Knowledge (XXG)

Nucleic acid double helix

Source 📝

821:. It has three significant degrees of freedom; bending, twisting, and compression, each of which cause certain limits on what is possible with DNA within a cell. Twisting-torsional stiffness is important for the circularisation of DNA and the orientation of DNA bound proteins relative to each other and bending-axial stiffness is important for DNA wrapping and circularisation and protein interactions. Compression-extension is relatively unimportant in the absence of high tension. 1814: 551: 749: 841: 312: 543: 527:-DNA), P-DNA, S-DNA, Z-DNA, etc. have been described so far. In fact, only the letters F, Q, U, V, and Y are now available to describe any new DNA structure that may appear in the future. However, most of these forms have been created synthetically and have not been observed in naturally occurring biological systems. There are also 764:. As the strands are not directly opposite each other, the grooves are unequally sized. One groove, the major groove, is 22 Å wide and the other, the minor groove, is 12 Å wide. The narrowness of the minor groove means that the edges of the bases are more accessible in the major groove. As a result, proteins like 429:"Tilt" has often been used differently in the scientific literature, referring to the deviation of the first, inter-strand base-pair axis from perpendicularity to the helix axis. This corresponds to slide between a succession of base pairs, and in helix-based coordinates is properly termed "inclination". 971:
DNA in solution does not take a rigid structure but is continually changing conformation due to thermal vibration and collisions with water molecules, which makes classical measures of rigidity impossible to apply. Hence, the bending stiffness of DNA is measured by the persistence length, defined as:
3570:
However, the discovery of topoisomerases took "the sting" out of the topological objection to the plectonaemic double helix. The more recent solution of the single crystal X-ray structure of the nucleosome core particle showed nearly 150 base pairs of the DNA (i.e., about 15 complete turns), with a
1915:
Any change of T in a closed topological domain must be balanced by a change in W, and vice versa. This results in higher order structure of DNA. A circular DNA molecule with a writhe of 0 will be circular. If the twist of this molecule is subsequently increased or decreased by supercoiling then the
1794:
Periodic fracture of the base-pair stack with a break occurring once per three bp (therefore one out of every three bp-bp steps) has been proposed as a regular structure which preserves planarity of the base-stacking and releases the appropriate amount of extension, with the term "Σ-DNA" introduced
1710:
DNA circularization depends on both the axial (bending) stiffness and torsional (rotational) stiffness of the molecule. For a DNA molecule to successfully circularize it must be long enough to easily bend into the full circle and must have the correct number of bases so the ends are in the correct
987:
to directly image DNA molecules of various lengths. In an aqueous solution, the average persistence length has been found to be of around 50 nm (or 150 base pairs). More broadly, it has been observed to be between 45 and 60 nm or 132–176 base pairs (the diameter of DNA is 2 nm) This
977:
Bending flexibility of a polymer is conventionally quantified in terms of its persistence length, Lp, a length scale below which the polymer behaves more or less like a rigid rod. Specifically, Lp is defined as length of the polymer segment over which the time-averaged orientation of the polymer
1854:
In considering supercoils formed by closed double-stranded molecules of DNA certain mathematical concepts, such as the linking number and the twist, are needed. The meaning of these for a closed ribbon is explained and also that of the writhing number of a closed curve. Some simple examples are
319:
The geometry of a base, or base pair step can be characterized by 6 coordinates: shift, slide, rise, tilt, roll, and twist. These values precisely define the location and orientation in space of every base or base pair in a nucleic acid molecule relative to its predecessor along the axis of the
40: 1194:
Preferred DNA bend direction is determined by the stability of stacking each base on top of the next. If unstable base stacking steps are always found on one side of the DNA helix then the DNA will preferentially bend away from that direction. As bend angle increases then steric hindrances and
1790:
Proposed S-DNA structures include those which preserve base-pair stacking and hydrogen bonding (GC-rich), while releasing extension by tilting, as well as structures in which partial melting of the base-stack takes place, while base-base association is nonetheless overall preserved (AT-rich).
1843:
in prokaryotes) which are topologically closed, or as very long molecules whose diffusion coefficients produce effectively topologically closed domains. Linear sections of DNA are also commonly bound to proteins or physical structures (such as membranes) to form closed topological loops.
1821:
The B form of the DNA helix twists 360° per 10.4-10.5 bp in the absence of torsional strain. But many molecular biological processes can induce torsional strain. A DNA segment with excess or insufficient helical twisting is referred to, respectively, as positively or negatively
425:
Rise and twist determine the handedness and pitch of the helix. The other coordinates, by contrast, can be zero. Slide and shift are typically small in B-DNA, but are substantial in A- and Z-DNA. Roll and tilt make successive base pairs less parallel, and are typically small.
