Knowledge (XXG)

Magnetoelectric effect

Source đź“ť

1427:. This interaction depends on details of the crystal structure such as the bond length between magnetic ions and the angle formed by the bonds between magnetic and ligand ions. In magnetic insulators it usually is the main mechanism for magnetic ordering, and, depending on the orbital occupancies and bond angles, can lead to ferro- or antiferromagnetic interactions. As the strength of symmetric exchange depends on the relative position of the ions, it couples the spin orientations to the lattice structure. Coupling of spins to a collective distortion with a net electric dipole can occur if the magnetic order breaks inversion symmetry. Thus, symmetric exchange can provide a handle to control magnetic properties through an external electric field. 81:). The experimental confirmation came just a few months later when the effect was observed for the first time by D. Astrov. The general excitement which followed the measurement of the linear magnetoelectric effect lead to the organization of the series of Magnetoelectric Interaction Phenomena in Crystals (MEIPIC) conferences. Between the prediction of Dzyaloshinskii and the MEIPIC first edition (1973), more than 80 linear magnetoelectric compounds were found. Recently, technological and theoretical progress, driven in large part by the advent of multiferroic materials, triggered a renaissance of these studies and magnetoelectric effect is still heavily investigated. 1456:
component to another, realizing the magnetoelectric coupling. For an efficient coupling, a high-quality interface with optimal strain state is desired. In light of this interest, advanced deposition techniques have been applied to synthesize these types of thin film heterostructures. Molecular beam epitaxy has been demonstrated to be capable of depositing structures consisting of piezoelectric and magnetostrictive components. Materials systems studied included cobalt ferrite, magnetite, SrTiO3, BaTiO3, PMNT.
1003: 592: 998:{\displaystyle {\begin{aligned}F(E,H)&=F_{0}-P_{i}^{s}E_{i}-\mu _{0}M_{i}^{s}H_{i}-{\frac {1}{2}}\epsilon _{0}\chi _{ij}^{e}E_{i}E_{j}-{\frac {1}{2}}\mu _{0}\chi _{ij}^{v}H_{i}H_{j}\\&\qquad -\alpha _{ij}E_{i}H_{j}-{\frac {1}{2}}\beta _{ijk}E_{i}H_{j}H_{k}-{\frac {1}{2}}\gamma _{ijk}H_{i}E_{j}E_{k}+\ldots \end{aligned}}} 1410:
which determines preferential axes for the orientation of the spins (such as easy axes). An external electric field may change the local symmetry seen by magnetic ions and affect both the strength of the anisotropy and the direction of the easy axes. Thus, single-ion anisotropy can couple an external
1480:
Ferroelectricity developed from micromagnetic structure can appear in any magnetic material even in centrosymmetric one. Building of symmetry classification of domain walls leads to determination of the type of electric polarization rotation in volume of any magnetic domain wall. Existing symmetry
1455:
The overall effect is that the polarization of the ferroelectric substrate is manipulated by an application of a magnetic field, which is the desired magnetoelectric effect (the reverse is also possible). In this case, the interface plays an important role in mediating the responses from one
1451:
film. This process, called magnetostriction, will alter residual strain conditions in the magnetoelastic film, which can be transferred through the interface to the piezoelectric substrate. Consequently, a polarization is introduced in the substrate through the piezoelectric process.
1464:
Magnetically driven ferroelectricity is also caused by inhomogeneous magnetoelectric interaction. This effect appears due to the coupling between inhomogeneous order parameters. It was also called as flexomagnetoelectric effect. Usually it is describing using the
1366:. Therefore, the linear magnetoelectric effect may only occur if time-reversal symmetry is explicitly broken, for instance by the explicit motion in Röntgens' example, or by an intrinsic magnetic ordering in the material. In contrast, the tensor 1446:
and a piezoelectric component. This type of heterostructure is composed of an epitaxial magnetoelastic thin film grown on a piezoelectric substrate. For this system, application of a magnetic field will induce a change in the dimension of the
426: 298: 1149: 1439:/ferromagnetic materials), it is possible to couple magnetic and electric properties indirectly by creating composites of these materials that are tightly bonded so that strains transfer from one to the other. 2722:
Baryakhtar, V.G.; L'vov, V.A.; Yablonskiy, D.A. (1984). "Chapter 2 – Theory of electric polarization of domain boundaries in magnetically ordered crystals". In Prokhorov, A.M.; Prokhorov, A.S. (eds.).
2015:
Newacheck, Scott; Webster, Taylor; Youssef, George (2018-10-22). "The effect of multidirectional bias magnetic fields on the converse magnetoelectric response of multiferroic concentric composite ring".
1069: 43:, who showed that a dielectric material moving through an electric field would become magnetized. The possibility of an intrinsic magnetoelectric effect in a (non-moving) material was conjectured by 2503:
Logginov, A.S.; Meshkov, G.A.; Nikolaev, A.V.; Nikolaeva, E.P.; Pyatakov, A.P.; Zvezdin, A.K. (2008). "Room temperature magnetoelectric control of micromagnetic structure in iron garnet films".
597: 1435:
Because materials exist that couple strain to electrical polarization (piezoelectrics, electrostrictives, and ferroelectrics) and that couple strain to magnetization (magnetostrictive/
1279:
describes the linear magnetoelectric effect, which corresponds to an electric polarization induced linearly by a magnetic field, and vice versa. The higher terms with coefficients
24:
in 1888, who found that a dielectric material moving through an electric field would become magnetized. A material where such a coupling is intrinsically present is called a
181: 1257: 1230: 151: 121: 1360: 1337: 1317: 1277: 505: 449: 1384: 1297: 2230:
Yang, J. J.; Zhao, Y.G.; et al. (2009). "Electric field manipulation of magnetization at room temperature in multiferroic CoFeO/Pb(MgNb)TiO heterostructures".
