Knowledge

Multiscale modeling

Source đź“ť

318:
Initiative (ASCI) were birthed within the Department of Energy (DOE) and managed by the national labs within the US. Within ASCI, the basic recognized premise was to provide more accurate and precise simulation-based design and analysis tools. Because of the requirements for greater complexity in the simulations, parallel computing and multiscale modeling became the major challenges that needed to be addressed. With this perspective, the idea of experiments shifted from the large-scale complex tests to multiscale experiments that provided material models with validation at different length scales. If the modeling and simulations were physically based and less empirical, then a predictive capability could be realized for other conditions. As such, various multiscale modeling methodologies were independently being created at the DOE national labs: Los Alamos National Lab (LANL), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), and Oak Ridge National Laboratory (ORNL). In addition, personnel from these national labs encouraged, funded, and managed academic research related to multiscale modeling. Hence, the creation of different methodologies and computational algorithms for parallel environments gave rise to different emphases regarding multiscale modeling and the associated multiscale experiments.
326:
levels of success. Multiple scientific articles were written, and the multiscale activities took different lives of their own. At SNL, the multiscale modeling effort was an engineering top-down approach starting from continuum mechanics perspective, which was already rich with a computational paradigm. SNL tried to merge the materials science community into the continuum mechanics community to address the lower-length scale issues that could help solve engineering problems in practice.
314:
to reduce nuclear underground tests in the mid-1980s, with the last one in 1992, the idea of simulation-based design and analysis concepts were birthed. Multiscale modeling was a key in garnering more precise and accurate predictive tools. In essence, the number of large-scale systems level tests that were previously used to validate a design was reduced to nothing, thus warranting the increase in simulation results of the complex systems for design verification and validation purposes.
82: 1275: 36: 390:(information about atoms and/or groups of atoms is included), mesoscale or nano-level (information about large groups of atoms and/or molecule positions is included), level of continuum models, level of device models. Each level addresses a phenomenon over a specific window of length and time. Multiscale modeling is particularly important in 334:
multiscale modeling and simulation-based design were invariant to the type of product and that effective multiscale simulations could in fact lead to design optimization, a paradigm shift began to occur, in various measures within different industries, as cost savings and accuracy in product warranty estimates were rationalized.
232: 313:
The recent surge of multiscale modeling from the smallest scale (atoms) to full system level (e.g., autos) related to solid mechanics that has now grown into an international multidisciplinary activity was birthed from an unlikely source. Since the US Department of Energy (DOE) national labs started
985:
Adamson, S.; Astapenko, V.; Chernysheva, I.; Chorkov, V.; Deminsky, M.; Demchenko, G.; Demura, A.; Demyanov, A.; et al. (2007). "Multiscale multiphysics nonempirical approach to calculation of light emission properties of chemically active nonequilibrium plasma: Application to Ar GaI3 system".