1711:
rotation to allow bonding to occur. The optimum length for circularization of DNA is around 400 base pairs (136 nm), with an integral number of turns of the DNA helix, i.e., multiples of 10.4 base pairs. Having a non integral number of turns presents a significant
1744:
reasons, more compact relaxed states are thermally accessible than stretched out states, and so DNA molecules are almost universally found in a tangled relaxed layouts. For this reason, one molecule of DNA will stretch under a force, straightening it out. Using
287:(PCR), is simple, providing the molecules have fewer than about 10,000 base pairs (10 kilobase pairs, or 10 kbp). The intertwining of the DNA strands makes long segments difficult to separate. The cell avoids this problem by allowing its DNA-melting enzymes ( 1697:
The intrinsically bent structure is induced by the 'propeller twist' of base pairs relative to each other allowing unusual bifurcated Hydrogen-bonds between base steps. At higher temperatures this structure is denatured, and so the intrinsic bend is lost.
1927:. These enzymes are dedicated to un-knotting circular DNA by cleaving one or both strands so that another double or single stranded segment can pass through. This un-knotting is required for the replication of circular DNA and various types of 1872:= twist - total number of turns in the double stranded DNA helix. This will normally tend to approach the number of turns that a topologically open double stranded DNA helix makes free in solution: number of bases/10.5, assuming there are no 1787:. These structures have not yet been definitively characterised due to the difficulty of carrying out atomic-resolution imaging in solution while under applied force although many computer simulation studies have been made (for example,). 480:
A-DNA and Z-DNA differ significantly in their geometry and dimensions to B-DNA, although still form helical structures. It was long thought that the A form only occurs in dehydrated samples of DNA in the laboratory, such as those used in
3571:
structure that is in all essential respects the same as the Watson–Crick model. This dealt a death blow to the idea that other forms of DNA, particularly double helical DNA, exist as anything other than local or transient structures.
245:
binding to form a double helix. Melting is the process by which the interactions between the strands of the double helix are broken, separating the two nucleic acid strands. These bonds are weak, easily separated by gentle heating,
1939:
For many years, the origin of residual supercoiling in eukaryotic genomes remained unclear. This topological puzzle was referred to by some as the "linking number paradox". However, when experimentally determined structures of the
1795:
as a mnemonic, with the three right-facing points of the Sigma character serving as a reminder of the three grouped base pairs. The Σ form has been shown to have a sequence preference for GNC motifs which are believed under the
219:
by which genetic information is stored and copied in living organisms and is widely considered one of the most important scientific discoveries of the 20th century. Crick, Wilkins, and Watson each received one-third of the 1962
1718:
The bending of short circularized DNA segments is non-uniform. Rather, for circularized DNA segments less than the persistence length, DNA bending is localised to 1-2 kinks that form preferentially in AT-rich segments. If a
1701:
All DNA which bends anisotropically has, on average, a longer persistence length and greater axial stiffness. This increased rigidity is required to prevent random bending which would make the molecule act isotropically.
991:
The persistence length of a section of DNA is somewhat dependent on its sequence, and this can cause significant variation. The variation is largely due to base stacking energies and the residues which extend into the
501:
for regulatory purposes may adopt the Z geometry, in which the strands turn about the helical axis the opposite way to A-DNA and B-DNA. There is also evidence of protein-DNA complexes forming Z-DNA structures.
1923:. This means the single strands cannot be separated any process that does not involve breaking a strand (such as heating). The task of un-knotting topologically linked strands of DNA falls to enzymes termed 768:
that can bind to specific sequences in double-stranded DNA usually make contacts to the sides of the bases exposed in the major groove. This situation varies in unusual conformations of DNA within the cell
2830: 140:. In B-DNA the major groove is wider than the minor groove. Given the difference in widths of the major groove and minor groove, many proteins which bind to B-DNA do so through the wider major groove. 3988:
Konrad MW, Bolonick JW (1996). "Molecular dynamics simulation of DNA stretching is consistent with the tension observed for extension and strand separation and predicts a novel ladder structure".
760:
Twin helical strands form the DNA backbone. Another double helix may be found by tracing the spaces, or grooves, between the strands. These voids are adjacent to the base pairs and may provide a
1203:
residues will be preferentially be found in the minor grooves on the inside of bends. This effect is particularly seen in DNA-protein binding where tight DNA bending is induced, such as in
2958:
Olson WK, Bansal M, Burley SK, Dickerson RE, Gerstein M, Harvey SC, et al. (October 2001). "A standard reference frame for the description of nucleic acid base-pair geometry".
1783:
Evidence from mechanical stretching of DNA in the absence of imposed torque points to a transition or transitions leading to further structures which are generally referred to as
132:, the most common double helical structure found in nature, the double helix is right-handed with about 10–10.5 base pairs per turn. The double helix structure of DNA contains a 1191:
bending. This is, again, due to the properties of the bases which make up the DNA sequence - a random sequence will have no preferred bend direction, i.e., isotropic bending.
1736:
Longer stretches of DNA are entropically elastic under tension. When DNA is in solution, it undergoes continuous structural variations due to the energy available in the
4299:
Davey CA, Sargent DF, Luger K, Maeder AW, Richmond TJ (June 2002). "Solvent mediated interactions in the structure of the nucleosome core particle at 1.9 a resolution".
