Knowledge (XXG)

Multitaper

Source đź“ť

116: 996: 17: 172:
is multiplied element-wise by the signal to provide a windowed trial from which one estimates the power at each component frequency. As each taper is pairwise orthogonal to all other tapers, the window functions are uncorrelated with one another. The final spectrum is obtained by averaging over all
164:
is generally biased (with the exception of white noise) and the bias depends upon the length of each realization, not the number of realizations recorded. Applying a single taper reduces bias but at the cost of increased estimator variance due to attenuation of activity at the start and end of each
119:
The importance of averaging in (cross-)spectral density estimation. (a) Synthetically generated noisy signal with two coherent frequencies at 0.03 and 0.6 Hz. (b) Multitaper (MT) spectral density estimates. (c) Coherence squared estimates using Slepian multitaper analysis (thick ine, unshaded) and
176:
This method is especially useful when a small number of trials is available as it reduces the estimator variance beyond what is possible with single taper methods. Moreover, even when many trials are available the multitaper approach is useful as it permits more rigorous control of the trade-off
98:
to extract spectral information from a signal, we assume that each Fourier coefficient is a reliable representation of the amplitude and relative phase of the corresponding component frequency. This assumption, however, is not generally valid for empirical data. For instance, a single trial
851: 103:
i.e., it is bad practice to estimate qualities of a population using individuals or very small samples. Likewise, a single sample of a process does not necessarily provide a reliable estimate of its spectral properties. Moreover, the naive
1245:
Not limited to time series, the multitaper method is easily extensible to multiple Cartesian dimenions using custom Slepian functions, and can be reformulated for spectral estimation on the sphere using Slepian functions constructed from
594: 120:
Welch overlapping segment analysis (WOSA) (thin line, shaded area). (d) Estimate of the phase of the cross-spectral density estimate using MT (solid) and WOSA (dashed). At 0.03 Hz the signals are in phase, while at 0.6 Hz they are
159:
to each trial. However, this method is unreliable with small data sets and undesirable when one does not wish to attenuate signal components that vary across trials. Furthermore, even when many trials are available the untapered
315: 990: 708: 1353:
Simons, F. J.; Korenaga, J.; Zuber, M. T. (2000). "Isostatic response of the Australian lithosphere: Estimation of effective elastic thickness and anisotropy using multitaper analysis".
1045: 1102: 650: 445: 688: 361: 1217: 1164: 388: 149: 450:
The multitaper spectral estimator utilizes several different data tapers which are orthogonal to each other. The multitaper cross-spectral estimator between channel
173:
the tapered spectra thus recovering some of the information that is lost due to partial attenuation of the signal that results from applying individual tapers.
472: 180:
Thomson chose the Slepian functions or discrete prolate spheroidal sequences as tapers since these vectors are mutually orthogonal and possess desirable
205: 1447:
E. Sejdić, M. Luccini, S. Primak, K. Baddour, T. Willink, “Channel estimation using modulated discrete prolate spheroidal sequences based frames,” in
99:
represents only one noisy realization of the underlying process of interest. A comparable situation arises in statistics when estimating measures of
1267: 862: 1406: 1338: 1719: 1709: 1111:
orthogonal data tapers such that each one provides a good protection against leakage. These are given by the Slepian sequences, after
1258:
among others. An extensive treatment about the application of this method to analyze multi-trial, multi-channel data generated in
168:
The multitaper method partially obviates these problems by obtaining multiple independent estimates from the same sample. Each
1389:
Simons, F. J.; Plattner, A. (2015). "Scalar and Vector Slepian Functions, Spherical Signal Estimation and Spectral Analysis".
846:{\displaystyle {\hat {S}}_{k}^{lm}(f)={\frac {1}{N\Delta t}}{\lbrack J_{k}^{l}(f)\rbrack }^{*}{\lbrack J_{k}^{m}(f)\rbrack },} 1171: 181: 999:
The three leading Slepian sequences for T=1000 and 2WT=6. Note that each higher order sequence has an extra zero crossing.
1434:
Slepian, D. (1978) "Prolate spheroidal wave functions, Fourier analysis, and uncertainty – V: The discrete case."
