Knowledge

Myogenic mechanism

Source đź“ť

98:
performed to evaluate two mechanisms in the kidney, myogenic response and tubuloglomerular feedback. A mathematical model showed good autoregulation through a myogenic response, aimed at maintaining a constant wall tension in each segment of the preglomerular vessels. Tubuloglomerular feedback gave rather poor autoregulation. The myogenic mechanism showed 'descending' resistance changes, starting in the larger arteries, and successively affecting downstream preglomerular vessels at increasing arterial pressures. This finding was supported by micropuncture measurements of pressure in the terminal interlobular arteries. Evidence that the mechanism was myogenic was obtained by exposing the kidney to a subatmospheric pressure of 40 mmHg; this led to an immediate increase in renal resistance, which could not be prevented by denervation or various blocking agents.
107: 263:
that are unstable. It is usually due to ion channels in the cell membrane that spontaneously open and close (e.g. If channels in cardiac pacemaker cells). When the membrane potential reaches depolarization threshold an action potential (AP) is fired, excitation-contraction coupling initiates and the
275:
are unstable resting membrane potentials that continuously cycle through depolarization- and repolarization phases. However, not every cycle reaches depolarization threshold and thus an action potential (AP) will not always fire. Owing to temporal summation (depolarization potentials spaced closely
97:
Myogenic mechanisms in the kidney are part of the autoregulation mechanism which maintains a constant renal blood flow at varying arterial pressure. Concomitant autoregulation of glomerular pressure and filtration indicates regulation of preglomerular resistance. Model and experimental studies were
284:
Pacemaker potentials are unstable cell membrane potentials that reach depolarization threshold with every depolarization/repolarization cycle. This results in AP's being fired according to a set rhythm. Cardiac pacemaker cells, a type of cardiac myocyte in the SA node of heart, are an example of
141:. No action potential is necessary here; the level of entered calcium affects the level of contraction proportionally and causes tonic contraction. The contracted state of the smooth muscle depends on the grade of stretch and plays an important part in the regulation of blood flow. 59:
may be useful in the regulation of organ blood flow and peripheral resistance, as it positions a vessel in a preconstricted state that allows other factors to induce additional constriction or dilation to increase or decrease blood flow.
293:
This mechanism involves the opening of mechanically gated Ca channels when some myocytes are stretched. The resulting influx of Ca ions lead to the initiation of excitation-contraction coupling and thus contraction of the myocyte.
250:
lead to an increased probability in opening of L-type (voltage-dependent) Ca channels, thus raising the cytosolic concentration of Ca leading to a contraction of the myocyte, and this may involve other channels in the endothelia.
241:
fashion. Increase in blood pressure may cause depolarisation of the affected myocytes as well or endothelial cells alone. The mechanism is not yet completely understood, but studies have shown that volume regulated
276:
together in time so that they summate), however, cell membrane depolarization will periodically reach depolarization threshold and an action potential will fire, triggering contraction of the myocyte.
94:) is particularly sensitive to changes in blood pressure. However, with the aid of the myogenic mechanism, the glomerular filtration rate remains very insensitive to changes in human blood pressure. 133:
of the body. When blood pressure is increased in the blood vessels and the blood vessels distend, they react with a constriction; this is the Bayliss effect. Stretch of the muscle membrane opens a
484: 55:
itself instead of an outside occurrence or stimulus such as nerve innervation. Most often observed in (although not necessarily restricted to) smaller resistance arteries, this 'basal'
485:
Moore L.C., A. Rich, and D. Casellas. Ascending myogenic autoregulation: interactions between tubuloglomerular feedback and myogenic mechanisms.. Bull. Math. Biol. 56:391-410, 1994.
511: 197: 338:
Betts, J Gordon; Desaix, Peter; Johnson, Eddie; Johnson, Jody E; Korol, Oksana; Kruse, Dean; Poe, Brandon; Wise, James; Womble, Mark D; Young, Kelly A (June 8, 2023).
75:, which reduces blood flow through the blood vessel. Alternatively when the smooth muscle in the blood vessel relaxes, the ion channels close, resulting in 734: 504: 349: 213:
The overall effect of the myogenic response (Bayliss effect) is to decrease blood flow across a vessel after an increase in blood pressure.
1103: 497: 419: 399: 110:
The importance of the Bayliss effect in maintaining a constant capillary flow independently of variations in arterial blood pressure
339: 647: 134: 1024: 779: 757: 237:
of an artery is stretched it is likely that the endothelial cell may signal constriction to the muscle cell layer in a
1019: 764: 145: 845: 260: 207: 87: 1049: 1006: 996: 872: 852: 816: 739: 699: 520: 313: 303: 867: 857: 747: 67:
of the blood vessels reacts to the stretching of the muscle by opening ion channels, which cause the muscle to
1054: 986: 931: 832: 752: 636: 614: 594: 991: 981: 895: 641: 599: 149: 71:, leading to muscle contraction. This significantly reduces the volume of blood able to pass through the 840: 589: 572: 238: 936: 774: 769: 604: 577: 272: 909: 662: 138: 48: 155: 680: 652: 632: 463: 415: 395: 374: 345: 1029: 624: 453: 445: 243: 879: 609: 489: 318: 222: 72: 1039: 964: 956: 550: 537: 458: 433: 247: 200: 68: 40: 1097: 657: 567: 560: 545: 234: 126: 122: 56: 1071: 1061: 1034: 923: 914: 711: 685: 449: 76: 44: 137:. The cells then become depolarized and this results in a Ca signal and triggers 1076: 1066: 794: 789: 784: 695: 1014: 799: 689: 672: 555: 130: 434:"On the local reactions of the arterial wall to changes of internal pressure" 206:
This effect is independent of nervous mechanisms, which is controlled by the
946: 717: 584: 106: 36: 467: 378: 974: 705: 79:
of the blood vessel; this increases the rate of flow through the lumen.
17: 969: 91: 83: 52: 809: 804: 308: 64: 32: 941: 528: 203:, which is the volume of blood pumped by the heart in one minute. 105: 493: 129:
cells is a response to stretch. This is especially relevant in
344:. Houston: OpenStax CNX. 25.7 Regulation of renal blood flow. 365:
Aukland, K (1989). "Myogenic mechanisms in the kidney".
221:
The Bayliss effect was discovered by physiologist Sir
158: 152:(MAP). This is explained by the following equation: 1005: 955: 922: 908: 888: 825: 727: 671: 623: 536: 527: 125:in the vasculature. The Bayliss effect in vascular 191: 505: 82:This system is especially significant in the 8: 43:to keep the blood flow constant within the 919: 533: 512: 498: 490: 457: 157: 521:Physiology of the cardiovascular system 330: 393:An introduction to cardiac physiology. 148:(TPR) and this further increases the 90:(the rate of blood filtration by the 7: 246:and stretch sensitive non-selective 144:Increased contraction increases the 39:react to an increase or decrease of 367:Journal of Hypertension Supplement 285:cells with a pacemaker potential. 121:is a special manifestation of the 25: 413:Principals of medical physiology. 