1850:
was one of the first to propose the importance of linking numbers when considering DNA supercoils. In a paper published in 1976, Crick outlined the problem as follows:
4351: 1176:) forces. For DNA segments less than the persistence length, the bending force is approximately constant and behaviour deviates from the worm-like chain predictions. 1961: 1866:= linking number - the number of times one DNA strand wraps around the other. It is an integer for a closed loop and constant for a closed topological domain. 773:, but the major and minor grooves are always named to reflect the differences in size that would be seen if the DNA is twisted back into the ordinary B form. 4093:"DNA partitions into triplets under tension in the presence of organic cations, with sequence evolutionary age predicting the stability of the triplet phase" 1715:
for circularization, for example a 10.4 x 30 = 312 base pair molecule will circularize hundreds of times faster than 10.4 x 30.5 ≈ 317 base pair molecule.
862: 469:
of sequence. The double helix makes one complete turn about its axis every 10.4–10.5 base pairs in solution. This frequency of twist (termed the helical
4248:
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ (September 1997). "Crystal structure of the nucleosome core particle at 2.8 A resolution".
2808: 988:
can vary significantly due to variations in temperature, aqueous solution conditions and DNA length. This makes DNA a moderately stiff molecule.
3410:
Wing R, Drew H, Takano T, Broka C, Tanaka S, Itakura K, et al. (October 1980). "Crystal structure analysis of a complete turn of B-DNA".
3044:
Vargason JM, Eichman BF, Ho PS (September 2000). "The extended and eccentric E-DNA structure induced by cytosine methylation or bromination".
2085: 221: 3657:"The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force" 3191: 4449: 4344: 1981: 1179:
This effect results in unusual ease in circularising small DNA molecules and a higher probability of finding highly bent sections of DNA.
1772:
with the bases splaying outwards and the phosphates moving to the middle. This proposed structure for overstretched DNA has been called
782: 239: 44: 2016: 4454: 4444: 3478: 3311: 888: 1740:
of the solvent. This is due to the thermal vibration of the molecule combined with continual collisions with water molecules. For
4434: 80: 4439: 4337: 506: 84: 1817:
Supercoiled structure of circular DNA molecules with low writhe. The helical aspect of the DNA duplex is omitted for clarity.
866: 3807:
Protozanova E, Yakovchuk P, Frank-Kamenetskii MD (September 2004). "Stacked-unstacked equilibrium at the nick site of DNA".
365:: displacement along an axis in the base-pair plane perpendicular to the first, directed from the minor to the major groove. 1737: 797:. However, the models were set aside in favor of the double-helical model due to subsequent experimental advances such as 31: 4401: 4391: 1873: 149: 1233:
rich sections which keep the A and T residues in phase with the minor groove on one side of the molecule. For example:
4551: 4464: 4381: 327:
For each base pair, considered relative to its predecessor, there are the following base pair geometries to consider:
233: 204:—who had already accurately characterised the conformation of protein secondary structure motifs—and his collaborator 851: 2198:
Watson JD, Crick FH (April 1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid".
1832:
is typically negatively supercoiled, which facilitates the unwinding (melting) of the double-helix required for RNA
4386: 295:, which can chemically cleave the phosphate backbone of one of the strands so that it can swivel around the other. 870: 855: 4376: 3882:"Identifying Physical Causes of Apparent Enhanced Cyclization of Short DNA Molecules with a Coarse-Grained Model" 284: 2030:
Cobb M, Comfort N (April 2023). "What Rosalind Franklin truly contributed to the discovery of DNA's structure".
1916:
writhe will be appropriately altered, making the molecule undergo plectonemic or toroidal superhelical coiling.
1833: 802: 2603:
Chargaff E (June 1950). "Chemical specificity of nucleic acids and mechanism of their enzymatic degradation".
1919:
When the ends of a piece of double stranded helical DNA are joined so that it forms a circle the strands are
320:
helix. Together, they characterize the helical structure of the molecule. In regions of DNA or RNA where the
3842:
Shimada J, Yamakawa H (1984). "Ring-Closure Probabilities for Twisted Wormlike Chains. Application to DNA".
2779: 1976: 1210:
DNA molecules with exceptional bending preference can become intrinsically bent. This was first observed in
984: 4050:
Bosaeus N, Reymer A, Beke-Somfai T, Brown T, Takahashi M, Wittung-Stafshede P, et al. (January 2017).
4015:
Roe DR, Chaka AM (November 2009). "Structural basis of pathway-dependent force profiles in stretched DNA".
4421: 4411: 4360: 4193:"A topological approach to nucleosome structure and dynamics: the linking number paradox and other issues" 2923:
Lu XJ, Olson WK (January 1999). "Resolving the discrepancies among nucleic acid conformational analyses".