1203: 1176: 304: 153:
describe the electric and magnetic polarization responses to an electric, resp. a magnetic field, there is also the possibility of a magnetoelectric susceptibility
1481:
classification of magnetic domain walls was applied for predictions of electric polarization spatial distribution in their volumes. The predictions for almost all
1473:
crystal the four phenomenological constants approach is correct. The flexomagnetoelectric effect appears in spiral multiferroics or micromagnetic structures like
584: 564: 189: 2595: 1652: 2265:
Baryakhtar, V.G.; L'vov, V.A.; Yablonskiy, D.A. (1983). "Spin reversal in 180 domain walls of the spin-flop phase of ease-axis antiferromagnets".
1077: 522:
are another example of single-phase materials that can exhibit a general magnetoelectric effect if their magnetic and electric orders are coupled.
31:
Some promising applications of the ME effect are sensitive detection of magnetic fields, advanced logic devices and tunable microwave filters.
20:(ME) denotes any coupling between the magnetic and the electric properties of a material. The first example of such an effect was described by 538:
If the coupling between magnetic and electric properties is analytic, then the magnetoelectric effect can be described by an expansion of the
1442:
Thin film strategy enables achievement of interfacial multiferroic coupling through a mechanical channel in heterostructures consisting of a
530:
material. These two materials interact by strain, leading to a coupling between magnetic and electric properties of the compound material.
2152:
Xie, S.; Cheng, J.; et al. (2008). "Interfacial structure and chemistry of epitaxial CoFeO thin films on SrTiO and MgO substrates".
2067:
Srinivasan, G. (2002). "Magnetoelectric effects in bilayers and multilayers of magnetostrictive and piezoelectric perovskite oxides".
2837: 1954:
Delaney, Kris T.; Mostovoy, Maxim; Spaldin, Nicola A. (2009-04-17). "Superexchange-Driven Magnetoelectricity in Magnetic Vortices".
2593:
Pyatakov, A.P.; Meshkov, G.A.; Zvezdin, A.K. (2012). "Electric polarization of magnetic textures: New horizons of micromagnetism".
510:
The first material where an intrinsic linear magnetoelectric effect was predicted theoretically and confirmed experimentally was Cr
1614:"Ueber die durch Bewegung eines im homogenen electrischen Felde befindlichen Dielectricums hervorgerufene electrodynamische Kraft" 1498: 1014: 2540:
Pyatakov, A.P.; Meshkov, G.A. (2010). "Electrically stabilized magnetic vortex and antivortex states in magnetic dielectrics".
1342:
The possible terms appearing in the expansion above are constrained by symmetries of the material. Most notably, the tensor
2693:
Baryakhtar, V.; L'vov, V.; Yablonsky, D. (1984). "Magnetic symmetry of the domain walls in magnetically ordered crystals".
1407: 484: 61: 1587: 1919:
Cardwell, M.J. (1969). "Measurements of the magnetic field dependent electric susceptibility of yttrium iron garnet".
2842: 539: 1805: 1691: 1403: 2505: 1474: 124: 94: 1363: 2738:
Tanygin, B.M. (2011). "Symmetry theory of the flexomagnetoelectric effect in the magnetic domain walls".
526:
are another way to realize magnetoelectrics. There, the idea is to combine, say a magnetostrictive and a
1501:
theory appears if energy terms with electrical polarization spatial derivatives are taken into account.
1448: 1443: 1436: 1009: 2806: 2757: 2704: 2659: 2614: 2559: 2514: 2461: 2416: 2355: 2302: 2275: 2239: 2196: 2161: 2118: 2103: 2076: 2025: 1973: 1928: 1820: 1667: 1625: 1553: 1520: 1470: 456: 183:
which describes a linear response of the electric polarization to a magnetic field, and vice versa:
70: 66: 1394:
There are several ways in which a magnetoelectric effect can arise microscopically in a material.
156: 2796: 2773: 2747: 2675: 2630: 2604: 2575: 2549: 2485: 2432: 2406: 2379: 2345: 2318: 2049: 1997: 1963: 1901: 1844: 1683: 1569: 523: 1653:"Multiferroic magnetoelectric composites: Historical perspective, status, and future directions" 40: 21: 1235: 1208: 129: 99: 2477: 2371: 2212: 2134: 2041: 1989: 1893: 1885: 421:{\displaystyle \mu _{0}M_{i}=\sum _{j}\mu _{0}\chi _{ij}^{v}H_{j}+\sum _{j}\alpha _{ij}E_{j},} 69:, using an elegant symmetry argument, derive the form of a linear magnetoelectric coupling in 1419:
The main interaction between spins of transition metal ions in solids is usually provided by
1345: 1322: 1302: 1262: 490: 434: 2814: 2810: 2793:
Inhomogeneous magnetoelectric effect on defect in multiferroic Material: Symmetry prediction
2765: 2667: 2622: 2567: 2522: 2469: 2452: 2424: 2363: 2310: 2247: 2204: 2169: 2126: 2084: 2033: 1981: 1936: 1877: 1836: 1828: 1675: 1633: 1561: 1510: 1369: 1282: 2293:
Pyatakov, A.P.; Zvezdin, A.K. (2009). "Flexomagnetoelectric interaction in multiferroics".
1469:
invariant (i.e. single-constant coupling term). It was shown that in general case of cubic
1339:
describes a linear magnetoelectric effect which is, in turn, induced by an electric field.