233:When the endothelial cell in the 47:. Myogenic response refers to a 450:10.1113/jphysiol.1902.sp000911 432:Bayliss, W. M. (28 May 1902). 1: 648:Aortic valve area calculation 135:stretch-activated ion channel 373:(4): S71–6, discussion S77. 255:Unstable Membrane Potentials 765:Effective refractory period 644:) / End-diastolic dimension 261:resting membrane potentials 146:total peripheral resistance 1120: 208:sympathetic nervous system 192:{\displaystyle MAP=CO*TPR} 88:glomerular filtration rate 1104:Cardiovascular physiology 1050:Tubuloglomerular feedback 997:Critical closing pressure 817:Hexaxial reference system 740:Cardiac electrophysiology 438:The Journal of Physiology 314:Juxtaglomerular apparatus 304:Tubuloglomerular feedback 119:Bayliss myogenic response 1025:Renin–angiotensin system 341:Anatomy & Physiology 1055:Cerebral autoregulation 1020:Kinin–kallikrein system 987:Jugular venous pressure 637:End-diastolic dimension 615:Pressure volume diagram 992:Portal venous pressure 982:Mean arterial pressure 896:Ventricular remodeling 642:End-systolic dimension 600:Cardiac function curve 193: 150:mean arterial pressure 111: 633:Fractional shortening 194: 109: 573:End-diastolic volume 280:Pacemaker potentials 273:Slow-wave potentials 268:Slow wave potentials 156: 937:Vascular resistance 775:Electrocardiography 770:Pacemaker potential 700:Conduction velocity 605:Venous return curve 578:End-systolic volume 264:myocyte contracts. 1045:Myogenic mechanism 663:Left atrial volume 595:Frank–Starling law 229:Proposed mechanism 199:, where CO is the 189: 139:muscle contraction 112: 29:myogenic mechanism 1091: 1090: 1087: 1086: 904: 903: 744:Action potential 735:Conduction system 681:Cardiac pacemaker 653:Ejection fraction 351:978-1-947172-04-3 244:chloride channels 51:initiated by the 16:(Redirected from 1111: 1030:Vasoconstrictors 1007:Regulation of BP 920: 853:pulmonary artery 826:Chamber pressure 534: 514: 507: 500: 491: 472: 471: 461: 429: 423: 409: 403: 389: 383: 382: 362: 356: 355: 335: 259:Many cells have 198: 196: 195: 190: 21: 1119: 1118: 1114: 1113: 1112: 1110: 1109: 1108: 1094: 1093: 1092: 1083: 1001: 951: 913: 910:Vascular system 900: 884: 821: 723: 708:(Contractility) 667: 619: 610:Wiggers diagram 523: 518: 481: 476: 475: 431: 430: 426: 410: 406: 390: 386: 364: 363: 359: 352: 337: 336: 332: 327: 319:Renal corpuscle 300: 291: 282: 270: 257: 248:cation channels 231: 223:William Bayliss 219: 154: 153: 104: 23: 22: 15: 12: 11: 5: 1117: 1115: 1107: 1106: 1096: 1095: 1089: 1088: 1085: 1084: 1082: 1081: 1080: 1079: 1074: 1069: 1059: 1058: 1057: 1052: 1047: 1040:Autoregulation 1037: 1032: 1027: 1022: 1017: 1011: 1009: 1003: 1002: 1000: 999: 994: 989: 984: 979: 978: 977: 972: 965:Pulse pressure 961: 959: 957:Blood pressure 953: 952: 950: 949: 944: 939: 934: 928: 926: 917: 906: 905: 902: 901: 899: 898: 892: 890: 886: 885: 883: 882: 877: 876: 875: 870: 862: 861: 860: 850: 849: 848: 843: 835: 833:Central venous 829: 827: 823: 822: 820: 819: 814: 813: 812: 807: 802: 797: 792: 787: 782: 772: 767: 762: 761: 760: 755: 750: 742: 737: 731: 729: 725: 724: 722: 721: 715: 714:(Excitability) 709: 703: 693: 683: 677: 675: 669: 668: 666: 665: 660: 655: 650: 645: 639: 629: 627: 621: 620: 618: 617: 612: 607: 602: 597: 592: 587: 582: 581: 580: 575: 565: 564: 563: 558: 551:Cardiac output 548: 542: 540: 538:Cardiac output 531: 525: 524: 519: 517: 516: 509: 502: 494: 488: 487: 480: 479:External links 477: 474: 473: 444:(3): 220–231. 424: 404: 391:J. R. Levick. 