24:(black) and multitaper estimate (red) of a single trial local field potential measurement. This estimate used 9 tapers. 37: 1231:
channel. In recent years, a dictionary based on modulated DPSS was proposed as an overcomplete alternative to DPSS.
1724: 1714: 75: 1685: 1011: 1054: 602: 1263: 105: 1534:
Wieczorek, M. A.; Simons, F. J. (2007). "Minimum-variance multitaper spectral estimation on the sphere".
397: 155:
These problems are often overcome by averaging over many realizations of the same event after applying a
1362: 1584: 1508: 1115:(also known in literature as discrete prolate spheroidal sequences or DPSS for short) with parameter 655: 335: 1177: 1489:
Simons, F. J.; Dahlen, F. A.; Wieczorek, M. A. (2006). "Spatiospectral Concentration on a Sphere".
1247: 1574: 1498: 1271: 1137: 197: 61: 1683: 1449:
Proc. of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2008)
1617:
C++/Octave libraries for the multitaper method, including adaptive weighting (hosted on GitHub)
1423:
Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques
1402: 1334: 391: 370: 95: 45: 29: 123: 1592: 1543: 1516: 1470: 1394: 185: 91: 41: 1461:
Simons, F. J.; Wang, D. V. (2011). "Spatiospectral concentration in the Cartesian plane".
1375: 1235: 325: 169: 156: 1620: 589:{\displaystyle {\hat {S}}^{lm}(f)={\frac {1}{K}}\sum _{k=0}^{K-1}{\hat {S}}_{k}^{lm}(f).} 1588: 1512: 458:
is the average of K direct cross-spectral estimators between the same pair of channels (
1132: 109: 68: 49: 1703: 1597: 1562: 1112: 1654: 1642: 1259: 1630: 1398: 310:{\displaystyle \mathbf {X} (t)={\lbrack X(1,t),X(2,t),\dots ,X(p,t)\rbrack }^{T}} 1666: 1325:
Press, WH; Teukolsky, SA; Vetterling, WT; Flannery, BP (2007), "Section 13.4.3.
1287: 161: 21: 985:{\displaystyle J_{k}^{l}(f)=\sum _{t=1}^{N}h_{t,k}X(l,t)e^{-i2\pi ft\Delta t}.} 115: 1691: 1622:
Documentation on the multitaper method from the SSA-MTM Toolkit implementation
1547: 1520: 1474: 1251: 188:
is often used to compensate for increased energy loss at higher order tapers.
16: 1255: 177:
between bias and variance than what is possible in the single taper case.
1625: 90:
The multitaper method overcomes some of the limitations of non-parametric
995: 1275: 363:
can represent simultaneous measurement of electrical activity of those
64: 1693: 1668: 1656: 1644: 1632: 1615: 1503: 1678: 184:
properties (see the section on Slepian sequences). In practice, a
1579: 994: 114: 15: 1451:, Las Vegas, Nevada, USA, March 31-April 04, 2008, pp. 2849-2852. 100: 1227:, we get the multitaper estimator for the auto-spectrum of the 1563:"Spectral estimation on a sphere in geophysics and cosmology" 1627:
Fortran 90 library with additional multivariate applications
367:
channels. Let the sampling interval between observations be
1333:(3rd ed.), New York: Cambridge University Press, 108:
obtained from the signal's raw Fourier transform is a