474: 809:. Also, the non-double-helical models are not currently accepted by the mainstream scientific community. 4429: 1928: 798: 1839:
Within the cell most DNA is topologically restricted. DNA is typically found in closed loops (such as
1195:
ability to roll the residues relative to each other also play a role, especially in the minor groove.
4257: 4204: 4145: 3944: 3851: 3606: 3419: 3340: 3144: 3002: 2732: 2659: 2376: 2339: 2258: 2207: 2114: 2039: 765: 2367:
Wilkins MH, Stokes AR, Wilson HR (April 1953). "Molecular structure of deoxypentose nucleic acids".
4546: 4490: 4459: 1992: 528: 209: 39: 4281: 3970: 3596: 3527: 3484: 3443: 3199: 3069: 3026: 2628: 2543:
Chargaff E (July 1951). "Some recent studies on the composition and structure of nucleic acids".
2443: 2418:
Elson D, Chargaff E (April 1952). "On the desoxyribonucleic acid content of sea urchin gametes".
2400: 2231: 1966: 1150: 830: 371:: displacement along an axis in the plane of the base pair directed from one strand to the other. 47:
regions of nucleic acid molecules will bind and form a double helical structure held together by
215:
The realization that the structure of DNA is that of a double-helix elucidated the mechanism of
473:) depends largely on stacking forces that each base exerts on its neighbours in the chain. The 4396: 4368: 4316: 4273: 4230: 4173: 4114: 4073: 4032: 3962: 3913: 3824: 3789: 3740: 3686: 3634: 3519: 3474: 3435: 3368: 3307: 3284: 3249: 3172: 3110: 3061: 3018: 2975: 2940: 2905: 2760: 2687: 2620: 2585: 2525: 2484: 2435: 2392: 2308: 2223: 2180: 2142: 2081: 2055: 1712: 173: 103:, while the term "double helix" entered popular culture with the 1968 publication of Watson's 88: 56: 4556: 4515: 4308: 4265: 4220: 4212: 4163: 4153: 4104: 4063: 4024: 3997: 3952: 3903: 3893: 3859: 3816: 3779: 3771: 3730: 3720: 3709:"Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA" 3676: 3668: 3624: 3614: 3511: 3466: 3427: 3358: 3348: 3276: 3241: 3162: 3152: 3100: 3053: 3010: 2967: 2932: 2895: 2887: 2750: 2740: 2677: 2667: 2612: 2575: 2515: 2474: 2427: 2384: 2347: 2298: 2266: 2215: 2172: 2132: 2122: 2047: 1877: 1769: 1746: 324:
structure is disrupted, the change in these values can be used to describe such disruption.
250:, or mechanical force. Melting occurs preferentially at certain points in the nucleic acid. 160: 105: 1813: 3546: 1757: 1750: 1165: 1161: 1154: 818: 786: 482: 280:
at the start of many genes to assist RNA polymerase in melting the DNA for transcription.
185: 177: 92: 4261: 4208: 4149: 3948: 3855: 3610: 3423: 3386: 3344: 3280: 3148: 3006: 2736: 2663: 2380: 2343: 2262: 2211: 2176: 2118: 2043: 1886:= writhe - number of turns of the double stranded DNA helix around the superhelical axis 4485: 4406: 4225: 4192: 3908: 3881: 3784: 3759: 3735: 3708: 3681: 3656: 3629: 3584: 3470: 2682: 2647: 1987: 1796: 1169: 462: 300: 197: 193: 4312: 4216: 4168: 4133: 3267:
Rich A, Nordheim A, Wang AH (1984). "The chemistry and biology of left-handed Z-DNA".
2900: 2875: 2755: 2720: 2580: 2563: 2520: 2503: 2479: 2462: 2137: 2102: 748: 550: 4535: 3488: 3363: 3328: 3167: 3132: 3030: 2816: 1924: 1847: 1808: 1777: 1173: 806: 753: 477:
of the bases determines the direction of the helical curve for a given conformation.
458: 292: 201: 169: 100: 3974: 3531: 2447: 4541: 4500: 4285: 3502:
Stokes TD (May 1982). "The double helix and the warped zipper--an exemplary tale".
3447: 3073: 2632: 2404: 2235: 1971: 997: 993: 761: 532: 454: 266:
rich regions. Some base steps (pairs) are also susceptible to DNA melting, such as
205: 165: 117: 96: 68: 3461:
Neidle S, Sanderson M (2022). "DNA structure as observed in fibres and crystals".
2993:
Richmond TJ, Davey CA (May 2003). "The structure of DNA in the nucleosome core".
2012: 785:
were briefly considered in the late 1970s as a potential solution to problems in
299:
unwind the strands to facilitate the advance of sequence-reading enzymes such as
3672: 2705: 1920: 1214: 1211: 1188: 840: 710: 498: 311: 189: 4138:
Proceedings of the National Academy of Sciences of the United States of America
3707:
Mohammed Khalid AA, Parisse P, Medagli B, Onesti S, Casalis L (February 2021).
