Knowledge (XXG)

MV-algebra

Source 📝

1933: 1760: 1706:
Chang's (1958, 1959) completeness theorem states that any MV-algebra equation holding in the standard MV-algebra over the interval will hold in every MV-algebra. Algebraically, this means that the standard MV-algebra generates the variety of all MV-algebras. Equivalently, Chang's completeness
1971:
by establishing a bijective correspondence between all isomorphism classes of approximately finite-dimensional C*-algebras with lattice-ordered dimension group and all isomorphism classes of countable MV algebras. Some instances of this correspondence include:
673: 802: 438: 855: 184: 1358: 1237: 714: 594: 956: 516: 2056: 552: 1661: 2008: 994: 474: 1190: 1045: 1074: 1118: 1378: 1138: 242: 53: 1685: 1398: 1158: 290: 76: 903: 363: 313: 265: 217: 1265: 336: 96: 1968: 1581: 2308: 601: 1805: 1604: 99: 745: 2409: 2215: 1247:. Other finite linearly ordered MV-algebras are obtained by restricting the universe and operations of the standard MV-algebra to the set of 2428:
Cabrer, L. M. & Mundici, D. A Stone-Weierstrass theorem for MV-algebras and unital ℓ-groups. Journal of Logic and Computation (2014).
2454: 1486:. Furthermore, Chang showed that every linearly ordered MV-algebra is isomorphic to an MV-algebra constructed from a group in this way. 2418:
Mundici, D. The C*-Algebras of Three-Valued Logic. Logic Colloquium '88, Proceedings of the Colloquium held in Padova 61–77 (1989).
1795: 2277: 2171: 1833: 2094: 378: 1731: 1714:
The way the MV-algebra characterizes all possible MV-algebras parallels the well-known fact that identities holding in the
807: 2483: 2394: 1741:
as an alternative model for the infinite-valued Ɓukasiewicz logic. Wajsberg algebras and MV-algebras are term-equivalent.
142: 1584:
is an MV-algebra. Conversely, any MV-algebra is a lattice-ordered effect algebra with the Riesz decomposition property.
1727: 1715: 1083: 729: 721: 1270: 2099:
There are multiple frameworks implementing fuzzy logic (type II), and most of them implement what has been called a
2493: 2376:
Mundici, D.: Interpretation of AF C*-algebras in Ɓukasiewicz sentential calculus. J. Funct. Anal. 65, 15–63 (1986)
1821: 1699:. If the standard MV-algebra over is employed, the set of all -tautologies determines so-called infinite-valued 1198: 681: 2478: 558: 1570: 1828:-valued logic. Although C. C. Chang published his MV-algebra in 1958, it is a faithful model only for the â„” 908: 1428: 480: 369: 2023: 1631: 1490: 339: 1738: 522: 2488: 2341: 2129: 1964: 1887: 1813: 1719: 1708: 1700: 1637: 1608: 1005: 103: 1841: 137: 29: 1991: 961: 444: 2462: 2153: 1163: 1018: 740: 1600: 1050: 114: 2405: 2351:
Di Nola A., Lettieri A. (1993) "Equational characterization of all varieties of MV-algebras,"
2302: 2211: 2145: 1696: 1623: 1596: 1088: 194: 107: 1363: 1123: 227: 38: 2438: 2429: 2419: 2377: 2359: 2261: 2241: 2137: 1723: 1670: 1383: 1143: 275: 222: 33: 17: 61: 1718:
hold in all possible Boolean algebras. Moreover, MV-algebras characterize infinite-valued
270: 56: 867: 2133: 345: 295: 247: 199: 1791: 1577: 1250: 1192:
to the axioms defining an MV-algebra results in an axiomatization of Boolean algebras.
1015:
MV-algebra has the only element 0 and the operations defined in the only possible way,
321: 81: 2458: 2423: 2245: 1932: 1759: 2472: 2381: 2157: 1417: 736: 1627: 2284: 2182: 2443:
The Morita-equivalence between MV-algebras and abelian ℓ-groups with strong unit
1592: 1411: 997: 668:{\displaystyle \lnot (\lnot x\oplus y)\oplus y=\lnot (\lnot y\oplus x)\oplus x.} 121: 118: 21: 2256:
R. Cignoli, Proper n-Valued Ɓukasiewicz Algebras as S-Algebras of Ɓukasiewicz
2141: 1421: 725: 2149: 1875:-algebras are MV-algebras that satisfy some additional axioms, just like the 2433: 191: 2363: 2330:------ (1959) "A new proof of the completeness of the Lukasiewicz axioms," 1267:
equidistant real numbers between 0 and 1 (both included), that is, the set
2240:-valued Ɓukasiewicz–Moisil algebras—I. Discrete Math. 181, 155–177 (1998) 724:
of algebras. The variety of MV-algebras is a subvariety of the variety of
1573:
between lattice-ordered abelian groups with strong unit and MV-algebras.