412:
In meteorology, multiscale modeling is the modeling of the interaction between weather systems of different spatial and temporal scales that produces the weather that we experience. The most challenging task is to model the way through which the weather systems interact as models cannot see beyond
317:
Essentially, the idea of filling the space of system-level “tests” was then proposed to be filled by simulation results. After the Comprehensive Test Ban Treaty of 1996 in which many countries pledged to discontinue all systems-level nuclear testing, programs like the Advanced Strategic Computing
325:
At LANL, LLNL, and ORNL, the multiscale modeling efforts were driven from the materials science and physics communities with a bottom-up approach. Each had different programs that tried to unify computational efforts, materials science information, and applied mechanics algorithms with different
321:
The advent of parallel computing also contributed to the development of multiscale modeling. Since more degrees of freedom could be resolved by parallel computing environments, more accurate and precise algorithmic formulations could be admitted. This thought also drove the political leaders to
299:
has been proven to be sufficient for describing the dynamics of a broad range of fluids. However, its use for more complex fluids such as polymers is dubious. In such a case, it may be necessary to use multiscale modeling to accurately model the system such that the stress tensor can be extracted
329:
Once this management infrastructure and associated funding was in place at the various DOE institutions, different academic research projects started, initiating various satellite networks of multiscale modeling research. Technological transfer also arose into other labs within the Department of
333:
The growth of multiscale modeling in the industrial sector was primarily due to financial motivations. From the DOE national labs perspective, the shift from large-scale systems experiments mentality occurred because of the 1996 Nuclear Ban Treaty. Once industry realized that the notions of
377:
In physics and chemistry, multiscale modeling is aimed at the calculation of material properties or system behavior on one level using information or models from different levels. On each level, particular approaches are used for the description of a system. The following levels are usually
425:, cannot see the smaller cloud systems. So we need to come to a balance point so that the model becomes computationally feasible and at the same time we do not lose much information, with the help of making some rational guesses, a process called parametrization. 1348:
Multiscale Modeling of Materials (MMM-Tools) Project at Dr. Martin Steinhauser's group at the Fraunhofer-Institute for High-Speed Dynamics, Ernst-Mach-Institut, EMI, at Freiburg, Germany. Since 2013, M.O. Steinhauser is associated at the University of Basel,
120: 1224:
Tao, Wei-Kuo; Chern, Jiun-Dar; Atlas, Robert; Randall, David; Khairoutdinov, Marat; Li, Jui-Lin; Waliser, Duane E.; Hou, Arthur; et al. (2009). "A Multiscale Modeling System: Developments, Applications, and Critical Issues".
957:
Knizhnik, A.A.; Bagaturyants, A.A.; Belov, I.V.; Potapkin, B.V.; Korkin, A.A. (2002). "An integrated kinetic Monte Carlo molecular dynamics approach for film growth modeling and simulation: ZrO2 deposition on Si surface".
368:
received the Nobel Prize in Chemistry in 2013 for the development of a multiscale model method using both classical and quantum mechanical theory which were used to model large complex chemical systems and reactions.
428:
Besides the many specific applications, one area of research is methods for the accurate and efficient solution of multiscale modeling problems. The primary areas of mathematical and algorithmic development include:
351:
The aforementioned DOE multiscale modeling efforts were hierarchical in nature. The first concurrent multiscale model occurred when Michael Ortiz (Caltech) took the molecular dynamics code Dynamo, developed by
308:
Horstemeyer 2009, 2012 presented a historical review of the different disciplines (mathematics, physics, and materials science) for solid materials related to multiscale materials modeling.
587:
Martins, Ernane de Freitas; da Silva, Gabriela Dias; Salvador, Michele Aparecida; Baptista, Alvaro David Torrez; de Almeida, James Moraes; Miranda, Caetano Rodrigues (2019-10-28).
100:
of solving problems that have important features at multiple scales of time and/or space. Important problems include multiscale modeling of fluids, solids, polymers, proteins,
1029:
da Silva, Gabriela Dias; de Freitas Martins, Ernane; Salvador, Michele Aparecida; Baptista, Alvaro David Torrez; de Almeida, James Moraes; Miranda, Caetano Rodrigues (2019).
227:{\displaystyle {\begin{array}{lcl}\rho _{0}(\partial _{t}\mathbf {u} +(\mathbf {u} \cdot \nabla )\mathbf {u} )=\nabla \cdot \tau ,\\\nabla \cdot \mathbf {u} =0.\end{array}}} 401:, multiscale modeling addresses challenges for decision-makers that come from multiscale phenomena across organizational, temporal, and spatial scales. This theory fuses 277: 297: 254: 485: 391: 1353: 417:) which can see each possible cloud structure for the whole globe is computationally very expensive. On the other hand, a computationally feasible 1141: 1116: 1079: 394:
since it allows the prediction of material properties or system behavior based on knowledge of the process-structure-property relationships.
676:
Baeurle, S. A. (2008). "Multiscale modeling of polymer materials using field-theoretic methodologies: A survey about recent developments".
811:
Karplus, Martin (2014-09-15). "Development of Multiscale Models for Complex Chemical Systems: From H+H2 to Biomolecules (Nobel Lecture)".