1180: 1140: 1057: 1014: 865: 711: 658: 605: 475: 400: 373: 338: 208: 126: 1331:Numerical Recipes: The Art of Scientific Computing 1211: 1158: 1096: 1039: 984: 845: 682: 644: 588: 439: 382: 355: 309: 143: 332:refers to the total number of channels and hence 694:direct cross spectral estimator between channel 1425:. Cambridge: Cambridge University Press, 1993. 8: 1536:Journal of Fourier Analysis and Applications 1463:GEM: International Journal on Geomathematics 1034: 1015: 836: 809: 798: 771: 297: 228: 1696:script to generate Slepian sequences (dpss) 1270:. This technique is currently used in the 1596: 1578: 1502: 1308:Spectrum estimation and harmonic analysis 1200: 1179: 1170:defines the resolution bandwidth for the 1139: 1127: − 1. The maximum order 1076: 1071: 1060: 1059: 1056: 1022: 1013: 952: 918: 908: 897: 875: 870: 864: 821: 816: 808: 802: 783: 778: 770: 751: 730: 725: 714: 713: 710: 657: 624: 619: 608: 607: 604: 565: 560: 549: 548: 535: 524: 510: 489: 478: 477: 474: 417: 405: 399: 372: 339: 337: 301: 227: 209: 207: 133: 125: 1327:Multitaper methods and Slepian functions 112:estimate of the true spectral content. 1299: 1040:{\displaystyle \lbrace h_{t,k}\rbrace } 1371: 1360: 1236:Window function:DPSS or Slepian window 1097:{\displaystyle {\hat {S}}_{k}^{lm}(f)} 645:{\displaystyle {\hat {S}}_{k}^{lm}(f)} 324:denotes the matrix transposition. In 1561:Dahlen, F. A.; Simons, F. J. (2008). 7: 1421:Percival, D. B., and A. T. Walden. 440:{\displaystyle f_{N}=1/(2\Delta t)} 196:Consider a p-dimensional zero mean 1150: 971: 760: 428: 374: 14: 1567:Geophysical Journal International 165:recorded segment of the signal. 1598:10.1111/j.1365-246X.2008.03854.x 1051:direct cross-spectral estimator 340: 210: 683:{\displaystyle 0\leq k\leq K-1} 356:{\displaystyle \mathbf {X} (t)} 1212:{\displaystyle W\in (0,f_{N})} 1206: 1187: 1172:spectral concentration problem 1131:is chosen to be less than the 1091: 1085: 1065: 945: 933: 887: 881: 833: 827: 795: 789: 745: 739: 719: 639: 633: 613: 580: 574: 554: 504: 498: 483: 434: 422: 350: 344: 294: 282: 267: 255: 246: 234: 220: 214: 1: 1436:Bell System Technical Journal 198:stationary stochastic process 1399:10.1007/978-3-642-54551-1_30 74:, given a finite contiguous 1266:and elsewhere can be found 1159:{\displaystyle 2NW\Delta t} 466:) and hence takes the form 38:spectral density estimation 1741: 1391:Handbook of Geomathematics 1104:and is chosen as follows: 1047:is the data taper for the 1710:Frequency-domain analysis 1548:10.1007/s00041-006-6904-1 1521:10.1137/S0036144504445765 1475:10.1007/s13137-011-0016-z 1686:R (programming language) 383:{\displaystyle \Delta t} 1720:Time–frequency analysis 1312:Proceedings of the IEEE 144:{\displaystyle -\pi /4} 40:technique developed by 1671:code base to generate 1659:code base to generate 1635:code base to generate 1393:. pp. 2563–2608. 