797:{\displaystyle \langle L,\wedge ,\vee ,\otimes ,\rightarrow ,0,1\rangle } 1840:-valued Ɓukasiewicz logics, suitable algebras were published in 1977 by 2265: 2172:"citing J. M. Font, A. J. Rodriguez, A. Torrens, "Wajsberg Algebras", 717: 2442: 1400:
of the standard MV-algebra; these algebras are usually denoted MV
2320:
Chang, C. C. (1958) "Algebraic analysis of many-valued logics,"
1879:-valued Ɓukasiewicz logics have additional axioms added to the â„” 2260:-Valued Propositional Calculi, Studia Logica, 41, 1982, 3-16, 2120:
Foulis, D. J. (2000-10-01). "MV and Heyting Effect Algebras".
1927: 1754: 1243:
algebra corresponding to the three-valued Ɓukasiewicz logic Ɓ
2103:. This is no more than the implementation of an MV-algebra. 1707:
theorem says that MV-algebras characterize infinite-valued
1489:
Daniele Mundici extended the above construction to abelian
1900:-valued Ɓukasiewicz logic; Cignoli called his discovery 433:{\displaystyle (x\oplus y)\oplus z=x\oplus (y\oplus z),} 1944: 1771: 1427:
Chang also constructed an MV-algebra from an arbitrary
1890:
published some additional constraints that added to LM
850:{\displaystyle x\vee y=(x\rightarrow y)\rightarrow y.} 2026: 1994: 1673: 1640: 1386: 1366: 1273: 1253: 1201: 1166: 1146: 1126: 1091: 1053: 1021: 964: 911: 870: 810: 748: 684: 604: 561: 525: 483: 447: 381: 348: 324: 298: 278: 250: 230: 202: 145: 84: 64: 41: 1836:. For the axiomatically more complicated (finitely) 1737:
In 1984, Font, Rodriguez and Torrens introduced the
1004:, as it forms the standard real-valued semantics of 179:{\displaystyle \langle A,\oplus ,\lnot ,0\rangle ,} 2050: 2002: 1816:. However, in 1956, Alan Rose discovered that for 1679: 1655: 1392: 1372: 1352: 1259: 1231: 1184: 1152: 1132: 1112: 1068: 1039: 988: 950: 897: 849: 796: 739:1998) as a prelinear commutative bounded integral 720:. Being defined by identities, MV-algebras form a 708: 667: 588: 546: 510: 468: 432: 357: 330: 307: 284: 259: 236: 211: 178: 90: 70: 47: 2332:Transactions of the American Mathematical Society 2322:Transactions of the American Mathematical Society 117:. MV-algebras coincide with the class of bounded 98:, satisfying certain axioms. MV-algebras are the 1160:with Boolean negation. In fact adding the axiom 924: 1353:{\displaystyle \{0,1/(n-1),2/(n-1),\dots ,1\},} 2346:Algebraic Foundations of Many-valued Reasoning 2208:Non-commutative Multiple-Valued Logic Algebras 2402:Advanced Ɓukasiewicz calculus and MV-algebras 1820:≄ 5, the Ɓukasiewicz–Moisil algebra does not 1770: with: the extra axioms. You can help by 1603:in 1920. In particular, MV-algebras form the 8: 1981:approximately finite-dimensional C*-algebra 1969:approximately finite-dimensional C*-algebras 1344: 1274: 1104: 1092: 791: 749: 703: 685: 170: 146: 1232:{\displaystyle x\oplus x\oplus x=x\oplus x} 735:An MV-algebra can equivalently be defined ( 709:{\displaystyle \langle A,\oplus ,0\rangle } 2041: 2040: 2031: 2025: 1996: 1995: 1993: 1916:-algebras are