3515: 3333:
Proceedings of the National Academy of Sciences of the United States of America
3137:
Proceedings of the National Academy of Sciences of the United States of America
3133:"Stretched and overwound DNA forms a Pauling-like structure with exposed bases" 2856: 2725:
Proceedings of the National Academy of Sciences of the United States of America
2652:
Proceedings of the National Academy of Sciences of the United States of America
2352: 2327: 2107:
Proceedings of the National Academy of Sciences of the United States of America
2051: 1749:, the entropic stretching behavior of DNA has been studied and analyzed from a 542: 4495: 4109: 4092: 4068: 4051: 3957: 3932: 3820: 3245: 1941: 1720: 1204: 520: 121: 113: 3898: 3157: 2463:"Composition of the desoxypentose nucleic acids of four genera of sea-urchin" 106:
The Double Helix: A Personal Account of the Discovery of the Structure of DNA
3619: 3353: 3232:
Ghosh A, Bansal M (April 2003). "A glossary of DNA structures from A to Z".
3213:
Bansal M (2003). "DNA structure: Revisiting the Watson-Crick double helix".
3105: 3088: 2891: 2745: 1824: 794: 652: 466: 242: 216: 125: 64: 48: 17: 4320: 4158: 4118: 4077: 4036: 3966: 3917: 3828: 3793: 3744: 3690: 3638: 3523: 3253: 3114: 3065: 3022: 2979: 2971: 2936: 2691: 2624: 2589: 2529: 2488: 2439: 2396: 2312: 2271: 2250: 2227: 2059: 752:
Major and minor grooves of DNA. Minor groove is a binding site for the dye
4277: 4234: 4177: 3439: 3372: 3288: 3176: 2944: 2909: 2764: 2184: 2127: 1768:
Under sufficient tension and positive torque, DNA is thought to undergo a
274:. These mechanical features are reflected by the use of sequences such as 4329: 3329:"The non-B-DNA structure of d(CA/TG)n does not differ from that of Z-DNA" 2672: 2562:
Magasanik B, Vischer E, Doniger R, Elson D, Chargaff E (September 1950).
2146: 1153:, the entropic flexibility of DNA is remarkably consistent with standard 296: 288: 276: 181: 3863: 3775: 3014: 4480: 3725: 2616: 2564:"The separation and estimation of ribonucleotides in minute quantities" 2431: 1945: 1840: 1741: 790: 536: 490: 354:: rotation of one base with respect to the other in the same base pair. 4028: 4001: 3880:
Harrison RM, Romano F, Ouldridge TE, Louis AA, Doye JP (August 2019).
3585:"Strongly Bent Double-Stranded DNA: Reconciling Theory and Experiment" 3431: 2388: 2219: 1753:
perspective, and it has been found that DNA behaves largely like the
437:
At least three DNA conformations are believed to be found in nature,
247: 2835:
CH450 and CH451: Biochemistry – Defining Life at the Molecular Level
2303: 2286: 1855:
given, some of which may be relevant to the structure of chromatin.
3601: 2876:"Definitions and nomenclature of nucleic acid structure components" 2855:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002).
2076:
Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (1994).
79:
structure of a nucleic acid complex arises as a consequence of its
4269: 3057: 1812: 747: 549: 541: 512: 494: 446: 438: 310: 180:, who took the crucial X-ray diffraction image of DNA labeled as " 129: 76: 2787: 1217:
DNA. Typical sequences which cause this contain stretches of 4-6
3131:
Allemand JF, Bensimon D, Lavery R, Croquette V (November 1998).
2328:"The forgotten scientists who paved the way to the double helix" 4333: 1168:
model is the observation that bending DNA is also described by
4510: 4505: 2504:"The composition of the deoxyribonucleic acid of salmon sperm" 1187:
DNA molecules often have a preferred direction to bend, i.e.,
834: 486: 155: 72: 3234:
Acta Crystallographica. Section D, Biological Crystallography
1944:
displayed an over-twisted left-handed wrap of DNA around the
3760:"Packaging the genome: the structure of mitotic chromosomes" 3583:
Drozdetski AV, Mukhopadhyay A, Onufriev AV (November 2019).
2502:
Chargaff E, Lipshitz R, Green C, Hodes ME (September 1951).
1780:
who originally presented it as a possible structure of DNA.
817:
DNA is a relatively rigid polymer, typically modelled as a
196:, and base-pairing chemical and biochemical information by 1931:
in linear DNA which have similar topological constraints.
172:
in 1953, (X,Y,Z coordinates in 1954) based on the work of
4091:
Taghavi A, van der Schoot P, Berryman JT (January 2017).
4052:"A stretched conformation of DNA with a biological role?" 1952:
was considered to be solved by the scientific community.
2721:"Predicting DNA duplex stability from the base sequence" 2719:
Breslauer KJ, Frank R, Blöcker H, Marky LA (June 1986).
1723:
is present, bending will be localised to the nick site.
902:
Example sequences and their persistence lengths (B DNA)
1880:) or other elements modifying the stiffness of the DNA. 2251:"The Complementary Structure of Deoxyribonucleic Acid" 1760:
model under physiologically accessible energy scales.