571: 1323: 711:
Kmiecik, Sebastian; Gront, Dominik; Kolinski, Michal; Wieteska, Lukasz; Dawid, Aleksandra Elzbieta; Kolinski, Andrzej (2016-06-22).
1347: 588: 1297: 1426: 1421: 1358: 1354:
Multiscale Modeling Group: Institute of Physical & Theoretical Chemistry, University of Regensburg, Regensburg, Germany
361: 1368: 413:
the limit of the model grid size. In other words, to run an atmospheric model that is having a grid size (very small ~
112: 1195:
Hosseini, SA; Shah, N (2009). "Multiscale modelling of hydrothermal biomass pretreatment for chip size optimization".
763:
Levitt, Michael (2014-09-15). "Birth and Future of Multiscale Modeling for Macromolecular Systems (Nobel Lecture)".
406: 614:
Oden, J. Tinsley; Vemaganti, Kumar; Moës, Nicolas (1999-04-16). "Hierarchical modeling of heterogeneous solids".
46: 1031:"From Atoms to Pre-salt Reservoirs: Multiscale Simulations of the Low-Salinity Enhanced Oil Recovery Mechanisms" 649:
Zeng, Q. H.; Yu, A. B.; Lu, G. Q. (2008-02-01). "Multiscale modeling and simulation of polymer nanocomposites".
1387:
An Introduction to Computational Multiphysics II: Theoretical Background Part I Harvard University video series
1305: 1301: 1285: 500: 379: 1401: 1373: 409:. Multiscale decision-making draws upon the analogies between physical systems and complex man-made systems. 475: 387: 589:"Uncovering the Mechanisms of Low-Salinity Water Injection EOR Processes: A Molecular Simulation Viewpoint" 1364:
Multiscale Modeling Tools for Protein Structure Prediction and Protein Folding Simulations, Warsaw, Poland
480: 356:
at Sandia National Labs, and with his students embedded it into a finite element code for the first time.
463: 914:
De Pablo, Juan J. (2011). "Coarse-Grained Simulations of Macromolecules: From DNA to Nanocomposites".
1234: 1166: 1157:
Tadmore, E.B.; Ortiz, M.; Phillips, R. (1996-09-27). "Quasicontinuum Analysis of Defects in Solids".
995: 923: 623: 533: 433: 418: 448: 398: 97: 1011: 859:"Multiscale Modeling of Biological Functions: From Enzymes to Molecular Machines (Nobel Lecture)" 693: 383: 1212: 1137: 1112: 1085: 1075: 1050: 939: 896: 878: 836: 828: 788: 780: 742: 734: 567: 453: 259: 1337: 1104: 1396: 1369:
Multiscale modeling for Materials Engineering: Set-up of quantitative micromechanical models
1363: 1250: 1242: 1204: 1174: 1042: 1003: 967: 931: 886: 870: 820: 772: 724: 685: 658: 631: 596: 541: 490: 339: 1402:
Department of Energy Summer School on Multiscale Mathematics and High Performance Computing
935: 282: 239: 438: 402: 1374:
Multiscale Material Modelling on High Performance Computer Architectures, MMM@HPC project
104:
as well as various physical and chemical phenomena (like adsorption, chemical reactions,
1238: 1170: 999: 927: 627: 537: 891: 858: 662: 524:
Chen, Shiyi; Doolen, Gary D. (1998-01-01). "Lattice Boltzmann Method for Fluid Flows".
458: 357: 353: 1030: 1007: 971: 635: 17: 1415: 697: 505: 442: 365: 125: 101: 1359:
Multiscale Materials Modeling: Fourth International Conference, Tallahassee, FL, USA
1015: 1208: 545: 495: 1109:
Practical Aspects of Computational Chemistry: Methods, Concepts and Applications
729: 712: 1046: 1386: 1178: 689: 1089: 1054: 882: 832: 784: 738: 1407:
Multiscale Conceptual Model Figures for Biological and Environmental Science
1255: 105: 1246: 1216: 943: 900: 874: 840: 824: 792: 776: 746: 1069: 300:
without requiring the computational cost of a full microscale simulation.