384: 357: 350: 329: 328: 326: 323: 322: 321: 316: 311: 306: 299: 296: 290: 287: 281: 278: 269: 266: 256: 253: 230: 227: 218: 215: 201:cardiac output 188: 185: 182: 179: 176: 173: 170: 167: 164: 161: 127:smooth muscles 115:Bayliss effect 103: 102:Bayliss effect 100: 41:blood pressure 24: 14: 13: 10: 9: 6: 4: 3: 2: 1116: 1105: 1102: 1101: 1099: 1078: 1075: 1073: 1070: 1068: 1065: 1064: 1063: 1060: 1056: 1053: 1051: 1048: 1046: 1043: 1042: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1012: 1010: 1008: 1004: 998: 995: 993: 990: 988: 985: 983: 980: 976: 973: 971: 968: 967: 966: 963: 962: 960: 958: 954: 948: 945: 943: 940: 938: 935: 933: 930: 929: 927: 925: 921: 918: 916: 911: 907: 897: 894: 893: 891: 887: 881: 878: 874: 871: 869: 866: 865: 863: 859: 856: 855: 854: 851: 847: 844: 842: 839: 838: 836: 834: 831: 830: 828: 824: 818: 815: 811: 808: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 777: 776: 773: 771: 768: 766: 763: 759: 756: 754: 751: 749: 746: 745: 743: 741: 738: 736: 733: 732: 730: 726: 719: 716: 713: 710: 707: 704: 701: 697: 694: 691: 687: 684: 682: 679: 678: 676: 674: 670: 664: 661: 659: 658:Cardiac index 656: 654: 651: 649: 646: 643: 640: 638: 634: 631: 630: 628: 626: 622: 616: 613: 611: 608: 606: 603: 601: 598: 596: 593: 591: 588: 586: 583: 579: 576: 574: 571: 570: 569: 568:Stroke volume 566: 562: 561:Stroke volume 559: 557: 554: 553: 552: 549: 547: 546:Cardiac cycle 544: 543: 541: 539: 535: 532: 530: 526: 522: 515: 510: 508: 503: 501: 496: 495: 492: 486: 483: 482: 478: 469: 465: 460: 455: 451: 447: 443: 439: 435: 428: 425: 421: 420:963-242-726-2 417: 414: 408: 405: 401: 400:0-340-76376-0 397: 394: 388: 385: 380: 376: 372: 368: 361: 358: 353: 347: 343: 342: 334: 331: 324: 320: 317: 315: 312: 310: 307: 305: 302: 301: 297: 295: 288: 286: 279: 277: 274: 267: 265: 262: 254: 252: 249: 245: 240: 236: 235:tunica intima 228: 226: 224: 216: 214: 211: 209: 204: 202: 186: 183: 180: 177: 174: 171: 168: 165: 162: 159: 151: 147: 142: 140: 136: 132: 128: 124: 123:myogenic tone 120: 116: 108: 101: 99: 95: 93: 89: 85: 80: 78: 74: 70: 66: 61: 58: 57:myogenic tone 54: 50: 46: 42: 38: 34: 30: 19: 1072:Carotid body 1044: 1035:Vasodilators 915:hemodynamics 720:(Relaxation) 712:Bathmotropic 686:Chronotropic 441: 437: 427: 412: 407: 392: 387: 370: 366: 360: 340: 333: 292: 283: 271: 258: 232: 220: 212: 205: 143: 118: 114: 113: 96: 86:, where the 81: 77:vasodilation 62: 45:blood vessel 28: 26: 1077:Glomus cell 1067:Aortic body 1062:Paraganglia 873:ventricular 846:ventricular 795:QT interval 790:QRS complex 785:PR interval 758:ventricular 696:Dromotropic 63:The smooth 49:contraction 1015:Baroreflex 932:Compliance 924:Blood flow 800:ST segment 728:Conduction 718:Lusitropic 690:Heart rate 673:Heart rate 625:Ultrasound 556:Heart rate 411:A. Fonyo. 325:References 131:arterioles 69:depolarize 37:arterioles 975:Diastolic 947:Perfusion 706:Inotropic 585:Afterload 239:paracrine 225:in 1902. 178:∗ 1098:Category 970:Systolic 748:cardiac 468:16992618 298:See also 33:arteries 18:Myogenic 590:Preload 459:1540533 379:2681599 289:Stretch 217:History 92:nephron 84:kidneys 53:myocyte 31:is how 880:Aortic 868:atrial 841:atrial 837:Right 810:U wave 805:T wave 780:P wave 753:atrial 466:  456:  418:  398:  377:  348:  309:Kidney 65:muscle 942:Pulse 889:Other 864:Left 858:wedge 529:Heart 73:lumen 464:PMID 416:ISBN 396:ISBN 375:PMID 346:ISBN 35:and 27:The 635:= ( 454:PMC 446:doi 117:or 1100:: 462:. 452:. 442:28 440:. 436:. 369:. 210:. 912:/ 702:) 698:( 692:) 688:( 513:e 506:t 499:v 470:. 448:: 422:. 402:. 381:. 371:7 354:. 187:R 184:P 181:T 175:O 172:C 169:= 166:P 163:A 160:M 20:)

Index

Myogenic
arteries
arterioles
blood pressure
blood vessel
contraction
myocyte
myogenic tone
muscle
depolarize
lumen
vasodilation
kidneys
glomerular filtration rate
nephron

myogenic tone
smooth muscles
arterioles
stretch-activated ion channel
muscle contraction
total peripheral resistance
mean arterial pressure
cardiac output
sympathetic nervous system
William Bayliss
tunica intima
paracrine
chloride channels
cation channels

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