1007: 900: 2163:
Pabo CO, Sauer RT (1984). "Protein-DNA recognition".
3933:"DNA dynamics: bubble 'n' flip for DNA cyclisation?" 559:
Structural features of the three major forms of DNA
83:, and is a fundamental component in determining its 4473: 4420: 4367: 3198:. New Brunswick: Rutgers University. Archived from 30:"Double helix" redirects here. For other uses, see 3547:"Response to 'Variety in DNA secondary structure'" 208:had posited, erroneously, that DNA would adopt a 2780:"DNA melting temperature - How to calculate it?" 511:Other conformations are possible; A-DNA, B-DNA, 461:is believed to predominate in cells. It is 23.7 283:Strand separation by gentle heating, as used in 3875: 3873: 3126: 3124: 974: 495:A-DNA is now known to have biological functions 485:experiments, and in hybrid pairings of DNA and 2545:Journal of Cellular and Comparative Physiology 2461:Chargaff E, Lipshitz R, Green C (March 1952). 1962:Comparison of nucleic acid simulation software 4345: 3306:(1st ed.). Academic Press. p. 398. 983:This value may be directly measured using an 158:structure was first published in the journal 27:Structure formed by double-stranded molecules 8: 3196:Department of Chemistry and Chemical Biology 2648:"A Proposed Structure For The Nucleic Acids" 1859:Analysis of DNA topology uses three values: 1207:particles. See base step distortions above. 421:: the height per complete turn of the helix. 2706:"Nobel Prize - List of All Nobel Laureates" 2080:(3rd ed.). New York: Garland Science. 869:. Unsourced material may be challenged and 4352: 4338: 4330: 3886:Journal of Chemical Theory and Computation 3087:Hayashi G, Hagihara M, Nakatani K (2005). 2819:: Bio-Rad Laboratories. 2016. p. 104. 2255:Proceedings of the Royal Society of London 2158: 2156: 224:for their contributions to the discovery. 4224: 4167: 4157: 4108: 4067: 3956: 3907: 3897: 3783: 3734: 3724: 3680: 3628: 3618: 3600: 3362: 3352: 3166: 3156: 3104: 3089:"Application of L-DNA as a molecular tag" 2899: 2809:"Chromosome 16: PV92 PCR Informatics Kit" 2754: 2744: 2681: 2671: 2579: 2519: 2478: 2351: 2302: 2270: 2136: 2126: 2071: 2069: 1009:Stacking stability of base steps (B DNA) 889:Learn how and when to remove this message 258:rich regions are more easily melted than 3990:Journal of the American Chemical Society 2831:"Chapter 9: DNA Replication – Chemistry" 557: 489:strands, but DNA dehydration does occur 38: 2003: 531:forms and quadruplex forms such as the 3758:Maeshima K, Eltsov M (February 2008). 3702: 3700: 3650: 3648: 2646:Pauling L, Corey RB (February 1953). 222:Nobel Prize in Physiology or Medicine 7: 3463:Principles of Nucleic Acid Structure 1982:Molecular structure of Nucleic Acids 867:adding citations to reliable sources 554:The helix axis of A-, B-, and Z-DNA. 546:The structures of A-, B-, and Z-DNA. 377:: displacement along the helix axis. 4017:The Journal of Physical Chemistry B 3281:10.1146/annurev.bi.53.070184.004043 2568:The Journal of Biological Chemistry 2508:The Journal of Biological Chemistry 2467:The Journal of Biological Chemistry 2177:10.1146/annurev.bi.53.070184.001453 2103:"Helical repeat of DNA in solution" 825:Persistence length, axial stiffness 3471:10.1016/B978-0-12-819677-9.00007-X 2017:The Wolfram Demonstrations Project 1799:to be of evolutionary importance. 1764:Phase transitions under stretching 497:. Segments of DNA that cells have 87:. The structure was discovered by 63:refers to the structure formed by 25: 4134:"Linking numbers and nucleosomes" 2078:The Molecular Biology of the Cell 1149:At length-scales larger than the 389:: rotation around the slide axis. 383:: rotation around the shift axis. 839: 395:: rotation around the rise axis. 238:Hybridization is the process of 4097:Quarterly Reviews of Biophysics 4056:Quarterly Reviews of Biophysics 2257:. 