1181: 1154: 2795:. Materials Science and Engineering. IOP Conference Series. Vol. 15. p. 012073. 2695: 293:{\displaystyle P_{i}=\sum _{j}\epsilon _{0}\chi _{ij}^{e}E_{j}+\sum _{j}\alpha _{ij}H_{j}} 56: 1590:. Laboratory for Multifunctional Ferroic Materials. Condensed matter research. ETH ZĂĽrich 51:
in 1926. A mathematical formulation of the linear magnetoelectric effect was included in
2818: 2761: 2708: 2663: 2618: 2563: 2518: 2465: 2420: 2359: 2306: 2279: 2243: 2200: 2165: 2122: 2080: 2029: 1977: 1932: 1824: 1671: 1629: 1557: 1865: 1490: 1482: 569: 549: 480: 476: 2831: 2777: 2679: 2650: 2634: 2579: 2489: 2436: 2397:
Tanygin, B.M. (2011). "On the free energy of the flexomagnetoelectric interactions".
2322: 2187:
Bibes, M.; Barthélémy, A. (2008). "Multiferroics: Towards a magnetoelectric memory".
2053: 1905: 1779: 1573: 1565: 1515: 1486: 1420: 1072: 527: 519: 464: 2383: 2001: 1868:; Fiebig, Manfred (2005-07-15). "The Renaissance of Magnetoelectric Multiferroics". 1848: 1687: 2671: 1985: 543: 44: 2450:
Kimura, T.; et al. (2003). "Magnetic control of ferroelectric polarization".
2367: 1750: 2314: 1651:
Nan, C.W.; Bichurin, M.I.; Dong, Shuxiang; Viehland, D.; Srinivasan, G. (2008).
1144:{\displaystyle M_{i}=-{\frac {1}{\mu _{0}}}{\frac {\partial F}{\partial H_{i}}}} 48: 2769: 2626: 2428: 2088: 1840: 2571: 2267: 1940: 52: 2045: 1889: 1637: 1881: 2481: 2375: 2216: 2138: 1993: 1897: 1205:
are the static polarization, resp. magnetization of the material, whereas
2350: 1466: 2473: 1494: 89:
Historically, the first and most studied example of this effect is the
39:
The first example of a magnetoelectric effect was discussed in 1888 by
2526: 2251: 2173: 2037: 1832: 1679: 2208: 2130: 1613: 1804:
Spaldin, Nicola A.; Cheong, Sang-Wook; Ramesh, Ramamoorthy (2010).
2801: 2752: 2609: 2554: 2411: 1968: 2648:
Dzyaloshinskii, I. (2008). "Magnetoelectricity in ferromagnets".
1259:
are the electric, resp. magnetic susceptibilities. The tensor
1544:
Fiebig, M. (2005). "Revival of the magnetoelectric effect".
2336:
Mostovoy, M. (2006). "Ferroelectricity in Spiral Magnets".
1411:
electric field to spins of magnetically ordered compounds.
1386:
may be non-vanishing in time-reversal symmetric materials.
1064:{\displaystyle P_{i}=-{\frac {\partial F}{\partial E_{i}}}} 47:
in 1894, while the term "magnetoelectric" was coined by
1751:"On the Magneto-Electrical Effect in Antiferromagnets" 1431:
Strain driven magnetoelectric heterostructured effect
1372: 1348: 1325: 1319:
describe quadratic effects. For instance, the tensor
1305: 1285: 1265: 1238: 1211: 1184: 1157: 1080: 1017: 595: 572: 552: 493: 437: 307: 192: 159: 132: 102: 1744: 1742: 1008:Differentiating the free energy will then give the 1780:"The magnetoelectric effect in antiferromagnetics" 1485:conform with phenomenology in which inhomogeneous 1378: 1354: 1331: 1311: 1291: 1271: 1251: 1224: 1197: 1170: 1143: 1063: 997: 578: 558: 499: 443: 420: 292: 175: 145: 115: 1726: 1724: 1722: 1607: 1605: 2727:. Moscow, RU: Mir Publishers. pp. 56–80. 8: 1773: 1771: 1707:P. Curie J. Physique, 3ième sĂ©rie III (1894) 1539: 1537: 1535: 2740:Journal of Magnetism and Magnetic Materials 2596:Journal of Magnetism and Magnetic Materials 2399:Journal of Magnetism and Magnetic Materials 1806:"Multiferroics: Past, present, and future" 451:must be the same in both equations. Here, 2800: 2751: 2608: 2553: 2410: 2349: 1967: 1371: 1347: 1324: 1304: 1284: 1264: 1243: 1237: 1216: 1210: 1189: 1183: 1162: 1156: 1132: 1114: 1106: 1097: 1085: 1079: 1052: 1034: 1022: 1016: 979: 969: 959: 943: 929: 920: 910: 900: 884: 870: 861: 851: 838: 817: 807: 797: 789: 779: 765: 756: 746: 736: 728: 718: 704: 695: 685: 680: 670: 657: 647: 642: 629: 596: 594: 571: 551: 492: 436: 409: 396: 386: 373: 363: 355: 345: 335: 322: 312: 306: 284: 271: 261: 248: 238: 230: 220: 210: 197: 191: 164: 158: 137: 131: 107: 101: 1531: 2104:"Data storage: Multiferroic memories" 1860: 1858: 1546:Journal of Physics D: Applied Physics 7: 546:in the electric and magnetic fields 1733:Electrodynamics of Continuous Media 518:. This is a single-phase material. 