 3724: 3722: 3719: 3717: 3714: 3712: 3709: 3705: 3702: 3700: 3697: 3696: 3695: 3692: 3690: 3687: 3685: 3682: 3681: 3679: 3677: 3673: 3666: 3663: 3660: 3657: 3654: 3651: 3648: 3645: 3642: 3639: 3638: 3636: 3634: 3630: 3623: 3620: 3618: 3615: 3612: 3609: 3607: 3604: 3601: 3598: 3595: 3592: 3589: 3586: 3584: 3581: 3580: 3578: 3576: 3572: 3565: 3562: 3559: 3556: 3554: 3551: 3548: 3545: 3542: 3539: 3537: 3534: 3532: 3529: 3528: 3526: 3524: 3523:Finite volume 3520: 3509: 3506: 3503: 3500: 3497: 3494: 3493: 3491: 3487: 3481: 3478: 3476: 3473: 3471: 3468: 3466: 3463: 3461: 3458: 3457: 3455: 3453: 3449: 3443: 3440: 3437: 3434: 3433: 3431: 3429: 3425: 3422: 3420: 3416: 3412: 3405: 3400: 3398: 3393: 3391: 3386: 3385: 3382: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3357: 3353: 3347: 3341: 3337: 3333: 3328: 3325: 3322: 3318: 3315: 3314:0-89871-462-1 3311: 3307: 3303: 3302: 3297: 3294: 3290: 3286: 3282: 3279: 3276: 3272: 3268: 3265: 3261: 3260: 3256: 3246: 3243: 3238: 3234: 3230: 3226: 3219: 3216: 3204: 3202:9780444875976 3198: 3194: 3190: 3183: 3180: 3177: 3172: 3169: 3164: 3158: 3154: 3153: 3145: 3142: 3137: 3131: 3127: 3123: 3116: 3113: 3108: 3102: 3098: 3094: 3087: 3084: 3079: 3073: 3069: 3068: 3060: 3057: 3052: 3046: 3042: 3041: 3033: 3030: 3025: 3019: 3015: 3011: 3007: 3000: 2997: 2992: 2986: 2982: 2978: 2971: 2968: 2963: 2957: 2953: 2949: 2945: 2937: 2931: 2927: 2926: 2920:For example, 2917: 2914: 2909: 2903: 2899: 2895: 2888: 2885: 2879: 2876: 2870: 2867: 2861: 2858: 2853: 2849: 2844: 2839: 2834: 2829: 2825: 2821: 2817: 2810: 2807: 2803: 2797: 2794: 2789: 2783: 2779: 2778: 2770: 2767: 2762: 2756: 2752: 2748: 2744: 2737: 2734: 2729: 2725: 2721: 2714: 2711: 2706: 2700: 2696: 2692: 2691: 2683: 2680: 2675: 2669: 2665: 2664: 2656: 2653: 2648: 2642: 2638: 2637: 2629: 2626: 2620: 2618: 2615: 2610: 2594: 2586: 2582: 2579:is symmetric 2566: 2546: 2526: 2523: 2520: 2517: 2509: 2501: 2499: 2497: 2493: 2489: 2485: 2481: 2473: 2471: 2467: 2465: 2461: 2453: 2451: 2449: 2445: 2441: 2439: 2434: 2432: 2428: 2424: 2420: 2416: 2408: 2406: 2399: 2397: 2395: 2391: 2387: 2384: 2380: 2376: 2371: 2369: 2365: 2346: 2340: 2332: 2324: 2322: 2321:complexity. 2302: 2296: 2293: 2290: 2287: 2281: 2258: 2252: 2229: 2223: 2197: 2194: 2191: 2187: 2180: 2176: 2172: 2169: 2164: 2160: 2152: 2151: 2150: 2136: 2128: 2107: 2103: 2097: 2092: 2089: 2086: 2082: 2076: 2072: 2068: 2065: 2060: 2056: 2048: 2047: 2046: 2030: 2026: 2020: 2017: 2014: 2010: 2006: 2001: 1997: 1971: 1967: 1963: 1960: 1957: 1952: 1948: 1944: 1939: 1935: 1927: 1926: 1925: 1909: 1905: 1889: 1871: 1867: 1863: 1860: 1857: 1852: 1849: 1846: 