223, Series A (1152): 80–96. 507:Nucleic acid tertiary structure 3093:Nucleic Acids Symposium Series 2786:. owczarzy.net. Archived from 2784:High-throughput DNA biophysics 801:of DNA duplexes and later the 1: 4313:10.1016/S0022-2836(02)00386-8 4217:10.1016/S0006-3495(98)77961-5 3465:. Elsevier. pp. 53–108. 3269:Annual Review of Biochemistry 3192:"List of 55 fiber structures" 2861:Molecular Biology of the Cell 2581:10.1016/S0021-9258(18)56284-0 2521:10.1016/S0021-9258(18)55924-X 2480:10.1016/S0021-9258(19)50884-5 2165:Annual Review of Biochemistry 465:wide and extends 34 Å per 10 32:Double helix (disambiguation) 4301:Journal of Molecular Biology 3809:Journal of Molecular Biology 3655:Manning GS (November 2006). 2960:Journal of Molecular Biology 2925:Journal of Molecular Biology 2857:"DNA Replication Mechanisms" 720: 717: 714: 702: 699: 696: 586: 583: 580: 291:) to work concurrently with 210:triple-stranded conformation 150:History of molecular biology 3673:10.1529/biophysj.106.089029 2874:Dickerson RE (March 1989). 2837:. Western Oregon University 2249:Crick F, Watson JD (1954). 1164:model. Consistent with the 1142: 1132: 1118: 1104: 1090: 1080: 1066: 1052: 1042: 1028: 964: 949: 934: 919: 736: 733: 730: 688: 685: 682: 674: 671: 668: 660: 657: 650: 642: 639: 636: 628: 625: 622: 614: 611: 608: 600: 597: 594: 234:Nucleic acid thermodynamics 4573: 3516:10.1177/030631282012002002 3304:DNA structure and function 2353:10.1038/d41586-019-01176-9 2052:10.1038/d41586-023-01313-5 1935:The linking number paradox 1806: 828: 504: 231: 228:Nucleic acid hybridization 154:The double-helix model of 147: 29: 4521:Nucleic acid double helix 4110:10.1017/S0033583517000130 4069:10.1017/S0033583517000099 3958:10.1016/j.cub.2005.05.007 3821:10.1016/j.jmb.2004.07.075 3545:Gautham N (25 May 2004). 3504:Social Studies of Science 3246:10.1107/S0907444903003251 3046:Nature Structural Biology 2778:Owczarzy R (2008-08-28). 2297:(7445): 270. April 2013. 1803:Supercoiling and topology 1732:Elastic stretching regime 634:Inclination of bp to axis 285:polymerase chain reaction 4132:Crick FH (August 1976). 3899:10.1021/acs.jctc.9b00112 3327:Ho PS (September 1994). 3302:Sinden RR (1994-01-15). 3158:10.1073/pnas.95.24.14152 2101:Wang JC (January 1979). 803:nucleosome core particle 777:Non-double helical forms 3764:Journal of Biochemistry 3620:10.3389/fphy.2019.00195 3354:10.1073/pnas.91.20.9549 2746:10.1073/pnas.83.11.3746 1977:Molecular models of DNA 985:atomic force microscope 978:becomes uncorrelated... 805:, and the discovery of 4422:Nucleic acid structure 4361:Biomolecular structure 4191:Prunell A (May 1998). 4159:10.1073/pnas.73.8.2639 3931:Travers A (May 2005). 2972:10.1006/jmbi.2001.4987 2937:10.1006/jmbi.1998.2390 2880:Nucleic Acids Research 2813:Biotechnology Explorer 2272:10.1098/rspa.1954.0101 1857: 1818: 1225:residues separated by 1004:Models for DNA bending 981: 757: 675:45.6 Å (4.56 nm) 658:3.32 Å (0.332 nm) 555: 547: 475:absolute configuration 316: 52: 3106:10.1093/nass/49.1.261 2892:10.1093/nar/17.5.1797 2128:10.1073/pnas.76.1.200 1921:topologically knotted 1852: 1816: 799:X-ray crystallography 766:transcription factors 751: 672:33.2 Å (3.32 nm) 669:28.2 Å (2.82 nm) 661:3.8 Å (0.38 nm) 553: 545: 314: 148:Further information: 112:The DNA double helix 42: 3589:Frontiers in Physics 2673:10.1073/pnas.39.2.84 2326:Witkowski J (2019). 1157:models, such as the 863:improve this section 680:Mean propeller twist 315:Base pair geometries 120:is held together by 4491:Protein engineering 4262:1997Natur.389..251L 4209:1998BpJ....74.2531P 4197:Biophysical Journal 4150:1976PNAS...73.2639C 4023:(46): 15364–15371. 3996:(45): 10989–10994. 