81: 600: 1406: 1378: 1304:
external links, and converting useful links where appropriate into
1380:
Modeling Materials: Continuum, Atomistic and Multiscale Techniques
564:
Multiscale Modeling of Fluids and Solids - Theory and Applications
80: 1382:(E. B. Tadmor and R. E. Miller, Cambridge University Press, 2011) 1134:
Integrated Computational Materials Engineering (ICME) for Metals
344:
Integrated Computational Materials Engineering (ICME) for Metals
1397:
International Journal for Multiscale Computational Engineering
1268: 29: 1391: 386:
models (information about individual atoms is included),
61: 57: 1342: 1293: 53: 713:"Coarse-Grained Protein Models and Their Applications" 1338:
Mississippi State University ICME Cyberinfrastructure
616:
Computer Methods in Applied Mechanics and Engineering
285: 262: 242: 236:
In a wide variety of applications, the stress tensor
123: 382:(information about electrons is included), level of 557: 555: 1392:SIAM Journal of Multiscale Modeling and Simulation 1107:. In LeszczyĹ„ski, Jerzy; Shukla, Manoj K. (eds.). 291: 271: 248: 226: 1288:may not follow Knowledge's policies or guidelines 405:and multiscale mathematics and is referred to as 322:encourage the simulation-based design concepts. 1227:Bulletin of the American Meteorological Society 311: 486:Integrated computational materials engineering 392:integrated computational materials engineering 256:is given as a linear function of the gradient 330:Defense and industrial research communities. 56:. Consider transferring direct quotations to 8: 1324:Learn how and when to remove this message 1254: 1074:. Cambridge: Cambridge University Press. 890: 728: 284: 261: 241: 209: 176: 162: 151: 145: 132: 124: 122: 111:An example of such problems involve the 863:Angewandte Chemie International Edition 813:Angewandte Chemie International Edition 765:Angewandte Chemie International Edition 516: 936:10.1146/annurev-physchem-032210-103458 988:Journal of Physics D: Applied Physics 852: 850: 47:too many or overly lengthy quotations 7: 806: 804: 802: 758: 756: 85:Modeling approaches and their scales 916:Annual Review of Physical Chemistry 663:10.1016/j.progpolymsci.2007.09.002 263: 203: 187: 170: 142: 25: 1071:Principles of multiscale modeling 678:Journal of Mathematical Chemistry 1343:Multiscale Modeling of Flow Flow 1273: 526:Annual Review of Fluid Mechanics 210: 177: 163: 152: 34: 1105:"Multiscale Modeling: A Review" 960:Computational Materials Science 115:for incompressible fluid flow. 1209:10.1016/j.biortech.2008.11.030 546:10.1146/annurev.fluid.30.1.329 181: 173: 159: 138: 1: 972:10.1016/S0927-0256(02)00174-X 857:Warshel, Arieh (2014-09-15). 636:10.1016/S0045-7825(98)00224-2 1132:Horstemeyer, M. F. (2012). 1103:Horstemeyer, M. F. (2009). 1008:10.1088/0022-3727/40/13/S06 730:10.1021/acs.chemrev.6b00163 651:Progress in Polymer Science 562:Steinhauser, M. O. (2017). 