2542:Moscow University Physics Bulletin 1125: 1117: 1045: 1037: 14: 1731:Landau, L.; Lifshitz, E. (1960). 1716:P. Debye, Z. Phys. 36, 300 (1926) 2725:Problems in solid-state physics 830: 507:has units of second per meter. 1986:10.1103/PhysRevLett.102.157203 1406:is responsible for single-ion 615: 603: 16:In its most general form, the 1: 2819:10.1088/1757-899x/15/1/012073 2368:10.1103/physrevlett.96.067601 1408:magnetocrystalline anisotropy 91:linear magnetoelectric effect 85:Linear magnetoelectric effect 62:Course of Theoretical Physics 1415:Symmetric Exchange striction 1362:must be antisymmetric under 176:{\displaystyle \alpha _{ij}} 93:. Mathematically, while the 1749:Dzyaloshinskii, I. (1960). 1460:Flexomagnetoelectric effect 2859: 2770:10.1016/j.jmmm.2010.10.028 2672:10.1209/0295-5075/83/67001 2627:10.1016/j.jmmm.2012.02.087 2429:10.1016/j.jmmm.2011.02.035 2315:10.1140/epjb/e2009-00281-5 2089:10.1103/physrevb.65.134402 1660:Journal of Applied Physics 1566:10.1088/0022-3727/38/8/R01 2572:10.3103/S0027134910040156 1941:10.1080/14786436908228077 1489:couples with homogeneous 1252:{\displaystyle \chi ^{v}} 1225:{\displaystyle \chi ^{e}} 146:{\displaystyle \chi ^{v}} 116:{\displaystyle \chi ^{e}} 2838:Condensed matter physics 1638:10.1002/andp.18882711003 1588:"Magnetoelectric Effect" 2811:2010MS&E...15a2073T 2506:Applied Physics Letters 2232:Applied Physics Letters 2018:Applied Physics Letters 1956:Physical Review Letters 1882:10.1126/science.1113357 1666:(3): 031101–031101–35. 1477:and magnetic vortexes. 1355:{\displaystyle \alpha } 1332:{\displaystyle \gamma } 1312:{\displaystyle \gamma } 1272:{\displaystyle \alpha } 500:{\displaystyle \alpha } 444:{\displaystyle \alpha } 125:magnetic susceptibility 95:electric susceptibility 2791:Tanygin, B.M. (2010). 1921:Philosophical Magazine 1612:Röntgen, W.C. (1888). 1380: 1379:{\displaystyle \beta } 1364:time-reversal symmetry 1356: 1333: 1313: 1293: 1292:{\displaystyle \beta } 1273: 1253: 1226: 1199: 1172: 1145: 1065: 999: 580: 560: 501: 445: 422: 294: 177: 147: 117: 18:magnetoelectric effect 2160:(18): 181901–181903. 1497:between symmetry and 1398:Single-ion anisotropy 1381: 1357: 1334: 1314: 1294: 1274: 1254: 1227: 1200: 1198:{\displaystyle M^{s}} 1173: 1171:{\displaystyle P^{s}} 1146: 1066: 1010:electric polarization 1000: 581: 561: 534:General phenomenology 502: 457:electric polarization 446: 423: 295: 178: 148: 118: 2102:Scott, J.F. (2007). 1521:Exchange interaction 1370: 1346: 1323: 1303: 1283: 1263: 1236: 1209: 1182: 1155: 1078: 1015: 593: 570: 550: 491: 435: 305: 190: 157: 130: 100: 2762:2011JMMM..323..616T 2709:1984JETP...60.1072B 2664:2008EL.....8367001D 2619:2012JMMM..324.3551P 2564:2010arXiv1001.0391P 2519:2008ApPhL..93r2510L 2474:10.1038/nature02018 2466:2003Natur.426...55K 2421:2011JMMM..323.1899T 2360:2006PhRvL..96f7601M 2307:2009EPJB...71..419P 2280:1983JETPL..37..673B 2244:2009ApPhL..94u2504Y 2201:2008NatMa...7..425B 2166:2008ApPhL..93r1901X 2123:2007NatMa...6..256S 2081:2002PhRvB..65m4402S 2030:2018ApPhL.113q2902N 1978:2009PhRvL.102o7203D 1933:1969PMag...20.1087C 1841:20.500.11850/190313 1825:2010PhT....63j..38S 1778:Astrov, D. (1960). 1758:Zh. Eksp. Teor. Fiz 1672:2008JAP...103c1101N 1630:1888AnP...271..264R 1558:2005JPhD...38R.123F 1404:spin–orbit coupling 802: 741: 690: 652: 524:Composite materials 368: 243: 71:chromium(III) oxide 67:Igor Dzyaloshinskii 65:. Only in 1959 did 1866:Spaldin, Nicola A. 1425:symmetric exchange 1390:Microscopic origin 1376: 1352: 1329: 1309: 1289: 1269: 1249: 1222: 1195: 1168: 1141: 1061: 995: 993: 785: 724: 676: 638: 576: 556: 497: 441: 418: 391: 351: 340: 290: 266: 226: 215: 173: 143: 113: 2843:Materials science 2603:(21): 3551–3554. 