Knowledge (XXG)

Magneto-optic effect

Source 📝

1152: 486: 192: 33: 1577: 1043: 1143:
Kerr rotation and Kerr ellipticity are changes in the polarization of incident light which comes in contact with a gyromagnetic material. Kerr rotation is a rotation in the plane of polarization of transmitted light, and Kerr ellipticity is the ratio of the major to minor axis of the ellipse traced
1278:
This can be better understood if we consider a wave of light that is circularly polarized (seen to the right). If this wave interacts with a material at which the horizontal component (green sinusoid) travels at a different speed than the vertical component (blue sinusoid), the two components will
481:{\displaystyle \varepsilon ={\begin{pmatrix}\varepsilon _{xx}'&\varepsilon _{xy}'+ig_{z}&\varepsilon _{xz}'-ig_{y}\\\varepsilon _{xy}'-ig_{z}&\varepsilon _{yy}'&\varepsilon _{yz}'+ig_{x}\\\varepsilon _{xz}'+ig_{y}&\varepsilon _{yz}'-ig_{x}&\varepsilon _{zz}'\\\end{pmatrix}}} 1286:
components: Left-handed circular polarized (LHCP) light and right-handed circular polarized (RHCP) light. The anisotropy of the magneto-optic material permittivity causes a difference in the speed of LHCP and RHCP light, which will cause a change in the angle of polarized light. Materials that
574: 915: 106:, left- and right-rotating elliptical polarizations can propagate at different speeds, leading to a number of important phenomena. When light is transmitted through a layer of magneto-optic material, the result is called the 1581: 781: 1118: 1204: 673: 1294:
From this rotation, we can calculate the difference in orthogonal velocity components, find the anisotropic permittivity, find the gyration vector, and calculate the applied magnetic field
511: 899: 874: 706: 602: 818: 1314: 147:
Two gyrotropic materials with reversed rotation directions of the two principal polarizations, corresponding to complex-conjugate ε tensors for lossless media, are called
1253: 1618: 1233: 1273: 1038:{\displaystyle \varepsilon ={\begin{pmatrix}\varepsilon _{1}&+ig_{z}&0\\-ig_{z}&\varepsilon _{1}&0\\0&0&\varepsilon _{2}\\\end{pmatrix}}} 1151: 179:
become complex as well, corresponding to elliptically-polarized light where left- and right-rotating polarizations can travel at different speeds (analogous to
1148:
polarized light on the plane through which it propagates. Changes in the orientation of polarized incident light can be quantified using these two properties.
1275:
is the material permeability. Because the permittivity is anisotropic, polarized light of different orientations will travel at different speeds.
730: 159:
In particular, in a magneto-optic material the presence of a magnetic field (either externally applied or because the material itself is
1464: 1474:
Jonsson, Fredrik; Flytzanis, Christos (1 November 1999). "Optical parametric generation and phase matching in magneto-optic media".
1438: 73: 1062: 1592: 1586: 1164: 1623: 171:
off-diagonal components, depending on the frequency ω of incident light. If the absorption losses can be neglected, ε is a
1568: 837: 611: 492: 136:
locally (i.e. when only the propagation of light, and not the source of the magnetic field, is considered) as well as
51: 821: 1613: 186:
More specifically, for the case where absorption losses can be neglected, the most general form of Hermitian ε is:
1372:"Magneto-conductivity and magnetically-controlled nonlinear optical transmittance in multi-wall carbon nanotubes" 1335: 1282:
A change in Kerr rotation is most easily recognized in linearly polarized light, which can be separated into two
119: 55: 569:{\displaystyle \mathbf {D} =\varepsilon \mathbf {E} =\varepsilon '\mathbf {E} +i\mathbf {E} \times \mathbf {g} } 1279:
fall out of the 90 degree phase difference (required for circular polarization) changing the Kerr ellipticity.