1443: 1047:10.1007/s41050-019-00014-1 407:multiscale decision-making 1179:10.1080/01418619608243000 690:10.1007/s10910-008-9467-3 380:quantum mechanical models 346:, Chapter 1, Section 1.3. 1159:Philosophical Magazine A 501:Multiresolution analysis 421:(GCM), with grid size ~ 378:distinguished: level of 272:{\displaystyle \nabla u} 54:summarize the quotations 476:Computational mechanics 113:Navier–Stokes equations 1247:10.1175/2008BAMS2542.1 1197:Bioresource Technology 875:10.1002/anie.201403689 825:10.1002/anie.201403924 777:10.1002/anie.201403691 481:Equation-free modeling 459:Network-based modeling 336: 293: 273: 250: 228: 94:multiscale mathematics 86: 18:Multiscale mathematics 1427:Mathematical modeling 1422:Computational physics 388:coarse-grained models 294: 292:{\displaystyle \tau } 274: 251: 249:{\displaystyle \tau } 229: 84: 1294:improve this article 464:Statistical modeling 419:Global climate model 283: 279:. Such a choice for 260: 240: 121: 1306:footnote references 1239:2009BAMS...90..515T 1171:1996PMagA..73.1529T 1111:. pp. 87–135. 1000:2007JPhD...40.3857A 928:2011ARPC...62..555D 869:(38): 10020–10031. 771:(38): 10006–10018. 628:1999CMAME.172....3O 538:1998AnRFM..30..329C 434:Analytical modeling 399:operations research 90:Multiscale modeling 1068:E, Weinan (2011). 819:(38): 9992–10005. 449:Continuum modeling 384:molecular dynamics 289: 269: 246: 224: 222: 87: 27:Mathematical field 1334: 1333: 1326: 1143:978-1-118-02252-8 1118:978-90-481-2687-3 1081:978-1-107-09654-7 994:(13): 3857–3881. 454:Discrete modeling 373:Areas of research 79: 78: 16:(Redirected from 1434: 1329: 1322: 1318: 1315: 1309: 1277: 1276: 1269: 1260: 1258: 1256:2060/20080039624 1220: 1183: 1182: 1165:(6): 1529–1563. 1154: 1148: 1147: 1129: 1123: 1122: 1100: 1094: 1093: 1065: 1059: 1058: 1026: 1020: 1019: 982: 976: 975: 966:(1–2): 128–132. 954: 948: 947: 911: 905: 904: 894: 854: 845: 844: 808: 797: 796: 760: 751: 750: 732: 723:(14): 7898–936. 717:Chemical Reviews 708: 702: 701: 673: 667: 666: 646: 640: 639: 611: 605: 604: 601:10.4043/29885-MS 584: 578: 577: 559: 550: 549: 521: 491:Multilevel model 424: 416: 347: 340:Mark Horstemeyer 298: 296: 295: 290: 278: 276: 275: 270: 255: 253: 252: 247: 233: 231: 230: 225: 223: 213: 180: 166: 155: 150: 149: 137: 136: 74: 71: 65: 38: 37: 30: 21: 1442: 1441: 1437: 1436: 1435: 1433: 1432: 1431: 1412: 1411: 1330: 1319: 1313: 1310: 1291: 1282:This article's 1278: 1274: 1267: 1223: 1194: 1191: 1189:Further reading 1186: 1156: 1155: 1151: 1144: 1131: 1130: 1126: 1119: 1102: 1101: 1097: 1082: 1067: 1066: 1062: 1028: 1027: 1023: 984: 983: 979: 956: 955: 951: 913: 912: 908: 856: 855: 848: 810: 809: 800: 762: 761: 754: 710: 709: 705: 675: 674: 670: 648: 647: 643: 613: 612: 608: 586: 585: 581: 574: 561: 560: 553: 523: 522: 518: 514: 472: 439:Center manifold 422: 414: 403:decision theory 375: 349: 338: 306: 281: 280: 258: 257: 238: 237: 221: 220: 200: 199: 141: 128: 119: 118: 75: 69: 66: 60:or excerpts to 51: 39: 35: 28: 23: 22: 15: 12: 11: 5: 1440: 1438: 1430: 1429: 1424: 1414: 1413: 1410: 1409: 1404: 1399: 1394: 1389: 1384: 1376: 1371: 1366: 1361: 1356: 1351: 1345: 1340: 1332: 1331: 1314:September 2020 1286:external links 1281: 1279: 1272: 1266: 1265:External links 1263: 1262: 1261: 1233:(4): 515–534. 