precisely Cignoli's proper 1672: 1639: 1497:is such a group with strong (order) unit 1385: 1365: 1312: 1286: 1272: 1252: 1200: 1165: 1145: 1125: 1090: 1052: 1020: 963: 910: 869: 809: 747: 683: 603: 560: 524: 482: 446: 380: 347: 323: 297: 277: 249: 229: 201: 144: 83: 63: 40: 1974: 1140:coinciding with Boolean disjunction and 589:{\displaystyle x\oplus \lnot 0=\lnot 0,} 2112: 1862:-algebras; the inclusion is strict for 2307:: CS1 maint: archived copy as title ( 2300: 2230:Iorgulescu, A.: Connections between MV 1722:in a manner analogous to the way that 1711:, defined as the set of -tautologies. 1424:ω) and their co-infinitesimals. 1360:which is closed under the operations 951:{\displaystyle x\oplus y=\min(x+y,1)} 678:By virtue of the first three axioms, 7: 1902:proper n-valued Ɓukasiewicz algebras 1667:. Formulas mapped to 1 (that is, to 1580:that is lattice-ordered and has the 1454:}, which becomes an MV-algebra with 511:{\displaystyle x\oplus y=y\oplus x,} 2455:Stanford Encyclopedia of Philosophy 2051:{\displaystyle M_{n}(\mathbb {C} )} 1569:). This construction establishes a 804:satisfying the additional identity 1896:-algebras yield proper models for 1674: 1647: 1387: 1147: 1054: 965: 641: 635: 611: 605: 577: 568: 529: 526: 279: 161: 65: 14: 1832:-valued (infinitely-many-valued) 1804:-algebras) in the hope of giving 1931: 1758: 1000:, this MV-algebra is called the 547:{\displaystyle \lnot \lnot x=x,} 2210:. Springer. pp. vii–viii. 2095:Multi-adjoint logic programming 1924:Relation to functional analysis 1656:{\displaystyle \oplus ,\lnot ,} 1634:(in the language consisting of 1438:and defining the segment as { 1239:, then the axioms define the MV 2371:Metamathematics of Fuzzy Logic 2206:Lavinia Corina Ciungu (2013). 2045: 2037: 1920:-valued Ɓukasiewicz algebras. 1856:-algebras are a subclass of LM 1329: 1317: 1303: 1291: 1195:If instead the axiom added is 945: 927: 889: 877: 864:A simple numerical example is 838: 835: 829: 823: 776: 653: 638: 623: 608: 424: 412: 394: 382: 368:which satisfies the following 106:; the letters MV refer to the 1: 2424:10.1016/s0049-237x(08)70262-3 2395:MV-ALGEBRAS. A short tutorial 2246:10.1016/S0012-365X(97)00052-6 1595:devised MV-algebras to study 1588:Relation to Ɓukasiewicz logic 1501:, then the "unit interval" { 1434:by fixing a positive element 1429:totally ordered abelian group 1409:Another important example is 2382:10.1016/0022-1236(86)90015-7 2003:{\displaystyle \mathbb {C} } 1963:MV-algebras were related by 1582:Riesz decomposition property 989:{\displaystyle \lnot x=1-x.} 469:{\displaystyle x\oplus 0=x,} 1796:Ɓukasiewicz–Moisil algebras 1716:two-element Boolean algebra 1185:{\displaystyle x\oplus x=x} 1084:two-element Boolean algebra 1082:MV-algebra is actually the 1040:{\displaystyle 0\oplus 0=0} 728:-algebras and contains all 2510: 2441:, Anna Carla Russo (2014) 2092: 1910:-algebras that are also MV 1069:{\displaystyle \lnot 0=0.