1145: 1417: 133: 43: 1283: 1121: 1549: 1520: 1483: 1383: 1350: 1128: 111: 91: 1127:
For light propagating purely perpendicular to the axis of gyration, the properties are known as the
1371: 879: 854: 789: 686: 582: 137: 1297: 1238: 1159:
According to classical physics, the speed of light varies with the permittivity of a material:
1499: 1460: 1434: 1401: 1557: 1528: 1491: 1391: 833: 825: 605: 172: 141: 123: 1211: 1258: 115: 1553: 1524: 1487: 1387: 1340: 1057: 841: 721: 499: 168: 160: 148: 107: 95: 1607: 1325: 1288: 1056:). In this case the solutions are elliptically polarized electromagnetic waves with 180: 832:). If this susceptibility itself depends upon the electric field, one can obtain a 1596: 1345: 676: 176: 164: 94:
propagates through a medium that has been altered by the presence of a quasistatic
1428: 1421: 126: 1561: 1330: 1132: 17: 118:. The results of reflection from a magneto-optic material are known as the 1503: 1405: 1495: 1396: 167:
tensor ε of the material. The ε becomes anisotropic, a 3×3 matrix, with
1532: 1124:). This difference in phase velocities leads to the Faraday effect. 829: 776:{\displaystyle \mathbf {g} =\varepsilon _{0}\chi ^{(m)}\mathbf {H} } 683:, whose magnitude is generally small compared to the eigenvalues of 1150: 144:(through which light passes in one direction but not the other). 1540:
Freiser, M. (1 June 1968). "A survey of magnetooptic effects".
1427:
Lev Davídovich Landau; Evgeniĭ Mikhaĭlovich Lifshit︠s︡ (1960).
909:
direction for simplicity, the ε tensor simplifies to the form:
140:, which is a necessary condition to construct devices such as 26: 844:
whose strength is controlled by the applied magnetic field).
1511:
Pershan, P. S. (1 January 1967). "Magneto-Optical Effects".
1113:{\displaystyle 1/{\sqrt {\mu (\varepsilon _{1}\pm g_{z})}}} 1199:{\displaystyle v_{p}={\frac {1}{\sqrt {\epsilon \mu }}}} 1048:
Most commonly, one considers light propagating in the
930: 207: 1300: 1261: 1241: 1214: 1167: 1065: 918: 882: 857: 792: 733: 689: 614: 585: 514: 195: 1308: 1267: 1247: 1227: 1198: 1112: 1037: 893: 868: 812: 775: 700: 667: 596: 568: 480: 847:The simplest case to analyze is the one in which 809: 1459:(3rd ed.). New York: Wiley. pp. 6–10. 668:{\displaystyle \mathbf {g} =(g_{x},g_{y},g_{z})} 90:is any one of a number of phenomena in which an 1235:is the velocity of light through the material, 491:or equivalently the relationship between the 8: 54:. There might be a discussion about this on 98:. In such a medium, which is also called 1395: 1301: 1299: 1260: 1240: 1219: 1213: 1181: 1172: 1166: 1099: 1086: 1074: 1069: 1064: 1021: 992: 980: 955: 937: 925: 917: 881: 856: 828:in isotropic media, but more generally a 797: 791: 768: 756: 746: 734: 732: 688: 656: 643: 630: 615: 613: 584: 561: 553: 542: 526: 515: 513: 458: 446: 424: 412: 390: 376: 354: 336: 324: 302: 288: 266: 254: 232: 214: 202: 194: 74:Learn how and when to remove this message 132:In general, magneto-optic effects break 1569:Broad band magneto-optical spectroscopy 1362: 1619:Electric and magnetic fields in matter 851:is a principal axis (eigenvector) of 838:magneto-optical parametric generation 7: 1430:Electrodynamics of continuous media 1287:exhibit this property are known as 876:, and the other two eigenvalues of 1255:is the material permittivity, and 1139:Kerr rotation and Kerr ellipticity 716:of the material. To first order, 25: 1580: This article incorporates 1575: 1302: 901:are identical. Then, if we let 769: 735: 616: 562: 554: 543: 527: 516: 31: 1593:General Services Administration 720:is proportional to the applied 1542:IEEE Transactions on Magnetics 1433:. Pergamon Press. p. 82. 