1221: 1190: 1187: 1185: 1184: 1149: 1142: 1124: 1117: 1095: 1080: 1060: 1041:(1–2): 30–50. 1021: 977: 949: 906: 846: 798: 752: 703: 684:(2): 363–426. 668: 657:(2): 191–269. 641: 606: 579: 573:978-3662532225 572: 551: 532:(1): 329–364. 515: 513: 510: 509: 508: 503: 498: 493: 488: 483: 478: 471: 468: 467: 466: 461: 456: 451: 446: 436: 374: 371: 362:Michael Levitt 358:Martin Karplus 310: 305: 302: 288: 268: 265: 245: 219: 216: 212: 208: 205: 202: 201: 198: 195: 192: 189: 186: 183: 179: 175: 172: 169: 165: 161: 158: 154: 148: 144: 140: 135: 131: 127: 126: 77: 76: 42: 40: 33: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1439: 1428: 1425: 1423: 1420: 1419: 1417: 1408: 1405: 1403: 1400: 1398: 1395: 1393: 1390: 1388: 1385: 1383: 1381: 1377: 1375: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1355: 1352: 1350: 1346: 1344: 1341: 1339: 1336: 1335: 1328: 1325: 1317: 1307: 1303: 1302:inappropriate 1299: 1295: 1289: 1287: 1280: 1271: 1270: 1264: 1257: 1252: 1248: 1244: 1240: 1236: 1232: 1228: 1222: 1218: 1214: 1210: 1206: 1203:(9): 2621–8. 1202: 1198: 1193: 1192: 1188: 1180: 1176: 1172: 1168: 1164: 1160: 1153: 1150: 1145: 1139: 1135: 1128: 1125: 1120: 1114: 1110: 1106: 1099: 1096: 1091: 1087: 1083: 1077: 1073: 1072: 1064: 1061: 1056: 1052: 1048: 1044: 1040: 1036: 1032: 1025: 1022: 1017: 1013: 1009: 1005: 1001: 997: 993: 989: 981: 978: 973: 969: 965: 961: 953: 950: 945: 941: 937: 933: 929: 925: 921: 917: 910: 907: 902: 898: 893: 888: 884: 880: 876: 872: 868: 864: 860: 853: 851: 847: 842: 838: 834: 830: 826: 822: 818: 814: 807: 805: 803: 799: 794: 790: 786: 782: 778: 774: 770: 766: 759: 757: 753: 748: 744: 740: 736: 731: 726: 722: 718: 714: 707: 704: 699: 695: 691: 687: 683: 679: 672: 669: 664: 660: 656: 652: 645: 642: 637: 633: 629: 625: 621: 617: 610: 607: 602: 598: 594: 590: 583: 580: 575: 569: 565: 558: 556: 552: 547: 543: 539: 535: 531: 527: 520: 517: 511: 507: 506:Space mapping 504: 502: 499: 497: 494: 492: 489: 487: 484: 482: 479: 477: 474: 473: 469: 465: 462: 460: 457: 455: 452: 450: 447: 444: 443:slow manifold 440: 437: 435: 432: 431: 430: 426: 420: 410: 408: 404: 400: 395: 393: 389: 385: 381: 372: 370: 367: 366:Arieh Warshel 363: 359: 355: 348: 345: 341: 335: 331: 327: 323: 319: 315: 309: 303: 301: 286: 266: 243: 234: 217: 214: 206: 196: 193: 190: 184: 167: 156: 146: 133: 129: 116: 114: 109: 107: 103: 102:nucleic acids 99: 95: 91: 83: 73: 63: 59: 55: 49: 48: 43:This article 41: 32: 31: 19: 1379: 1349:Switzerland. 