1370:Cite journal requires 1306:Thomson, D. J. (1982) 1264:biomedical engineering 1213: 1160: 1098: 1041: 1000: 986: 913: 847: 684: 646: 590: 546: 441: 384: 357: 311: 182:spectral concentration 152: 145: 106:power spectral density 25: 1647:code base to perform 1438:, 57, 1371–1430 1314:, 70, 1055–1096 1214: 1161: 1099: 1042: 1004:The Slepian sequences 998: 987: 893: 848: 685: 647: 591: 520: 442: 385: 358: 312: 146: 118: 94:. When applying the 19: 1649:spherical multitaper 1250:for applications in 1178: 1138: 1055: 1012: 863: 709: 656: 603: 473: 398: 371: 336: 206: 124: 1589:2008GeoJI.174..774D 1513:2006SIAMR..48..504S 1248:spherical harmonics 1107:We choose a set of 1084: 880: 826: 788: 738: 632: 573: 1688:multitaper Package 1357:(B8): 19163-19184. 1209: 1156: 1123: = 0 to 1094: 1058: 1037: 1001: 982: 866: 843: 812: 774: 712: 680: 642: 606: 586: 547: 437: 380: 353: 307: 153: 141: 26: 1725:Signal estimation 1715:Signal processing 1675:Slepian functions 1663:Slepian functions 1639:Slepian functions 1408:978-3-642-54550-4 1340:978-0-521-88068-8 1272:spectral analysis 1068: 767: 722: 616: 557: 518: 486: 392:Nyquist frequency 96:Fourier transform 30:signal processing 1732: 1673:spherical vector 1637:spherical scalar 1603: 1602: 1600: 1582: 1558: 1552: 1551: 1531: 1525: 1524: 1506: 1486: 1480: 1478: 1458: 1452: 1445: 1439: 1432: 1426: 1419: 1413: 1412: 1386: 1380: 1379: 1373: 1368: 1366: 1358: 1350: 1344: 1343: 1321: 1315: 1304: 1218: 1216: 1215: 1210: 1205: 1204: 1166:. The quantity 2 1165: 1163: 1162: 1157: 1103: 1101: 1100: 1095: 1083: 1075: 1070: 1069: 1061: 1046: 1044: 1043: 1038: 1033: 1032: 991: 989: 988: 983: 978: 977: 929: 928: 912: 907: 879: 874: 852: 850: 849: 844: 839: 825: 820: 807: 806: 801: 787: 782: 768: 766: 752: 737: 729: 724: 723: 715: 702:and is given by 689: 687: 686: 681: 651: 649: 648: 643: 631: 623: 618: 617: 609: 595: 593: 592: 587: 572: 564: 559: 558: 550: 545: 534: 519: 511: 497: 496: 488: 487: 479: 446: 444: 443: 438: 421: 410: 409: 389: 387: 386: 381: 362: 360: 359: 354: 343: 316: 314: 313: 308: 306: 305: 300: 213: 186:weighted average 150: 148: 147: 142: 137: 101:central tendency 92:Fourier analysis 67:finite-variance 42:David J. Thomson 1740: 1739: 1735: 1734: 1733: 1731: 1730: 1729: 1700: 1699: 1612: 1607: 1606: 1560: 1559: 1555: 1533: 1532: 1528: 1488: 1487: 1483: 1460: 1459: 1455: 1446: 1442: 1433: 1429: 1420: 1416: 1409: 1388: 1387: 1383: 1369: 1359: 1352: 1351: 1347: 1341: 1324: 1322: 1318: 1305: 1301: 1296: 1284: 1243: 1196: 1176: 1175: 1136: 1135: 1053: 1052: 1018: 1010: 1009: 1006: 948: 914: 861: 860: 769: 756: 707: 706: 654: 653: 601: 600: 476: 471: 470: 401: 396: 395: 369: 368: 334: 333: 326:neurophysiology 226: 204: 203: 194: 122: 121: 88: 59: 12: 11: 5: 1738: 1736: 1728: 1727: 1722: 1717: 1712: 1702: 1701: 1698: 1697: 1689: 1681: 1676: 1664: 1652: 1640: 1628: 1623: 1618: 1611: 1610:External links 1608: 1605: 1604: 1553: 1526: 1497:(3): 504–536. 