2527:10.1063/1.3013569 2405:(14): 1899–1902. 2252:10.1063/1.3143622 2174:10.1063/1.3006060 2038:10.1063/1.5050631 1876:(5733): 391–392. 1833:10.1063/1.3502547 1735:. Pergamon Press. 1680:10.1063/1.2836410 1139: 1112: 1059: 937: 878: 773: 712: 579:{\displaystyle H} 559:{\displaystyle E} 382: 331: 257: 206: 2850: 2823: 2822: 2804: 2788: 2782: 2781: 2755: 2735: 2729: 2728: 2719: 2713: 2712: 2703:(5): 1072–1080. 2690: 2684: 2683: 2645: 2639: 2638: 2612: 2590: 2584: 2583: 2557: 2537: 2531: 2530: 2500: 2494: 2493: 2447: 2441: 2440: 2414: 2394: 2388: 2387: 2353: 2351:cond-mat/0510692 2333: 2327: 2326: 2290: 2284: 2283: 2262: 2256: 2255: 2227: 2221: 2220: 2209:10.1038/nmat2189 2189:Nature Materials 2184: 2178: 2177: 2154:Appl. Phys. Lett 2149: 2143: 2142: 2131:10.1038/nmat1868 2111:Nature Materials 2108: 2099: 2093: 2092: 2064: 2058: 2057: 2012: 2006: 2005: 1971: 1951: 1945: 1944: 1916: 1910: 1909: 1862: 1853: 1852: 1810: 1801: 1795: 1794: 1784: 1775: 1766: 1765: 1755: 1746: 1737: 1736: 1728: 1717: 1714: 1708: 1705: 1699: 1698: 1696: 1690:. Archived from 1657: 1648: 1642: 1641: 1609: 1600: 1599: 1597: 1595: 1584: 1578: 1577: 1541: 1511:Piezoelectricity 1385: 1383: 1382: 1377: 1361: 1359: 1358: 1353: 1338: 1336: 1335: 1330: 1318: 1316: 1315: 1310: 1298: 1296: 1295: 1290: 1278: 1276: 1275: 1270: 1258: 1256: 1255: 1250: 1248: 1247: 1231: 1229: 1228: 1223: 1221: 1220: 1204: 1202: 1201: 1196: 1194: 1193: 1177: 1175: 1174: 1169: 1167: 1166: 1150: 1148: 1147: 1142: 1140: 1138: 1137: 1136: 1123: 1115: 1113: 1111: 1110: 1098: 1090: 1089: 1070: 1068: 1067: 1062: 1060: 1058: 1057: 1056: 1043: 1035: 1027: 1026: 1004: 1002: 1001: 996: 994: 984: 983: 974: 973: 964: 963: 954: 953: 938: 930: 925: 924: 915: 914: 905: 904: 895: 894: 879: 871: 866: 865: 856: 855: 846: 845: 826: 822: 821: 812: 811: 801: 796: 784: 783: 774: 766: 761: 760: 751: 750: 740: 735: 723: 722: 713: 705: 700: 699: 689: 684: 675: 674: 662: 661: 651: 646: 634: 633: 585: 583: 582: 577: 565: 563: 562: 557: 506: 504: 503: 498: 450: 448: 447: 442: 427: 425: 424: 419: 414: 413: 404: 403: 390: 378: 377: 367: 362: 350: 349: 339: 327: 326: 317: 316: 299: 297: 296: 291: 289: 288: 279: 278: 265: 253: 252: 242: 237: 225: 224: 214: 202: 201: 182: 180: 179: 174: 172: 171: 152: 150: 149: 144: 142: 141: 122: 120: 119: 114: 112: 111: 2858: 2857: 2853: 2852: 2851: 2849: 2848: 2847: 2828: 2827: 2826: 2790: 2789: 2785: 2737: 2736: 2732: 2721: 2720: 2716: 2696:Sov. Phys. JETP 2692: 2691: 2687: 2647: 2646: 2642: 2592: 2591: 2587: 2539: 2538: 2534: 2502: 2501: 2497: 2460:(6962): 55–58. 2449: 2448: 2444: 2396: 2395: 2391: 2338:Phys. Rev. Lett 2335: 2334: 2330: 2295:Eur. Phys. J. B 2292: 2291: 2287: 2274:(12): 673–675. 2264: 2263: 2259: 2229: 2228: 2224: 2186: 2185: 2181: 2151: 2150: 2146: 2106: 2101: 2100: 2096: 2066: 2065: 2061: 2014: 2013: 2009: 1953: 1952: 1948: 1918: 1917: 1913: 1864: 1863: 1856: 1808: 1803: 1802: 1798: 1787:Sov. Phys. JETP 1782: 1777: 1776: 1769: 1753: 1748: 1747: 1740: 1730: 1729: 1720: 1715: 1711: 1706: 1702: 1694: 1655: 1650: 1649: 1645: 1611: 1610: 1603: 1593: 1591: 1586: 1585: 1581: 1543: 1542: 1533: 1529: 1507: 1483:symmetry groups 1462: 1433: 1417: 1400: 1392: 1368: 1367: 1344: 1343: 1321: 1320: 1301: 1300: 1281: 1280: 1261: 1260: 1239: 1234: 1233: 1212: 1207: 1206: 1185: 1180: 1179: 1158: 1153: 1152: 1128: 1124: 1116: 1102: 1081: 1076: 1075: 1048: 1044: 1036: 1018: 1013: 1012: 992: 991: 975: 965: 955: 939: 916: 906: 896: 880: 857: 847: 834: 824: 823: 813: 803: 775: 752: 742: 714: 691: 666: 653: 625: 618: 591: 590: 568: 567: 548: 547: 536: 517: 513: 489: 488: 481:magnetic fields 433: 432: 405: 392: 369: 341: 318: 308: 303: 302: 280: 267: 244: 216: 193: 188: 187: 160: 155: 154: 133: 128: 127: 103: 98: 97: 87: 80: 76: 57:Evgeny Lifshitz 41:Wilhelm Röntgen 37: 26:magnetoelectric 22:Wilhelm Röntgen 12: 11: 5: 2856: 2854: 2846: 2845: 2840: 2830: 2829: 2825: 2824: 2783: 2746:(5): 616–619. 