} 1732:Lindenbaum–Tarski algebra 1834:Ɓukasiewicz–Tarski logic 1517:} can be equipped with ÂŹ 1113:{\displaystyle \{0,1\},} 2142:10.1023/A:1026454318245 1726:characterize classical 1691:-valuations are called 1571:categorical equivalence 1373:{\displaystyle \oplus } 1133:{\displaystyle \oplus } 860:Examples of MV-algebras 237:{\displaystyle \oplus } 48:{\displaystyle \oplus } 2364:10.1006/jabr.1999.7900 2176:, VIII, 1, 5-31, 1984" 2122:Foundations of Physics 2052: 2004: 1681: 1680:{\displaystyle \lnot } 1657: 1632:propositional formulas 1611:, as described below. 1491:lattice-ordered groups 1394: 1393:{\displaystyle \lnot } 1374: 1354: 1261: 1233: 1186: 1154: 1153:{\displaystyle \lnot } 1134: 1114: 1070: 1041: 990: 952: 899: 851: 798: 710: 669: 590: 548: 512: 470: 434: 359: 332: 309: 286: 285:{\displaystyle \lnot } 261: 238: 213: 180: 92: 72: 49: 2434:10.1093/logcom/exu023 2344:, Mundici, D. (2000) 2342:D'Ottaviano, I. M. L. 2093:Further information: 2053: 2005: 1682: 1658: 1416:, consisting just of 1395: 1375: 1355: 1262: 1234: 1187: 1155: 1135: 1115: 1071: 1042: 991: 953: 900: 852: 799: 711: 670: 591: 549: 513: 471: 435: 360: 333: 310: 287: 262: 239: 214: 181: 93: 73: 71:{\displaystyle \neg } 50: 2484:Algebraic structures 2024: 1992: 1978:Countable MV algebra 1671: 1638: 1630:from the algebra of 1614:Given an MV-algebra 1384: 1364: 1271: 1251: 1199: 1164: 1144: 1124: 1089: 1051: 1019: 962: 909: 868: 808: 746: 682: 602: 559: 523: 481: 445: 379: 346: 322: 296: 276: 248: 228: 200: 143: 82: 62: 39: 2400:D. Mundici (2011). 2369:HĂĄjek, Petr (1998) 2340:Cignoli, R. L. O., 2134:2000FoPh...30.1687F 2101:multi-adjoint logic 2074:finite-dimensional 1808:for the (finitely) 1806:algebraic semantics 1605:algebraic semantics 1002:standard MV-algebra 898:{\displaystyle A=,} 138:algebraic structure 100:algebraic semantics 78:, and the constant 30:algebraic structure 20:, a branch of pure 2463:Siegfried Gottwald 2353:Journal of Algebra 2266:10.1007/BF00373490 2048: 2000: 1943:. You can help by 1677: 1653: 1597:many-valued logics 1390: 1370: 1350: 1257: 1229: 1182: 1150: 1130: 1110: 1066: 1037: 986: 948: 895: 847: 794: 741:residuated lattice 706: 665: 586: 544: 508: 466: 430: 358:{\displaystyle A,} 355: 328: 308:{\displaystyle A,} 305: 282: 260:{\displaystyle A,} 257: 234: 212:{\displaystyle A,} 209: 176: 88: 68: 45: 2494:Many-valued logic 2459:Many-valued logic 2411:978-94-007-0839-6 2393:Daniele Mundici, 2217:978-3-319-01589-7 2128:(10): 1687–1706. 2086: 2085: 2066:complex matrices 1961: 1960: 1814:Ɓukasiewicz logic 1788: 1787: 1720:Ɓukasiewicz logic 1709:Ɓukasiewicz logic 1701:Ɓukasiewicz logic 1609:Ɓukasiewicz logic 1260:{\displaystyle n} 1006:Ɓukasiewicz logic 716:is a commutative 338:denoting a fixed 331:{\displaystyle 0} 104:Ɓukasiewicz logic 91:{\displaystyle 0} 2501: 2439:Olivia Caramello 2415: 2313: 2312: 2306: 2298: 2296: 2295: 2289: 2283:. Archived from 2282: 2274: 2268: 2254: 2248: 2228: 2222: 2221: 2203: 2197: 2196: 2194: 2193: 2187: 2181:. Archived from 2180: 2168: 