1481: 1453: 1440: 1427: 1414: 1407: 1381: 1372:|journal= 1345: 1339: 1316: 1298: 1297: 1295: 1292: 1291: 1290: 1283: 1280: 1242: 1239: 1208: 1203: 1199: 1195: 1192: 1189: 1186: 1183: 1155: 1152: 1149: 1146: 1143: 1133:Shannon number 1093: 1090: 1087: 1082: 1079: 1074: 1067: 1064: 1036: 1031: 1028: 1025: 1021: 1017: 1005: 1002: 993: 992: 981: 976: 973: 970: 967: 964: 961: 958: 955: 951: 947: 944: 941: 938: 935: 932: 927: 924: 921: 917: 911: 906: 903: 900: 896: 892: 889: 886: 883: 878: 873: 869: 854: 853: 842: 838: 835: 832: 829: 824: 819: 815: 811: 805: 800: 797: 794: 791: 786: 781: 777: 773: 765: 762: 759: 755: 750: 747: 744: 741: 736: 733: 728: 721: 718: 679: 676: 673: 670: 667: 664: 661: 641: 638: 635: 630: 627: 622: 615: 612: 597: 596: 585: 582: 579: 576: 571: 568: 563: 556: 553: 544: 541: 538: 533: 530: 527: 523: 517: 514: 509: 506: 503: 500: 495: 492: 485: 482: 436: 433: 430: 427: 424: 420: 416: 413: 408: 404: 390:, so that the 379: 376: 352: 349: 346: 342: 318: 317: 304: 299: 296: 293: 290: 287: 284: 281: 278: 275: 272: 269: 266: 263: 260: 257: 254: 251: 248: 245: 242: 239: 236: 233: 230: 225: 222: 219: 216: 212: 193: 190: 151:out of phase. 140: 136: 132: 129: 87: 84: 69:random process 55: 50:power spectrum 36:analysis is a 20:Comparison of 13: 10: 9: 6: 4: 3: 2: 1737: 1726: 1723: 1721: 1718: 1716: 1713: 1711: 1708: 1707: 1705: 1695: 1692: 1690: 1687: 1684: 1682: 1680:Python module 1679: 1677: 1674: 1670: 1667: 1665: 1662: 1658: 1655: 1653: 1650: 1646: 1643: 1641: 1638: 1634: 1631: 1629: 1626: 1624: 1621: 1619: 1616: 1614: 1613: 1609: 1599: 1594: 1590: 1586: 1581: 1576: 1572: 1568: 1564: 1557: 1554: 1549: 1545: 1541: 1537: 1530: 1527: 1522: 1518: 1514: 1510: 1505: 1500: 1496: 1492: 1485: 1482: 1476: 1472: 1468: 1464: 1457: 1454: 1450: 1444: 1441: 1437: 1431: 1428: 1424: 1418: 1415: 1410: 1404: 1400: 1396: 1392: 1385: 1382: 1377: 1364: 1356: 1349: 1346: 1342: 1336: 1332: 1328: 1320: 1317: 1313: 1309: 1303: 1300: 1293: 1289: 1286: 1285: 1281: 1279: 1277: 1273: 1269: 1265: 1261: 1257: 1253: 1249: 1240: 1238: 1237: 1232: 1230: 1226: 1223: =  1222: 1201: 1197: 1193: 1190: 1184: 1181: 1173: 1169: 1153: 1147: 1144: 1141: 1134: 1130: 1126: 1122: 1118: 1114: 1113:David Slepian 1110: 1105: 1088: 1080: 1077: 1072: 1062: 1050: 1029: 1026: 1023: 1019: 1008:The sequence 1003: 997: 979: 974: 968: 965: 962: 959: 956: 953: 949: 942: 939: 936: 930: 925: 922: 919: 915: 909: 904: 901: 898: 894: 890: 884: 876: 871: 867: 859: 858: 857: 840: 830: 822: 817: 813: 803: 792: 784: 779: 775: 763: 757: 753: 748: 742: 734: 731: 726: 716: 705: 704: 703: 701: 697: 693: 677: 674: 671: 668: 665: 662: 659: 636: 628: 625: 620: 610: 583: 577: 569: 566: 561: 551: 542: 539: 536: 531: 528: 525: 521: 515: 512: 507: 501: 493: 490: 480: 469: 468: 467: 465: 461: 457: 453: 448: 431: 425: 418: 414: 411: 406: 402: 393: 377: 366: 347: 331: 328:for example, 327: 323: 302: 291: 288: 285: 279: 276: 273: 270: 264: 261: 258: 252: 249: 243: 240: 237: 231: 223: 217: 202: 201: 200: 199: 191: 189: 187: 183: 178: 174: 171: 166: 163: 158: 138: 134: 130: 127: 117: 113: 111: 107: 102: 97: 93: 85: 83: 81: 77: 73: 70: 66: 63: 58: 54: 51: 47: 43: 39: 35: 31: 23: 18: 1672: 1660: 1648: 1636: 1570: 1566: 1556: 1539: 1535: 1529: 1504:math/0408424 1494: 1490: 1484: 1466: 1462: 1456: 1448: 1443: 1435: 1430: 1422: 1417: 1390: 1384: 1363:cite journal 1354: 1348: 1330: 1326: 1319: 1311: 1307: 1302: 1260:neuroscience 1244: 1241:Applications 1233: 1228: 1224: 1220: 1167: 1128: 1124: 1120: 1116: 1108: 1106: 1048: 1007: 855: 699: 695: 691: 598: 463: 459: 455: 451: 449: 364: 329: 321: 319: 195: 179: 175: 167: 154: 89: 79: 71: 56: 52: 33: 27: 1491:SIAM Review 1288:Periodogram 1274:toolkit of 1119:and orders 192:Formulation 162:periodogram 76:realization 22:periodogram 1704:Categories 1573:(3): 774. 