1105: 1079: 822:magneto-optical susceptibility 804: 798: 763: 757: 662: 623: 1: 1370:Garcia-Merino, J. A. (2016). 894:{\displaystyle \varepsilon '} 869:{\displaystyle \varepsilon '} 813:{\displaystyle \chi ^{(m)}\!} 701:{\displaystyle \varepsilon '} 597:{\displaystyle \varepsilon '} 122:(not to be confused with the 1455:Jackson, John David (1998). 1309:{\displaystyle \mathbf {H} } 163:) can cause a change in the 1640: 1513:Journal of Applied Physics 114:can be rotated, forming a 1562:10.1109/TMAG.1968.1066210 1457:Classical electrodynamics 1336:Magneto-optic Kerr effect 1248:{\displaystyle \epsilon } 840:(somewhat analogous to a 120:magneto-optic Kerr effect 1155:Circular Polarized Light 1052:direction (parallel to 155:Gyrotropic permittivity 1588:Federal Standard 1037C 1582:public domain material 1418:Federal Standard 1037C 1310: 1269: 1249: 1229: 1200: 1156: 1114: 1039: 895: 870: 814: 777: 702: 669: 598: 570: 482: 134:time reversal symmetry 1624:Magneto-optic effects 1311: 1270: 1250: 1230: 1228:{\displaystyle v_{p}} 1201: 1154: 1122:magnetic permeability 1115: 1040: 896: 871: 815: 778: 703: 670: 599: 571: 483: 1496:10.1364/OL.24.001514 1397:10.1364/OE.24.019552 1351:Photoelectric effect 1298: 1284:circularly polarized 1268:{\displaystyle \mu } 1259: 1239: 1212: 1165: 1129:Cotton-Mouton effect 1063: 916: 880: 855: 790: 731: 687: 612: 583: 512: 193: 92:electromagnetic wave 88:magneto-optic effect 44:confusing or unclear 1554:1968ITM.....4..152F 1525:1967JAP....38.1482P 1488:1999OptL...24.1514J 1388:2016OExpr..2419552G 1382:(17): 19552–19557. 708:. The direction of 469: 435: 401: 365: 347: 313: 277: 243: 225: 138:Lorentz reciprocity 52:clarify the article 1306: 1265: 1245: 1225: 1196: 1157: 1110: 1035: 1029: 891: 866: 810: 773: 698: 665: 594: 566: 493:displacement field 478: 472: 454: 420: 386: 350: 332: 298: 262: 228: 210: 1614:Optical phenomena 1533:10.1063/1.1709678 1482:(21): 1514–1516. 1194: 1193: 1108: 834:nonlinear optical 175:. The resulting 142:optical isolators 84: 83: 76: 16:(Redirected from 1631: 1601: 1600: 1595:. Archived from 1579: 1578: 1565: 1536: 1519:(3): 1482–1490. 1507: 1470: 1451: 1449: 1447: 1410: 1409: 1399: 1367: 1315: 1313: 1312: 1307: 1305: 1274: 1272: 1271: 1266: 1254: 1252: 1251: 1246: 1234: 1232: 1231: 1226: 1224: 1223: 1205: 1203: 1202: 1197: 1195: 1186: 1182: 1177: 1176: 1120:(where μ is the 1119: 1117: 1116: 1111: 1109: 1104: 1103: 1091: 1090: 1075: 1073: 1058:phase velocities 1044: 1042: 1041: 1036: 1034: 1033: 1026: 1025: 997: 996: 985: 984: 960: 959: 942: 941: 900: 898: 897: 892: 890: 875: 873: 872: 867: 865: 819: 817: 816: 811: 808: 807: 782: 780: 779: 774: 772: 767: 766: 751: 750: 738: 714:axis of gyration 707: 705: 704: 699: 697: 674: 672: 671: 666: 661: 660: 648: 647: 635: 634: 619: 606:symmetric matrix 603: 601: 600: 595: 593: 575: 573: 572: 567: 565: 557: 546: 541: 530: 519: 487: 485: 484: 479: 477: 476: 465: 451: 450: 431: 417: 416: 397: 381: 380: 361: 343: 329: 328: 309: 293: 292: 273: 259: 258: 239: 221: 173:Hermitian matrix 79: 72: 68: 65: 59: 35: 34: 27: 21: 1639: 1638: 1634: 1633: 1632: 1630: 1629: 1628: 1604: 1603: 1585: 1576: 1574: 1539: 1510: 1473: 1467: 1454: 1445: 1443: 