2162: 2161: 2117: 2057: 2055: 2054: 2049: 2044: 2036: 2035: 2009: 2007: 2006: 2001: 1999: 1975: 1956: 1953: 1935: 1928: 1824:the Ɓukasiewicz 1783: 1780: 1762: 1755: 1739:Wajsberg algebra 1724:Boolean algebras 1686: 1684: 1683: 1678: 1662: 1660: 1659: 1654: 1599:, introduced by 1399: 1397: 1396: 1391: 1379: 1377: 1376: 1371: 1359: 1357: 1356: 1351: 1316: 1290: 1266: 1264: 1263: 1258: 1238: 1236: 1235: 1230: 1191: 1189: 1188: 1183: 1159: 1157: 1156: 1151: 1139: 1137: 1136: 1131: 1119: 1117: 1116: 1111: 1075: 1073: 1072: 1067: 1046: 1044: 1043: 1038: 996:In mathematical 995: 993: 992: 987: 957: 955: 954: 949: 905:with operations 904: 902: 901: 896: 856: 854: 853: 848: 803: 801: 800: 795: 730:Boolean algebras 715: 713: 712: 707: 674: 672: 671: 666: 595: 593: 592: 587: 553: 551: 550: 545: 517: 515: 514: 509: 475: 473: 472: 467: 439: 437: 436: 431: 364: 362: 361: 356: 337: 335: 334: 329: 314: 312: 311: 306: 291: 289: 288: 283: 266: 264: 263: 258: 243: 241: 240: 235: 223:binary operation 218: 216: 215: 210: 185: 183: 182: 177: 97: 95: 94: 89: 77: 75: 74: 69: 54: 52: 51: 46: 34:binary operation 18:abstract algebra 2509: 2508: 2504: 2503: 2502: 2500: 2499: 2498: 2479:Algebraic logic 2469: 2468: 2451: 2412: 2399: 2390: 2388:Further reading 2317: 2316: 2299: 2293: 2291: 2287: 2280: 2278:"Archived copy" 2276: 2275: 2271: 2255: 2251: 2235: 2229: 2225: 2218: 2205: 2204: 2200: 2191: 2189: 2185: 2178: 2170: 2169: 2165: 2119: 2118: 2114: 2109: 2097: 2091: 2027: 2022: 2021: 1990: 1989: 1965:Daniele Mundici 1957: 1951: 1948: 1941:needs expansion 1926: 1915: 1909: 1895: 1888:Roberto Cignoli 1883:-valued logic. 1882: 1874: 1861: 1855: 1849: 1831: 1803: 1794:introduced his 1784: 1778: 1775: 1768:needs expansion 1753: 1750: 1669: 1668: 1636: 1635: 1601:Jan Ɓukasiewicz 1590: 1556: 1544: 1405: 1382: 1381: 1362: 1361: 1269: 1268: 1249: 1248: 1246: 1242: 1197: 1196: 1162: 1161: 1142: 1141: 1122: 1121: 1087: 1086: 1049: 1048: 1017: 1016: 960: 959: 907: 906: 866: 865: 862: 806: 805: 744: 743: 680: 679: 600: 599: 557: 556: 521: 520: 479: 478: 443: 442: 377: 376: 344: 343: 320: 319: 294: 293: 274: 273: 271:unary operation 246: 245: 226: 225: 198: 197: 141: 140: 130: 80: 79: 60: 59: 57:unary operation 37: 36: 12: 11: 5: 2507: 2505: 2497: 2496: 2491: 2486: 2481: 2471: 2470: 2467: 2466: 2450: 2449:External links 2447: 2446: 2445: 2436: 2426: 2416: 2410: 2397: 2389: 2386: 2385: 2384: 2374: 2367: 2349: 2338: 2328: 2315: 2314: 2269: 2249: 2236:-algebras and 2231: 2223: 2216: 2198: 2163: 2111: 2110: 2108: 2105: 2090: 2087: 2084: 2083: 2080: 2076: 2075: 2072: 2068: 2067: 2047: 2043: 2039: 2034: 2030: 2019: 2011: 2010: 1998: 1987: 1983: 1982: 1979: 1959: 1958: 1938: 1936: 1925: 1922: 1911: 1905: 1891: 1880: 1870: 1857: 1851: 1845: 1842:Revaz Grigolia 1829: 1799: 1792:Grigore Moisil 1790:In the 1940s, 1786: 1785: 1765: 1763: 1752: 1746: 1743: 1728:bivalent logic 1676: 1652: 1649: 1646: 1643: 1589: 1586: 1578:effect algebra 1554: 1542: 1418:infinitesimals 1401: 