1842: 1838: 1833: 1829: 1821: 1820: 1819: 1805: 1796: 1782: 1762: 1759: 1754: 1750: 1745: 1739: 1736: 1733: 1729: 1725: 1722: 1702: 1699: 1696: 1674: 1670: 1666: 1663: 1660: 1655: 1651: 1628: 1624: 1601: 1597: 1576: 1567: 1559: 1550: 1541: 1364:% Restriction 1139:% Restriction 1049: 1047: 1042: 869:% Restriction 644:% Restriction 554: 552: 547: 350:% Restriction 260: 258: 253: 249: 247: 241: 239: 235: 231: 227: 223: 219: 210: 207: 204: 200: 199: 198:Interpolation 195: 192: 188: 185: 182: 178: 175: 172: 168: 164: 161: 160: 159: 157: 148: 141: 139: 137: 133: 129: 125: 121: 116: 111: 109: 105: 101: 96: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 41: 38: 34: 19: 3775: 3647:Peridynamics 3465:Lax–Wendroff 3335: 3299: 3292: 3288: 3245: 3228: 3224: 3218: 3206:. Retrieved 3192: 3182: 3171: 3151: 3144: 3125: 3115: 3096: 3086: 3066: 3059: 3039: 3032: 3013: 3009: 2999: 2980: 2970: 2951: 2948:Eitan Tadmor 2924: 2916: 2897: 2887: 2878: 2869: 2860: 2823: 2819: 2809: 2796: 2776: 2769: 2750: 2746: 2736: 2719: 2713: 2694: 2689: 2682: 2662: 2655: 2635: 2628: 2581:semidefinite 2505: 2477: 2468: 2459: 2457: 2443: 2442: 2435: 2412: 2403: 2372: 2328: 2215: 2124: 1988: 1896: 1797: 1568: 1564: 1487:prolongation 1286:prolongation 1045: 1043: 992:prolongation 791:prolongation 550: 548: 497:prolongation 256: 254: 242: 214: 208: 203:prolongation 202: 196: 186: 179:– computing 176: 162: 153: 112: 99: 97: 63:for solving 56: 52: 46: 3781:Collocation 3281:Achi Brandt 3195:: 189–197. 2826:: 276–285. 2492:concurrency 2484:Runge–Kutta 1373:restriction 1148:restriction 878:restriction 653:restriction 359:restriction 187:Restriction 3870:Categories 3470:MacCormack 3452:Hyperbolic 3257:References 2585:null space 2370:problems. 2368:eigenvalue 2125:Using the 209:Correction 167:iterations 132:elasticity 3786:Level-set 3776:Multigrid 3726:Balancing 3428:Parabolic 3295:: 333–90. 3271:Bakhvalov 3152:Multigrid 3097:Multigrid 3040:Multigrid 2833:1212.6680 2780:. Wiley. 2663:Multigrid 2547:ε 2524:ε 2446:exhibits 2198:ρ 2195:− 2104:ρ 2083:∑ 2018:− 2011:ρ 1961:ρ 1861:ρ 1723:ρ 1664:ρ 1508:smoothing 1307:smoothing 1082:smoothing 1013:smoothing 812:smoothing 587:smoothing 518:smoothing 293:smoothing 222:overheads 163:Smoothing 142:Algorithm 69:hierarchy 61:algorithm 57:MG method 3886:Wavelets 3760:Spectral 3699:additive 3622:Smoothed 3588:Extended 3273:(1966), 3208:1 August 2950:(eds.). 