2730: 2714: 2685: 2640: 2585: 2548:(4): 329–331. 2532: 2513:(18): 182510. 2495: 2442: 2389: 2328: 2301:(3): 419–427. 2285: 2257: 2238:(21): 212504. 2222: 2195:(6): 425–426. 2179: 2144: 2117:(4): 256–257. 2094: 2075:(13): 134402. 2059: 2024:(17): 172902. 2007: 1962:(15): 157203. 1946: 1911: 1854: 1796: 1767: 1738: 1718: 1709: 1700: 1697:on 2020-04-12. 1643: 1601: 1579: 1530: 1528: 1525: 1524: 1523: 1518: 1513: 1506: 1503: 1461: 1458: 1449:magnetoelastic 1444:magnetoelastic 1437:magnetoelastic 1432: 1429: 1423:, also called 1416: 1413: 1399: 1396: 1391: 1388: 1375: 1351: 1328: 1308: 1288: 1268: 1246: 1242: 1219: 1215: 1192: 1188: 1165: 1161: 1135: 1131: 1127: 1122: 1119: 1109: 1105: 1101: 1096: 1093: 1088: 1084: 1055: 1051: 1047: 1042: 1039: 1033: 1030: 1025: 1021: 1006: 1005: 990: 987: 982: 978: 972: 968: 962: 958: 952: 949: 946: 942: 936: 933: 928: 923: 919: 913: 909: 903: 899: 893: 890: 887: 883: 877: 874: 869: 864: 860: 854: 850: 844: 841: 837: 833: 829: 827: 825: 820: 816: 810: 806: 800: 795: 792: 788: 782: 778: 772: 769: 764: 759: 755: 749: 745: 739: 734: 731: 727: 721: 717: 711: 708: 703: 698: 694: 688: 683: 679: 673: 669: 665: 660: 656: 650: 645: 641: 637: 632: 628: 624: 621: 619: 617: 614: 611: 608: 605: 602: 599: 598: 575: 555: 535: 532: 515: 511: 496: 440: 429: 428: 417: 412: 408: 402: 399: 395: 389: 385: 381: 376: 372: 366: 361: 358: 354: 348: 344: 338: 334: 330: 325: 321: 315: 311: 300: 287: 283: 277: 274: 270: 264: 260: 256: 251: 247: 241: 236: 233: 229: 223: 219: 213: 209: 205: 200: 196: 170: 167: 163: 140: 136: 110: 106: 86: 83: 78: 74: 36: 33: 13: 10: 9: 6: 4: 3: 2: 2855: 2844: 2841: 2839: 2836: 2835: 2833: 2820: 2816: 2812: 2808: 2803: 2798: 2794: 2787: 2784: 2779: 2775: 2771: 2767: 2763: 2759: 2754: 2749: 2745: 2741: 2734: 2731: 2726: 2718: 2715: 2710: 2706: 2702: 2698: 2697: 2689: 2686: 2681: 2677: 2673: 2669: 2665: 2661: 2657: 2653: 2652: 2644: 2641: 2636: 2632: 2628: 2624: 2620: 2616: 2611: 2606: 2602: 2598: 2597: 2589: 2586: 2581: 2577: 2573: 2569: 2565: 2561: 2556: 2551: 2547: 2543: 2536: 2533: 2528: 2524: 2520: 2516: 2512: 2508: 2507: 2499: 2496: 2491: 2487: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2455: 2454: 2446: 2443: 2438: 2434: 2430: 2426: 2422: 2418: 2413: 2408: 2404: 2400: 2393: 2390: 2385: 2381: 2377: 2373: 2369: 2365: 2361: 2357: 2352: 2347: 2344:(6): 067601. 2343: 2339: 2332: 2329: 2324: 2320: 2316: 2312: 2308: 2304: 2300: 2296: 2289: 2286: 2281: 2277: 2273: 2270: 2269: 2261: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2226: 2223: 2218: 2214: 2210: 2206: 2202: 2198: 2194: 2190: 2183: 2180: 2175: 2171: 2167: 2163: 2159: 2155: 2148: 2145: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2112: 2105: 2098: 2095: 2090: 2086: 2082: 2078: 2074: 2070: 2063: 2060: 2055: 2051: 2047: 2043: 2039: 2035: 2031: 2027: 2023: 2019: 2011: 2008: 2003: 1999: 1995: 1991: 1987: 1983: 1979: 1975: 1970: 1965: 1961: 1957: 1950: 1947: 1942: 1938: 1934: 1930: 1927:(167): 1087. 1926: 1922: 1915: 1912: 1907: 1903: 1899: 1895: 1891: 1887: 1883: 1879: 1875: 1871: 1867: 1861: 1859: 1855: 1850: 1846: 1842: 1838: 1834: 1830: 1826: 1822: 1818: 1814: 1813:Physics Today 1807: 1800: 1797: 1792: 1788: 1781: 1774: 1772: 1768: 1763: 1759: 1752: 1745: 1743: 1739: 1734: 1727: 1725: 1723: 1719: 1713: 1710: 1704: 1701: 1693: 1689: 1685: 1681: 1677: 1673: 1669: 1665: 1661: 1654: 1647: 1644: 1639: 1635: 1631: 1627: 1623: 1620:(in German). 