1389: 1369: 1349: 1346: 1343: 1340: 1337: 1334: 1331: 1328: 1325: 1322: 1319: 1315: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1289: 1285: 1282: 1279: 1276: 1256: 1244: 1240: 1228: 1225: 1222: 1219: 1216: 1213: 1210: 1207: 1204: 1181: 1178: 1175: 1172: 1169: 1149: 1129: 1109: 1106: 1103: 1100: 1097: 1094: 1065: 1062: 1059: 1056: 1036: 1033: 1030: 1027: 1024: 985: 982: 979: 976: 973: 970: 967: 947: 944: 941: 938: 935: 932: 929: 926: 923: 920: 917: 914: 894: 891: 888: 885: 882: 879: 876: 873: 861: 858: 846: 843: 840: 837: 834: 831: 828: 825: 822: 819: 816: 813: 793: 790: 787: 784: 781: 778: 775: 772: 769: 766: 763: 760: 757: 754: 751: 705: 702: 699: 696: 693: 690: 687: 676: 675: 664: 661: 658: 655: 652: 649: 646: 643: 640: 637: 634: 631: 628: 625: 622: 619: 616: 613: 610: 607: 597: 585: 582: 579: 576: 573: 570: 567: 564: 554: 543: 540: 537: 534: 531: 528: 518: 507: 504: 501: 498: 495: 492: 489: 486: 476: 465: 462: 459: 456: 453: 450: 440: 429: 426: 423: 420: 417: 414: 411: 408: 405: 402: 399: 396: 393: 390: 387: 384: 366: 365: 354: 351: 327: 316: 304: 301: 281: 267: 256: 253: 233: 219: 208: 205: 186:consisting of 175: 172: 169: 166: 163: 160: 157: 154: 151: 148: 129: 126: 87: 67: 44: 13: 10: 9: 6: 4: 3: 2: 2506: 2495: 2492: 2490: 2487: 2485: 2482: 2480: 2477: 2476: 2474: 2464: 2460: 2456: 2453: 2452: 2448: 2444: 2440: 2437: 2435: 2431: 2427: 2425: 2421: 2417: 2413: 2407: 2403: 2398: 2396: 2392: 2391: 2387: 2383: 2379: 2375: 2372: 2368: 2365: 2361: 2357: 2354: 2350: 2347: 2343: 2339: 2336: 2333: 2329: 2326: 2323: 2319: 2318: 2310: 2304: 2290:on 2014-08-10 2286: 2279: 2273: 2270: 2267: 2263: 2259: 2253: 2250: 2247: 2243: 2239: 2234: 2227: 2224: 2219: 2213: 2209: 2202: 2199: 2188:on 2014-08-10 2184: 2177: 2175: 2167: 2164: 2159: 2155: 2151: 2147: 2143: 2139: 2135: 2131: 2127: 2123: 2116: 2113: 2106: 2104: 2102: 2096: 2088: 2081: 2078: 2077: 2073: 2070: 2069: 2065: 2061: 2032: 2028: 2020: 2017: 2013: 2012: 1988: 1985: 1984: 1980: 1977: 1976: 1973: 1970: 1966: 1955: 1952:November 2012 1946: 1942: 1939:This section 1937: 1934: 1930: 1929: 1923: 1921: 1919: 1914: 1908: 1903: 1899: 1894: 1889: 1884: 1878: 1873: 1867: 1865: 1860: 1854: 1850:-algebras. MV 1848: 1844:and called MV 1843: 1839: 1835: 1827: 1823: 1819: 1815: 1811: 1807: 1802: 1797: 1793: 1782: 1773: 1769: 1766:This section 1764: 1761: 1757: 1756: 1749: 1744: 1742: 1740: 1735: 1733: 1729: 1725: 1721: 1717: 1712: 1710: 1704: 1702: 1698: 1694: 1690: 1666: 1650: 1644: 1641: 1633: 1629: 1625: 1621: 1617: 1612: 1610: 1606: 1602: 1598: 1594: 1587: 1585: 1583: 1579: 1574: 1572: 1568: 1564: 1560: 1552: 1548: 1545:(x + y), and 1540: 1536: 1532: 1528: 1524: 1520: 1516: 1512: 1508: 1504: 1500: 1496: 1492: 1487: 1485: 1481: 1477: 1473: 1469: 1465: 1461: 1457: 1453: 1449: 1445: 1441: 1437: 1433: 1430: 1425: 1423: 1419: 1415: 1414:'s MV-algebra 1413: 1407: 1404: 1367: 1347: 1341: 1338: 1335: 1332: 1326: 1323: 1320: 1313: 1309: 1306: 1300: 1297: 1294: 1287: 1283: 1280: 1277: 