2852:51978658 2587:, while 2496:Parareal 2438:wavelets 2045:) gives 1715:. Here, 1340:residual 1115:residual 1053:function 845:residual 620:residual 558:function 326:residual 264:function 191:residual 67:using a 59:) is an 3744:FETI-DP 3624:(S-FEM) 3543:(MUSCL) 3531:Godunov 2724:Bibcode 2559:. Here 1439:W_cycle 1238:W_cycle 1065:phi,f,h 1060:W_cycle 944:V_Cycle 743:F_Cycle 570:phi,f,h 565:F_Cycle 449:V_Cycle 276:phi,f,h 271:V_Cycle 169:of the 134:or the 3753:Others 3740:(FETI) 3734:(BDDC) 3606:Mortar 3590:(XFEM) 3583:hp-FEM 3566:(WENO) 3549:(AUSM) 3510:(FDTD) 3504:(FDFD) 3489:Others 3475:Upwind 3438:(FTCS) 3342:  3312:  3269:N. S. 3250:(2007) 3199:  3159:  3132:  3103:  3074:  3047:  3020:  2987:  2958:  2932:  2904:  2850:  2784:  2757:  2701:  2670:  2643:  2394:LOBPCG 1546:": --> 100:global 3767:(DVR) 3728:(BDD) 3667:(PIC) 3661:(MPM) 3655:(MPS) 3643:(SPH) 3613:(GDM) 3602:(SEM) 3560:(ENO) 3498:(ADI) 2848:S2CID 2828:arXiv 2621:Notes 2377:(CG) 2364:Hypre 1924:that 1166:zeros 671:zeros 377:zeros 36:Class 3649:(PD) 3596:(DG) 3340:ISBN 3310:ISBN 3210:2015 3197:ISBN 3157:ISBN 3130:ISBN 3101:ISBN 3072:ISBN 3045:ISBN 3018:ISBN 2985:ISBN 2956:ISBN 2940:and 2930:ISBN 2902:ISBN 2782:ISBN 2755:ISBN 2699:ISBN 2668:ISBN 2641:ISBN 2388:and 2170:< 1760:< 1548:edit 1430:else 1229:else 1172:size 935:else 734:else 677:size 440:else 383:size 51:, a 3287:", 3233:doi 2838:doi 2486:or 1532:end 1514:phi 1502:phi 1493:eps 1481:phi 1475:phi 1469:end 1451:rhs 1445:eps 1433:eps 1412:rhs 1406:eps 1394:eps 1367:rhs 1346:phi 1313:phi 1301:phi 1292:eps 1280:phi 1274:phi 1268:end 1250:rhs 1244:eps 1232:eps 1211:rhs 1205:eps 1193:eps 1181:)); 1178:rhs 1160:eps 1142:rhs 1121:phi 1088:phi 1076:phi 1055:phi 1037:end 1019:phi 1007:phi 998:eps 986:phi 980:phi 974:end 956:rhs 950:eps 938:eps 917:rhs 911:eps 899:eps 872:rhs 851:phi 818:phi 806:phi 797:eps 785:phi 779:phi 773:end 755:rhs 749:eps 737:eps 716:rhs 710:eps 698:eps 686:)); 683:rhs 665:eps 647:rhs 626:phi 593:phi 581:phi 560:phi 542:end 524:phi 512:phi 503:eps 491:phi 485:phi 479:end 461:rhs 455:eps 443:eps 422:rhs 416:eps 404:eps 392:)); 389:rhs 371:eps 353:rhs 332:phi 299:phi 287:phi 266:phi 201:or 130:of 71:of 47:In 3872:: 3334:. 3308:, 3293:31 3291:, 3227:. 3191:. 3124:. 3095:. 3016:. 3014:ff 2846:. 2836:. 2824:51 2822:. 2818:. 2753:. 2751:ff 2745:. 2697:. 2695:ff 2433:. 2149:) 1818:: 1529:); 1496:); 1466:); 1427:); 1388:if 1382:); 1361:); 1328:); 1295:); 1265:); 1226:); 1187:if 1157:); 1136:); 1103:); 1034:); 1001:); 971:); 932:); 893:if 887:); 866:); 833:); 800:); 770:); 731:); 692:if 662:); 641:); 608:); 539:); 506:); 476:); 437:); 398:if 368:); 347:); 314:); 259:: 240:. 138:. 95:. 3403:e 3396:t 3389:v 3348:. 3316:. 3239:. 3235:: 3229:8 3212:. 3165:. 3138:. 3109:. 3080:. 3053:. 3026:. 2993:. 2964:. 2938:. 2910:. 2854:. 2840:: 2830:: 2790:. 2763:. 2730:. 2726:: 2707:. 