1619: 1615: 1608: 1606: 1602: 1589: 1583: 1580: 1575: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1540: 1538: 1536: 1532: 1526: 1522: 1519: 1517: 1516:Multiferroics 1514: 1512: 1509: 1508: 1504: 1502: 1500: 1499:phenomenology 1496: 1492: 1488: 1487:magnetization 1484: 1478: 1476: 1472: 1471:hexoctahedral 1468: 1459: 1457: 1453: 1450: 1445: 1440: 1438: 1430: 1428: 1426: 1422: 1421:superexchange 1414: 1412: 1409: 1405: 1402:In crystals, 1397: 1395: 1389: 1387: 1373: 1365: 1349: 1340: 1326: 1306: 1286: 1266: 1244: 1240: 1217: 1213: 1190: 1186: 1163: 1159: 1133: 1129: 1120: 1107: 1103: 1099: 1094: 1091: 1086: 1082: 1074: 1073:magnetization 1053: 1049: 1040: 1031: 1028: 1023: 1019: 1011: 988: 985: 980: 976: 970: 966: 960: 956: 950: 947: 944: 940: 934: 931: 926: 921: 917: 911: 907: 901: 897: 891: 888: 885: 881: 875: 872: 867: 862: 858: 852: 848: 842: 839: 835: 831: 828: 818: 814: 808: 804: 798: 793: 790: 786: 780: 776: 770: 767: 762: 757: 753: 747: 743: 737: 732: 729: 725: 719: 715: 709: 706: 701: 696: 692: 686: 681: 677: 671: 667: 663: 658: 654: 648: 643: 639: 635: 630: 626: 622: 620: 612: 609: 606: 600: 589: 588: 587: 573: 553: 545: 541: 533: 531: 529: 528:piezoelectric 525: 521: 520:Multiferroics 508: 494: 486: 482: 478: 474: 470: 466: 465:magnetization 462: 458: 454: 438: 415: 410: 406: 400: 397: 393: 387: 383: 379: 374: 370: 364: 359: 356: 352: 346: 342: 336: 332: 328: 323: 319: 313: 309: 301: 285: 281: 275: 272: 268: 262: 258: 254: 249: 245: 239: 234: 231: 227: 221: 217: 211: 207: 203: 198: 194: 186: 185: 184: 168: 165: 161: 138: 134: 126: 108: 104: 96: 92: 84: 82: 72: 68: 64: 63: 58: 54: 50: 46: 42: 34: 32: 29: 27: 23: 19: 2792: 2786: 2743: 2739: 2733: 2724: 2717: 2700: 2694: 2688: 2658:(6): 67001. 2655: 2649: 2643: 2600: 2594: 2588: 2545: 2541: 2535: 2510: 2504: 2498: 2457: 2451: 2445: 2402: 2398: 2392: 2341: 2337: 2331: 2298: 2294: 2288: 2271: 2266: 2260: 2235: 2231: 2225: 2192: 2188: 2182: 2157: 2153: 2147: 2114: 2110: 2097: 2072: 2069:Phys. Rev. B 2068: 2062: 2021: 2017: 2010: 1959: 1955: 1949: 1924: 1920: 1914: 1873: 1869: 1816: 1812: 1799: 1790: 1786: 1761: 1757: 1732: 1712: 1703: 1692:the original 1663: 1659: 1646: 1621: 1617: 1592:. Retrieved 1582: 1549: 1545: 1493:. The total 1491:polarization 1479: 1475:domain walls 1463: 1454: 1441: 1434: 1424: 1418: 1401: 1393: 1341: 1007: 544:power series 537: 509: 472: 468: 460: 452: 430: 90: 88: 60: 45:Pierre Curie 38: 30: 25: 17: 15: 1624:(10): 264. 1552:(8): R123. 540:free energy 431:The tensor 49:Peter Debye 2832:Categories 2268:JETP Lett. 1819:(10): 38. 1618:Ann. Phys. 1527:References 53:Lev Landau 2802:1007.3531 2778:119111445 2753:1007.3524 2680:119672380 2635:118383876 2610:1211.2403 2580:122153369 2555:1001.0391 2490:205209892 2437:119225609 2412:1105.5300 2323:122234441 2054:125847351 2046:0003-6951 1969:0810.0552 1906:118513837 1890:0036-8075 1574:121588385 1374:β 1350:α 1327:γ 1307:γ 1287:β 1267:α 1241:χ 1214:χ 1126:∂ 1118:∂ 1104:μ 1095:− 1046:∂ 1038:∂ 1032:− 989:… 941:γ 927:− 882:β 868:− 836:α 832:− 787:χ 777:μ 763:− 726:χ 716:ϵ 702:− 668:μ 664:− 636:− 495:α 439:α 394:α 384:∑ 353:χ 343:μ 333:∑ 310:μ 269:α 259:∑ 228:χ 218:ϵ 208:∑ 162:α 135:χ 105:χ 2482:14603314 2384:36936649 2376:16606047 2217:18497843 2139:17351613 2002:27782114 1994:19518672 1898:16020720 1849:36755212 1688:51900508 1505:See also 1467:Lifshitz 1151:. Here, 1071:and the 485:SI units 477:electric 2807:Bibcode 2758:Bibcode 2705:Bibcode 2660:Bibcode 2615:Bibcode 2560:Bibcode 2515:Bibcode 2462:Bibcode 2417:Bibcode 2356:Bibcode 2303:Bibcode 2276:Bibcode 2240:Bibcode 2197:Bibcode 2162:Bibcode 2119:Bibcode 2077:Bibcode 2026:Bibcode 1974:Bibcode 1929:Bibcode 1870:Science 1821:Bibcode 1668:Bibcode 1626:Bibcode 1594:15 July 1554:Bibcode 1495:synergy 455:is the 35:History 2776:  2678:  2633:  2578:  2488:  2480:  2453:Nature 2435:  2382:  2374:  2321:  2215:  2137:  2052:  2044:  2000:  1992:  1904:  1896:  1888:  1847:  1793:: 708. 