1441: 1426: 1414: 1413: 1369: 1368: 1364: 1359: 1322: 1296: 1295: 1257: 1256: 1237: 1236: 1215: 1210: 1209: 1168: 1163: 1162: 1141: 1131:and used for a 1095: 1082: 1061: 1060: 1028: 1027: 1017: 1015: 1010: 1004: 1003: 998: 988: 986: 976: 967: 966: 961: 951: 943: 933: 926: 914: 913: 883: 878: 877: 858: 853: 852: 793: 788: 787: 752: 742: 729: 728: 690: 685: 684: 681:gyration vector 652: 639: 626: 610: 609: 586: 581: 580: 534: 510: 509: 471: 470: 452: 442: 418: 408: 383: 382: 372: 348: 330: 320: 295: 294: 284: 260: 250: 226: 203: 191: 190: 157: 149:optical isomers 116:Faraday rotator 110:: the plane of 80: 69: 63: 60: 49: 36: 32: 23: 22: 15: 12: 11: 5: 1637: 1635: 1627: 1626: 1621: 1616: 1606: 1605: 1599:on 2022-01-22. 1572: 1571: 1566: 1548:(2): 152–161. 1537: 1508: 1476:Optics Letters 1471: 1466:978-0471309321 1465: 1452: 1439: 1424: 1412: 1411: 1376:Optics Express 1361: 1360: 1358: 1355: 1354: 1353: 1348: 1343: 1341:Faraday effect 1338: 1333: 1328: 1321: 1318: 1304: 1264: 1244: 1222: 1218: 1192: 1189: 1185: 1180: 1175: 1171: 1140: 1137: 1107: 1102: 1098: 1094: 1089: 1085: 1081: 1078: 1072: 1068: 1046: 1045: 1032: 1024: 1020: 1016: 1014: 1011: 1009: 1006: 1005: 1002: 999: 995: 991: 987: 983: 979: 975: 972: 969: 968: 965: 962: 958: 954: 950: 947: 944: 940: 936: 932: 931: 929: 924: 921: 889: 886: 864: 861: 842:Pockels effect 806: 803: 800: 796: 784: 783: 771: 765: 762: 759: 755: 749: 745: 741: 737: 722:magnetic field 712:is called the 696: 693: 664: 659: 655: 651: 646: 642: 638: 633: 629: 625: 622: 618: 592: 589: 577: 576: 564: 560: 556: 552: 549: 545: 540: 537: 533: 529: 525: 522: 518: 500:electric field 489: 488: 475: 468: 464: 461: 457: 453: 449: 445: 441: 438: 434: 430: 427: 423: 419: 415: 411: 407: 404: 400: 396: 393: 389: 385: 384: 379: 375: 371: 368: 364: 360: 357: 353: 349: 346: 342: 339: 335: 331: 327: 323: 319: 316: 312: 308: 305: 301: 297: 296: 291: 287: 283: 280: 276: 272: 269: 265: 261: 257: 253: 249: 246: 242: 238: 235: 231: 227: 224: 220: 217: 213: 209: 208: 206: 201: 198: 177:principal axes 156: 153: 108:Faraday effect 96:magnetic field 82: 81: 39: 37: 30: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1636: 1625: 1622: 1620: 1617: 1615: 1612: 1611: 1609: 1602: 1598: 1594: 1590: 1589: 1583: 1570: 1567: 1563: 1559: 1555: 1551: 1547: 1543: 1538: 1534: 1530: 1526: 1522: 1518: 1514: 1509: 1505: 1501: 1497: 1493: 1489: 1485: 1481: 1477: 1472: 1468: 1462: 1458: 1453: 1442: 1440:9780080091051 1436: 1432: 1431: 1425: 1423: 1419: 1416: 1415: 1407: 1403: 1398: 1393: 1389: 1385: 1381: 1377: 1373: 1366: 1363: 1356: 1352: 1349: 1347: 1344: 1342: 1339: 1337: 1334: 1332: 1329: 1327: 1326:Zeeman effect 1324: 1323: 1319: 1317: 1292: 1290: 1285: 1280: 1276: 1262: 1242: 1220: 1216: 1206: 1190: 1187: 1183: 1178: 1173: 1169: 1160: 1153: 1149: 1147: 1138: 1136: 1134: 1130: 1125: 1123: 1100: 1096: 1092: 1087: 1083: 1076: 1070: 1066: 1059: 1055: 1051: 1030: 1022: 1018: 1012: 1007: 1000: 993: 989: 981: 977: 973: 970: 963: 956: 952: 948: 945: 938: 934: 927: 922: 919: 912: 911: 910: 908: 904: 887: 884: 862: 859: 850: 845: 843: 839: 835: 831: 827: 823: 801: 794: 760: 753: 747: 743: 739: 727: 726: 725: 723: 719: 715: 711: 694: 691: 682: 678: 657: 653: 649: 644: 640: 636: 631: 627: 620: 607: 590: 587: 558: 550: 547: 538: 535: 531: 523: 520: 508: 507: 506: 504: 501: 497: 494: 473: 466: 462: 459: 455: 447: 443: 439: 436: 432: 428: 425: 421: 413: 409: 405: 402: 398: 394: 