1254: 1226: 1223: 1220: 1217: 1214: 1211: 1208: 1205: 1202: 1193: 1179: 1176: 1173: 1170: 1167: 1127: 1107: 1101: 1098: 1095: 1085: 1081: 1076: 1063: 1060: 1057: 1034: 1031: 1028: 1025: 1022: 1014: 1009: 1007: 1003: 999: 983: 980: 977: 974: 971: 968: 942: 939: 936: 933: 930: 921: 918: 915: 912: 892: 886: 883: 880: 874: 871: 859: 857: 844: 841: 832: 826: 820: 817: 814: 811: 788: 785: 782: 779: 773: 770: 767: 764: 761: 758: 755: 752: 742: 738: 733: 731: 727: 723: 719: 700: 697: 694: 691: 688: 662: 659: 656: 650: 647: 644: 632: 629: 626: 620: 617: 614: 598: 583: 580: 574: 571: 565: 562: 555: 541: 538: 535: 532: 519: 505: 502: 499: 496: 493: 490: 487: 484: 477: 463: 460: 457: 454: 451: 448: 441: 427: 421: 418: 415: 409: 406: 403: 400: 397: 391: 388: 385: 375: 374: 373: 371: 352: 349: 341: 325: 317: 302: 299: 272: 268: 254: 251: 231: 224: 220: 206: 203: 196: 193: 189: 188: 187: 173: 167: 164: 158: 155: 152: 149: 139: 135: 127: 125: 123: 120: 116: 112: 110: 105: 101: 85: 58: 42: 35: 31: 27: 23: 19: 2404:. Springer. 2401: 2370: 2355: 2352: 2345: 2334: 2331: 2324: 2321: 2292:. Retrieved 2285:the original 2272: 2257: 2252: 2237: 2232: 2226: 2207: 2201: 2190:. Retrieved 2183:the original 2173: 2166: 2125: 2121: 2115: 2100: 2098: 2082:commutative 2063: 2059: 2015: 1962: 1949: 1945:adding to it 1940: 1917: 1912: 1906: 1901: 1897: 1892: 1885: 1876: 1871: 1868: 1863: 1858: 1852: 1846: 1837: 1825: 1817: 1809: 1800: 1789: 1776: 1772:adding to it 1767: 1747: 1736: 1713: 1705: 1692: 1688: 1664: 1663:and 0) into 1628:homomorphism 1619: 1615: 1613: 1591: 1575: 1566: 1562: 1558: 1550: 1546: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1488: 1483: 1479: 1475: 1471: 1467: 1463: 1459: 1455: 1451: 1447: 1443: 1439: 1435: 1431: 1426: 1410: 1408: 1402: 1194: 1079: 1077: 1012: 1010: 1001: 863: 734: 677: 367: 133: 131: 122:BCK algebras 108: 25: 15: 2489:Fuzzy logic 2174:Stochastica 2089:In software 1779:August 2014 1697:tautologies 1687:0) for all 1593:C. C. Chang 1080:two-element 998:fuzzy logic 318:a constant 128:Definitions 119:commutative 115:Ɓukasiewicz 109:many-valued 22:mathematics 2473:Categories 2358:: 463–474 2327:: 476–490. 2294:2014-08-21 2192:2014-08-21 2107:References 2018:, ..., 1 } 1422:order type 1420:(with the 370:identities 134:MV-algebra 26:MV-algebra 2373:. Kluwer. 2348:. Kluwer. 2158:116763476 2150:1572-9516 1886:In 1982, 1751:-algebras 1675:¬ 1648:¬ 1642:⊕ 1624:valuation 1388:¬ 1368:⊕ 1336:… 1324:− 1298:− 1224:⊕ 1212:⊕ 1206:⊕ 1171:⊕ 1148:¬ 1128:⊕ 1055:¬ 1026:⊕ 978:− 966:¬ 916:⊕ 839:→ 830:→ 815:∨ 792:⟩ 777:→ 771:⊗ 765:∨ 759:∧ 750:⟨ 704:⟩ 695:⊕ 686:⟨ 657:⊕ 648:⊕ 642:¬ 636:¬ 627:⊕ 618:⊕ 612:¬ 606:¬ 578:¬ 569:¬ 566:⊕ 530:¬ 527:¬ 500:⊕ 488:⊕ 452:⊕ 419:⊕ 410:⊕ 398:⊕ 389:⊕ 280:¬ 232:⊕ 192:non-empty 171:⟩ 162:¬ 156:⊕ 147:⟨ 66:¬ 43:⊕ 2337:: 74–80. 2303:cite web 1904:. The LM 1812:-valued 2130:Bibcode 2079:boolean 2058:, i.e. 1474:) and ÂŹ 1013:trivial 722:variety 340:element 32:with a 2408:  2214:  2156:  2148:  2071:finite 2014:{0, 1/ 1986:{0, 1} 1869:The MV 1509:| 0 ≀ 1462:= min( 1446:| 0 ≀ 718:monoid 136:is an 28:is an 2461:"—by 2288:(PDF) 2281:(PDF) 2186:(PDF) 2179:(PDF) 2154:S2CID 1866:≄ 5. 