2676:. 2649:. 2595:M 2567:A 2527:M 2521:+ 2518:A 2350:) 2347:N 2344:( 2341:O 2309:) 2306:) 2303:N 2300:( 2297:g 2294:o 2291:l 2288:N 2285:( 2282:O 2262:) 2259:N 2256:( 2253:O 2233:) 2230:N 2227:( 2224:O 2192:1 2188:1 2181:1 2177:N 2173:K 2165:1 2161:W 2137:n 2108:p 2098:n 2093:0 2090:= 2087:p 2077:1 2073:N 2069:K 2066:= 2061:1 2057:W 2031:1 2027:N 2021:1 2015:k 2007:= 2002:k 1998:N 1972:1 1968:N 1964:K 1958:+ 1953:2 1949:W 1945:= 1940:1 1936:W 1910:1 1906:N 1872:k 1868:N 1864:K 1858:+ 1853:1 1850:+ 1847:k 1843:W 1839:= 1834:k 1830:W 1806:k 1783:K 1763:1 1755:i 1751:N 1746:/ 1740:1 1737:+ 1734:i 1730:N 1726:= 1703:1 1700:+ 1697:i 1675:i 1671:N 1667:K 1661:= 1656:i 1652:W 1629:i 1625:N 1602:i 1598:N 1577:i 1552:] 1526:h 1523:, 1520:f 1517:, 1511:( 1505:= 1490:( 1484:+ 1478:= 1463:h 1460:* 1457:2 1454:, 1448:, 1442:( 1436:= 1424:h 1421:* 1418:2 1415:, 1409:, 1403:( 1397:= 1379:r 1376:( 1370:= 1358:h 1355:, 1352:f 1349:, 1343:( 1337:= 1334:r 1325:h 1322:, 1319:f 1316:, 1310:( 1304:= 1289:( 1283:+ 1277:= 1262:h 1259:* 1256:2 1253:, 1247:, 1241:( 1235:= 1223:h 1220:* 1217:2 1214:, 1208:, 1202:( 1196:= 1175:( 1169:( 1163:= 1154:r 1151:( 1145:= 1133:h 1130:, 1127:f 1124:, 1118:( 1112:= 1109:r 1100:h 1097:, 1094:f 1091:, 1085:( 1079:= 1067:) 1063:( 1057:= 1031:h 1028:, 1025:f 1022:, 1016:( 1010:= 995:( 989:+ 983:= 968:h 965:* 962:2 959:, 953:, 947:( 941:= 929:h 926:* 923:2 920:, 914:, 908:( 902:= 884:r 881:( 875:= 863:h 860:, 857:f 854:, 848:( 842:= 839:r 830:h 827:, 824:f 821:, 815:( 809:= 794:( 788:+ 782:= 767:h 764:* 761:2 758:, 752:, 746:( 740:= 728:h 725:* 722:2 719:, 713:, 707:( 701:= 680:( 674:( 668:= 659:r 656:( 650:= 638:h 635:, 632:f 629:, 623:( 617:= 614:r 605:h 602:, 599:f 596:, 590:( 584:= 572:) 568:( 562:= 536:h 533:, 530:f 527:, 521:( 515:= 500:( 494:+ 488:= 473:h 470:* 467:2 464:, 458:, 452:( 446:= 434:h 431:* 428:2 425:, 419:, 413:( 407:= 386:( 380:( 374:= 365:r 362:( 356:= 344:h 341:, 338:f 335:, 329:( 323:= 320:r 311:h 308:, 305:f 302:, 296:( 290:= 278:) 274:( 268:= 173:. 55:( 20:)

Index

Multigrid methods
Differential equation
numerical analysis
algorithm
differential equations
hierarchy
discretizations
multiresolution methods
multiple scales
relaxation methods
Fourier analysis
preconditioners
coarse problem
elliptic partial differential equations
finite element method
boundary conditions
separability of the equations
Lamé equations
elasticity
Navier-Stokes equations

discretizations
iterations
Gauss–Seidel method
residual error
residual
Interpolation
discrete 2D problem
overheads
convection-diffusion

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