391: 387: 377: 373: 369: 366: 362: 358: 355: 351: 344: 340: 337: 333: 325: 321: 317: 314: 310: 306: 303: 299: 289: 285: 281: 278: 274: 270: 267: 263: 255: 251: 247: 244: 240: 236: 233: 229: 222: 218: 215: 211: 204: 199: 196: 189: 188: 187: 184: 182: 181:birefringence 178: 174: 170: 166: 162: 161:ferromagnetic 154: 152: 150: 145: 143: 139: 135: 130: 128: 125: 121: 117: 113: 109: 105: 101: 97: 93: 89: 78: 75: 67: 57: 56:the talk page 53: 47: 45: 40:This article 38: 29: 28: 19: 18:Magneto-optic 1597:the original 1587: 1573: 1545: 1541: 1516: 1512: 1479: 1475: 1456: 1444:. Retrieved 1429: 1379: 1375: 1365: 1346:Voigt Effect 1293: 1289:birefringent 1281: 1277: 1207: 1161: 1158: 1146:elliptically 1142: 1126: 1053: 1049: 1047: 906: 902: 848: 846: 785: 717: 713: 709: 680: 677:pseudovector 578: 502: 495: 490: 185: 165:permittivity 158: 146: 131: 112:polarization 104:gyromagnetic 103: 99: 87: 85: 70: 61: 50:Please help 41: 1422:MIL-STD-188 905:lie in the 679:called the 127:Kerr effect 1608:Categories 1357:References 1331:QMR effect 1133:Circulator 836:effect of 675:is a real 604:is a real 100:gyrotropic 46:to readers 1420:and from 1263:μ 1243:ϵ 1191:μ 1188:ϵ 1093:± 1084:ε 1077:μ 1019:ε 990:ε 971:− 935:ε 920:ε 885:ε 860:ε 795:χ 754:χ 744:ε 692:ε 588:ε 559:× 536:ε 524:ε 456:ε 437:− 422:ε 388:ε 352:ε 334:ε 315:− 300:ε 279:− 264:ε 230:ε 212:ε 197:ε 124:nonlinear 64:July 2010 1504:18079850 1406:27557232 1320:See also 888:′ 863:′ 695:′ 591:′ 539:′ 498:and the 467:′ 433:′ 399:′ 363:′ 345:′ 311:′ 275:′ 241:′ 223:′ 1550:Bibcode 1521:Bibcode 1484:Bibcode 1384:Bibcode 1144:out by 820:is the 169:complex 42:may be 1502:  1463:  1446:3 June 1437:  1404:  1208:where 830:tensor 826:scalar 786:where 579:where 1584:from 1500:PMID 1461:ISBN 1448:2012 1435:ISBN 1402:PMID 608:and 505:is: 1558:doi 1529:doi 1492:doi 1392:doi 824:(a 183:). 129:). 102:or 1610:: 1591:. 1556:. 1544:. 1527:. 1517:38 1515:. 1498:. 1490:. 1480:24 1478:. 1400:. 1390:. 1380:24 1378:. 1374:. 1316:. 1291:. 1135:. 724:: 151:. 86:A 1564:. 1560:: 1552:: 1546:4 1535:. 1531:: 1523:: 1506:. 1494:: 1486:: 1469:. 1450:. 1408:. 1394:: 1386:: 1303:H 1221:p 1217:v 1184:1 1179:= 1174:p 1170:v 1106:) 1101:z 1097:g 1088:1 1080:( 1071:/ 1067:1 1054:g 1050:z 1031:) 1023:2 1013:0 1008:0 1001:0 994:1 982:z 978:g 974:i 964:0 957:z 953:g 949:i 946:+ 939:1 928:( 923:= 907:z 903:g 849:g 805:) 802:m 799:( 770:H 764:) 761:m 758:( 748:0 740:= 736:g 718:g 710:g 663:) 658:z 654:g 650:, 645:y 641:g 637:, 632:x 628:g 624:( 621:= 617:g 563:g 555:E 551:i 548:+ 544:E 532:= 528:E 521:= 517:D 503:E 496:D 474:) 463:z 460:z 448:x 444:g 440:i 429:z 426:y 414:y 410:g 406:i 403:+ 395:z 392:x 378:x 374:g 370:i 367:+ 359:z 356:y 341:y 338:y 326:z 322:g 318:i 307:y 304:x 290:y 286:g 282:i 271:z 268:x 256:z 252:g 248:i 245:+ 237:y 234:x 219:x 216:x 205:( 200:= 77:) 71:( 66:) 62:( 58:. 48:. 20:)

Index

Magneto-optic
confusing or unclear
clarify the article
the talk page
Learn how and when to remove this message
electromagnetic wave
magnetic field
Faraday effect
polarization
Faraday rotator
magneto-optic Kerr effect
nonlinear
Kerr effect
time reversal symmetry
Lorentz reciprocity
optical isolators
optical isomers
ferromagnetic
permittivity
complex
Hermitian matrix
principal axes
birefringence
displacement field
electric field
symmetric matrix
pseudovector
magnetic field
magneto-optical susceptibility
scalar

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.