1764:: 881. 1686:  1572:  2797:arXiv 2774:S2CID 2748:arXiv 2676:S2CID 2631:S2CID 2605:arXiv 2576:S2CID 2550:arXiv 2486:S2CID 2433:S2CID 2407:arXiv 2380:S2CID 2346:arXiv 2319:S2CID 2107:(PDF) 2050:S2CID 1998:S2CID 1964:arXiv 1902:S2CID 1845:S2CID 1809:(PDF) 1783:(PDF) 1754:(PDF) 1695:(PDF) 1684:S2CID 1656:(PDF) 1570:S2CID 542:as a 483:. In 2478:PMID 2372:PMID 2213:PMID 2135:PMID 2042:ISSN 1990:PMID 1894:PMID 1886:ISSN 1596:2017 1299:and 1232:and 1178:and 566:and 479:and 475:the 471:and 463:the 123:and 55:and 2815:doi 2766:doi 2744:323 2668:doi 2651:EPL 2623:doi 2601:324 2568:doi 2523:doi 2470:doi 2458:426 2425:doi 2403:323 2364:doi 2311:doi 2248:doi 2205:doi 2170:doi 2127:doi 2085:doi 2034:doi 2022:113 1982:doi 1960:102 1937:doi 1878:doi 1874:309 1837:hdl 1829:doi 1676:doi 1664:103 1634:doi 1562:doi 73:(Cr 59:'s 2834:: 2813:. 2805:. 2772:. 2764:. 2756:. 2742:. 2701:60 2699:. 2674:. 2666:. 2656:83 2654:. 2629:. 2621:. 2613:. 2599:. 2574:. 2566:. 2558:. 2546:65 2544:. 2521:. 2511:93 2509:. 2484:. 2476:. 2468:. 2456:. 2431:. 2423:. 2415:. 2401:. 2378:. 2370:. 2362:. 2354:. 2342:96 2340:. 2317:. 2309:. 2299:71 2297:. 2272:37 2246:. 2236:94 2234:. 2211:. 2203:. 2191:. 2168:. 2158:93 2156:. 2133:. 2125:. 2113:. 2109:. 2083:. 2073:65 2071:. 2048:. 2040:. 2032:. 2020:. 1996:. 1988:. 1980:. 1972:. 1958:. 1935:. 1925:20 1923:. 1900:. 1892:. 1884:. 1872:. 1857:^ 1843:. 1835:. 1827:. 1817:63 1815:. 1811:. 1791:11 1789:. 1785:. 1770:^ 1762:37 1760:. 1756:. 1741:^ 1721:^ 1682:. 1674:. 1662:. 1658:. 1632:. 1622:35 1616:. 1604:^ 1568:. 1560:. 1550:38 1548:. 1534:^ 586:: 487:, 467:, 459:, 28:. 2821:. 2817:: 2809:: 2799:: 2780:. 2768:: 2760:: 2750:: 2711:. 2707:: 2682:. 2670:: 2662:: 2637:. 2625:: 2617:: 2607:: 2582:. 2570:: 2562:: 2552:: 2529:. 2525:: 2517:: 2492:. 2472:: 2464:: 2439:. 2427:: 2419:: 2409:: 2386:. 2366:: 2358:: 2348:: 2325:. 2313:: 2305:: 2282:. 2278:: 2254:. 2250:: 2242:: 2219:. 2207:: 2199:: 2193:7 2176:. 2172:: 2164:: 2141:. 2129:: 2121:: 2115:6 2091:. 2087:: 2079:: 2056:. 2036:: 2028:: 2004:. 1984:: 1976:: 1966:: 1943:. 1939:: 1931:: 1908:. 1880:: 1851:. 1839:: 1831:: 1823:: 1678:: 1670:: 1640:. 1636:: 1628:: 1598:. 1576:. 1564:: 1556:: 1245:v 1218:e 1191:s 1187:M 1164:s 1160:P 1134:i 1130:H 1121:F 1108:0 1100:1 1092:= 1087:i 1083:M 1054:i 1050:E 1041:F 1029:= 1024:i 1020:P 986:+ 981:k 977:E 971:j 967:E 961:i 957:H 951:k 948:j 945:i 935:2 932:1 922:k 918:H 912:j 908:H 902:i 898:E 892:k 889:j 886:i 876:2 873:1 863:j 859:H 853:i 849:E 843:j 840:i 819:j 815:H 809:i 805:H 799:v 794:j 791:i 781:0 771:2 768:1 758:j 754:E 748:i 744:E 738:e 733:j 730:i 720:0 710:2 707:1 697:i 693:H 687:s 682:i 678:M 672:0 659:i 655:E 649:s 644:i 640:P 631:0 627:F 623:= 616:) 613:H 610:, 607:E 604:( 601:F 574:H 554:E 516:3 514:O 512:2 473:H 469:E 461:M 453:P 416:, 411:j 407:E 401:j 398:i 388:j 380:+ 375:j 371:H 365:v 360:j 357:i 347:0 337:j 329:= 324:i 320:M 314:0 286:j 282:H 276:j 273:i 263:j 255:+ 250:j 246:E 240:e 235:j 232:i 222:0 212:j 204:= 199:i 195:P 169:j 166:i 139:v 109:e 79:3 77:O 75:2

Index

Wilhelm Röntgen
Wilhelm Röntgen
Pierre Curie
Peter Debye
Lev Landau
Evgeny Lifshitz
Course of Theoretical Physics
Igor Dzyaloshinskii
chromium(III) oxide
electric susceptibility
magnetic susceptibility
electric polarization
magnetization
electric
magnetic fields
SI units
Multiferroics
Composite materials
piezoelectric
free energy
power series
electric polarization
magnetization
time-reversal symmetry
spin–orbit coupling
magnetocrystalline anisotropy
superexchange
magnetoelastic
magnetoelastic
magnetoelastic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