1320: 1311: 1296:by removing 1283: 1230: 1226: 1200: 1196: 1162: 1158: 1152: 1133: 1127: 1108: 1098: 1070: 1063: 1038: 1035:Polytechnica 1034: 1024: 991: 987: 980: 963: 959: 952: 919: 915: 909: 866: 862: 816: 812: 768: 764: 720: 716: 706: 681: 677: 671: 654: 650: 644: 619: 615: 609: 593:OTC-29885-MS 592: 582: 563: 529: 525: 519: 496:Multiphysics 427: 411: 396: 376: 350: 343: 337: 332: 328: 324: 320: 316: 312: 307: 235: 117: 110: 93: 89: 88: 67: 52:Please help 44: 622:(1): 3–25. 423:100 km 354:Mike Baskes 70:August 2019 1416:Categories 922:: 555–74. 512:References 415:500 m 62:Wikisource 1298:excessive 1090:721888752 1055:2520-8497 883:1521-3773 833:1521-3773 785:1521-3773 739:0009-2665 698:117867762 287:τ 264:∇ 244:τ 207:⋅ 204:∇ 194:τ 191:⋅ 188:∇ 171:∇ 168:⋅ 143:∂ 130:ρ 106:diffusion 58:Wikiquote 45:contains 1217:19136256 1016:97819264 944:21219152 901:25060243 841:25066036 793:25100216 747:27333362 470:See also 1292:Please 1284:use of 1235:Bibcode 1167:Bibcode 996:Bibcode 924:Bibcode 892:4948593 624:Bibcode 595:. OTC. 534:Bibcode 304:History 96:is the 1215:  1140:  1115:  1088:  1078:  1053:  1014:  942:  899:  889:  881:  839:  831:  791:  783:  745:  737:  696:  570:  445:theory 364:, and 342:, 1012:S2CID 694:S2CID 98:field 1213:PMID 1138:ISBN 1113:ISBN 1086:OCLC 1076:ISBN 1051:ISSN 940:PMID 897:PMID 879:ISSN 837:PMID 829:ISSN 789:PMID 781:ISSN 743:PMID 735:ISSN 568:ISBN 441:and 1300:or 1251:hdl 1243:doi 1205:doi 1201:100 1175:doi 1043:doi 1004:doi 968:doi 932:doi 887:PMC 871:doi 821:doi 773:doi 725:doi 721:116 686:doi 659:doi 632:doi 620:172 597:doi 542:doi 397:In 108:). 92:or 1418:: 1249:. 1241:. 1231:90 1229:. 1211:. 1199:. 1173:. 1163:73 1161:. 1136:. 1084:. 1049:. 1037:. 1033:. 1010:. 1002:. 992:40 990:. 964:24 962:. 938:. 930:. 920:62 918:. 895:. 885:. 877:. 867:53 865:. 861:. 849:^ 835:. 827:. 817:53 815:. 801:^ 787:. 779:. 769:53 767:. 755:^ 741:. 733:. 719:. 715:. 692:. 682:46 680:. 655:33 653:. 630:. 618:. 591:. 566:. 554:^ 540:. 530:30 528:. 360:, 218:0. 1327:) 1321:( 1316:) 1312:( 1308:. 1290:. 1259:. 1253:: 1245:: 1237:: 1219:. 1207:: 1181:. 1177:: 1169:: 1146:. 1121:. 1092:. 1057:. 1045:: 1039:2 1018:. 1006:: 998:: 974:. 970:: 946:. 934:: 926:: 903:. 873:: 843:. 823:: 795:. 775:: 749:. 727:: 700:. 688:: 665:. 661:: 638:. 634:: 626:: 603:. 599:: 576:. 548:. 544:: 536:: 267:u 215:= 211:u 197:, 185:= 182:) 178:u 174:) 164:u 160:( 157:+ 153:u 147:t 139:( 134:0 72:) 68:( 64:. 50:. 20:)

Index

Multiscale mathematics
too many or overly lengthy quotations
summarize the quotations
Wikiquote
Wikisource

field
nucleic acids
diffusion
Navier–Stokes equations
Mark Horstemeyer
Mike Baskes
Martin Karplus
Michael Levitt
Arieh Warshel
quantum mechanical models
molecular dynamics
coarse-grained models
integrated computational materials engineering
operations research
decision theory
multiscale decision-making
Global climate model
Analytical modeling
Center manifold
slow manifold
Continuum modeling
Discrete modeling
Network-based modeling
Statistical modeling

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