1822:model 1730:(see 1626:is a 1618:, an 1553:= 0 √ 1493:. If 1412:Chang 1120:with 737:HĂĄjek 111:logic 24:, an 2406:ISBN 2309:link 2212:ISBN 2146:ISSN 1380:and 1078:The 1047:and 1011:The 958:and 55:, a 2457:: " 2430:doi 2420:doi 2378:doi 2360:doi 2356:221 2262:doi 2242:doi 2138:doi 1967:to 1947:. 1798:(LM 1774:. 1734:). 1607:of 1576:An 925:min 596:and 342:of 315:and 292:on 244:on 195:set 132:An 113:of 102:of 16:In 2475:: 2335:88 2325:88 2305:}} 2301:{{ 2152:. 2144:. 2136:. 2126:30 2124:. 1745:MV 1703:. 1565:− 1561:+ 1549:⊗ 1537:= 1533:⊕ 1529:, 1525:− 1521:= 1513:≀ 1505:∈ 1482:− 1478:= 1470:+ 1466:, 1458:⊕ 1450:≀ 1442:∈ 1406:. 1064:0. 1008:. 732:. 726:BL 372:: 269:a 221:a 190:a 124:. 2465:. 2432:: 2422:: 2414:. 2380:: 2366:. 2362:: 2311:) 2297:. 2264:: 2258:n 2244:: 2238:n 2233:n 2220:. 2195:. 2160:. 2140:: 2132:: 2064:n 2062:× 2060:n 2046:) 2042:C 2038:( 2033:n 2029:M 2016:n 1997:C 1954:) 1950:( 1918:n 1913:n 1907:n 1898:n 1893:n 1881:0 1877:n 1872:n 1864:n 1859:n 1853:n 1847:n 1838:n 1830:0 1826:n 1818:n 1810:n 1801:n 1781:) 1777:( 1748:n 1695:- 1693:A 1689:A 1665:A 1651:, 1645:, 1622:- 1620:A 1616:A 1567:u 1563:y 1559:x 1557:( 1555:G 1551:y 1547:x 1543:G 1541:∧ 1539:u 1535:y 1531:x 1527:x 1523:u 1519:x 1515:u 1511:x 1507:G 1503:x 1499:u 1495:G 1484:x 1480:u 1476:x 1472:y 1468:x 1464:u 1460:y 1456:x 1452:u 1448:x 1444:G 1440:x 1436:u 1432:G 1403:n 1348:, 1345:} 1342:1 1339:, 1333:, 1330:) 1327:1 1321:n 1318:( 1314:/ 1310:2 1307:, 1304:) 1301:1 1295:n 1292:( 1288:/ 1284:1 1281:, 1278:0 1275:{ 1255:n 1245:3 1241:3 1227:x 1221:x 1218:= 1215:x 1209:x 1203:x 1180:x 1177:= 1174:x 1168:x 1108:, 1105:} 1102:1 1099:, 1096:0 1093:{ 1061:= 1058:0 1035:0 1032:= 1029:0 1023:0 984:. 981:x 975:1 972:= 969:x 946:) 943:1 940:, 937:y 934:+ 931:x 928:( 922:= 919:y 913:x 893:, 890:] 887:1 884:, 881:0 878:[ 875:= 872:A 845:. 842:y 836:) 833:y 827:x 824:( 821:= 818:y 812:x 789:1 786:, 783:0 780:, 774:, 768:, 762:, 756:, 753:L 701:0 698:, 692:, 689:A 663:. 660:x 654:) 651:x 645:y 639:( 633:= 630:y 624:) 621:y 615:x 609:( 584:, 581:0 575:= 572:0 563:x 542:, 539:x 536:= 533:x 506:, 503:x 497:y 494:= 491:y 485:x 464:, 461:x 458:= 455:0 449:x 428:, 425:) 422:z 416:y 413:( 407:x 404:= 401:z 395:) 392:y 386:x 383:( 353:, 350:A 326:0 303:, 300:A 255:, 252:A 207:, 204:A 174:, 168:0 165:, 159:, 153:, 150:A 86:0

Index

abstract algebra
mathematics
algebraic structure
binary operation
unary operation
algebraic semantics
Ɓukasiewicz logic
many-valued logic
Ɓukasiewicz
commutative
BCK algebras
algebraic structure
non-empty
set
binary operation
unary operation
element
identities
monoid
variety
BL
Boolean algebras
HĂĄjek
residuated lattice
fuzzy logic
Ɓukasiewicz logic
two-element Boolean algebra
Chang
infinitesimals
order type

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