1542:(6): 665. 1294:References 1252:geophysics 170:data taper 86:Motivation 62:stationary 44:. It can 34:multitaper 1661:Cartesian 1580:0705.3083 1256:cosmology 1234:See also 1185:∈ 1151:Δ 1066:^ 972:Δ 963:π 954:− 895:∑ 804:∗ 761:Δ 720:^ 690:) is the 675:− 669:≤ 663:≤ 614:^ 555:^ 540:− 522:∑ 484:^ 429:Δ 375:Δ 274:… 131:π 128:− 82:as data. 1651:analysis 1469:: 1–36. 1282:See also 46:estimate 1585:Bibcode 1509:Bibcode 1276:Chronux 1219:. When 65:ergodic 1694:S-Plus 1669:MATLAB 1657:MATLAB 1645:MATLAB 1633:MATLAB 1405:  1337:  856:where 599:Here, 110:biased 1575:arXiv 1499:arXiv 652:(for 320:Here 157:taper 60:of a 1403:ISBN 1376:help 1335:ISBN 1268:here 1254:and 1174:and 698:and 462:and 454:and 48:the 1593:doi 1571:174 1544:doi 1517:doi 1471:doi 1395:doi 1355:105 1329:", 394:is 78:of 28:In 1706:: 1591:. 1583:. 1569:. 1565:. 1540:13 1538:. 1515:. 1507:. 1495:48 1493:. 1465:. 1401:. 1367:: 1365:}} 1361:{{ 1310:. 1278:. 1262:, 447:. 32:, 1601:. 1595:: 1587:: 1577:: 1550:. 1546:: 1523:. 1519:: 1511:: 1501:: 1479:. 1477:. 1473:: 1467:2 1411:. 1397:: 1378:) 1374:( 1323:* 1229:l 1225:m 1221:l 1207:) 1202:N 1198:f 1194:, 1191:0 1188:( 1182:W 1168:W 1154:t 1148:W 1145:N 1142:2 1129:K 1125:K 1121:k 1117:W 1109:K 1092:) 1089:f 1086:( 1081:m 1078:l 1073:k 1063:S 1049:k 1035:} 1030:k 1027:, 1024:t 1020:h 1016:{ 980:. 975:t 969:t 966:f 960:2 957:i 950:e 946:) 943:t 940:, 937:l 934:( 931:X 926:k 923:, 920:t 916:h 910:N 905:1 902:= 899:t 891:= 888:) 885:f 882:( 877:l 872:k 868:J 841:, 837:] 834:) 831:f 828:( 823:m 818:k 814:J 810:[ 799:] 796:) 793:f 790:( 785:l 780:k 776:J 772:[ 764:t 758:N 754:1 749:= 746:) 743:f 740:( 735:m 732:l 727:k 717:S 700:m 696:l 692:k 678:1 672:K 666:k 660:0 640:) 637:f 634:( 629:m 626:l 621:k 611:S 584:. 581:) 578:f 575:( 570:m 567:l 562:k 552:S 543:1 537:K 532:0 529:= 526:k 516:K 513:1 508:= 505:) 502:f 499:( 494:m 491:l 481:S 464:m 460:l 456:m 452:l 435:) 432:t 426:2 423:( 419:/ 415:1 412:= 407:N 403:f 378:t 365:p 351:) 348:t 345:( 341:X 330:p 322:T 303:T 298:] 295:) 292:t 289:, 286:p 283:( 280:X 277:, 271:, 268:) 265:t 262:, 259:2 256:( 253:X 250:, 247:) 244:t 241:, 238:1 235:( 232:X 229:[ 224:= 221:) 218:t 215:( 211:X 139:4 135:/ 80:X 72:X 57:X 53:S

Index


periodogram
signal processing
spectral density estimation
David J. Thomson
estimate
power spectrum
stationary
ergodic
random process
realization
Fourier analysis
Fourier transform
central tendency
power spectral density
biased

taper
periodogram
data taper
spectral concentration
weighted average
stationary stochastic process
neurophysiology
Nyquist frequency

David Slepian
Shannon number
spectral concentration problem
Window function:DPSS or Slepian window

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