3949:2005CBio...15.R377T 3864:10.1021/ma00134a028 3856:1984MaMol..17..689S 3661:Biophysical Journal 3611:2019FrP.....7..195O 3424:1980Natur.287..755W 3345:1994PNAS...91.9549H 3149:1998PNAS...9514152A 3143:(24): 14152–14157. 3015:10.1038/nature01595 3007:2003Natur.423..145R 2737:1986PNAS...83.3746B 2664:1953PNAS...39...84P 2381:1953Natur.171..738W 2344:2019Natur.568..308W 2263:1954RSPSA.223...80C 2212:1953Natur.171..737W 2119:1979PNAS...76..200W 2044:2023Natur.616..657C 1993:Triple-stranded DNA 1172:at very small (sub- 1010: 903: 737:18 Å (1.8 nm) 666:Pitch/turn of helix 564:Geometry attribute 560: 529:triple-stranded DNA 81:secondary structure 4552:Molecular geometry 3726:10.3390/ma14030687 2617:10.1007/BF02173653 2432:10.1007/BF02170221 1967:DNA nanotechnology 1819: 1183:Bending preference 1151:persistence length 1008: 910:Persistence length 901: 831:Persistence length 783:non-helical models 758: 734:20 Å (2.0 nm) 731:23 Å (2.3 nm) 648:Rise/bp along axis 558: 556: 548: 453:form described by 317: 307:Base pair geometry 85:tertiary structure 53: 4529: 4528: 4369:Protein structure 4256:(6648): 251–260. 4029:10.1021/jp906749j 4002:10.1021/ja961751x 3943:(10): R377–R379. 3776:10.1093/jb/mvm214 3667:(10): 3607–3616. 3418:(5784): 755–758. 3339:(20): 9549–9553. 3240:(Pt 4): 620–626. 3001:(6936): 145–150. 2731:(11): 3746–3750. 2551:(Suppl 1): 41–59. 2375:(4356): 738–740. 2338:(7752): 308–309. 2206:(4356): 737–738. 2087:978-0-8153-4105-5 2038:(7958): 657–660. 1695: 1694: 1147: 1146: 969: 968: 899: 898: 891: 741: 740: 651:2.3 Å (0.23  526: 518: 174:Rosalind Franklin 89:Rosalind Franklin 57:molecular biology 16:(Redirected from 4564: 4516:Structural motif 4354: 4347: 4340: 4331: 4325: 4324: 4307:(5): 1097–1113. 4296: 4290: 4289: 4245: 4239: 4238: 4228: 4203:(5): 2531–2544. 4188: 4182: 4181: 4171: 4161: 4144:(8): 2639–2643. 4129: 4123: 4122: 4112: 4088: 4082: 4081: 4071: 4047: 4041: 4040: 4012: 4006: 4005: 3985: 3979: 3978: 3960: 3928: 3922: 3921: 3911: 3901: 3892:(8): 4660–4672. 3877: 3868: 3867: 3850:(4): 4660–4672. 3839: 3833: 3832: 3804: 3798: 3797: 3787: 3755: 3749: 3748: 3738: 3728: 3704: 3695: 3694: 3684: 3652: 3643: 3642: 3632: 3622: 3604: 3580: 3574: 3573: 3567: 3565: 3551: 3542: 3536: 3535: 3499: 3493: 3492: 3458: 3452: 3451: 3432:10.1038/287755a0 3407: 3401: 3400: 3398: 3397: 3383: 3377: 3376: 3366: 3356: 3324: 3318: 3317: 3299: 3293: 3292: 3264: 3258: 3257: 3229: 3223: 3222: 3221:(11): 1556–1563. 3210: 3204: 3203: 3187: 3181: 3180: 3170: 3160: 3128: 3119: 3118: 3108: 3084: 3078: 3077: 3041: 3035: 3034: 2990: 2984: 2983: 2955: 2949: 2948: 2931:(4): 1563–1575. 2920: 2914: 2913: 2903: 2886:(5): 1797–1803. 2871: 2865: 2864: 2852: 2846: 2845: 2843: 2842: 2827: 2821: 2820: 2815:(1st ed.). 2805: 2799: 2798: 2796: 2795: 2775: 2769: 2768: 2758: 2748: 2716: 2710: 2709: 2702: 2696: 2695: 2685: 2675: 2643: 2637: 2636: 2600: 2594: 2593: 2583: 2559: 2553: 2552: 2540: 2534: 2533: 2523: 2499: 2493: 2492: 2482: 2458: 2452: 2451: 2415: 2409: 2408: 2389:10.1038/171738a0 2364: 2358: 2357: 2355: 2323: 2317: 2316: 2306: 2283: 2277: 2276: 2274: 2246: 2240: 2239: 2220:10.1038/171737a0 2195: 2189: 2188: 2160: 2151: 2150: 2140: 2130: 2098: 2092: 2091: 2073: 2064: 2063: 2027: 2021: 2020: 2011:Kabai S (2007). 2008: 1878:ethidium bromide 1770:phase transition 1747:optical tweezers 1236: 1235: 1011: 904: 894: 887: 883: 880: 874: 843: 835: 561: 524: 516: 483:crystallographic 433:Helix geometries 190:Alexander Stokes 176:and her student 21: 4572: 4571: 4567: 4566: 4565: 4563: 4562: 4561: 4532: 4531: 4530: 4525: 4469: 4416: 4363: 4358: 4328: 4298: 4297: 4293: 4247: 4246: 4242: 4190: 4189: 4185: 4131: 4130: 4126: 4090: 4089: 4085: 4049: 4048: 4044: 4014: 4013: 4009: 3987: 3986: 3982: 3937:Current Biology 3930: 3929: 3925: 3879: 3878: 3871: 3841: 3840: 3836: 3806: 3805: 3801: 3757: 3756: 3752: 3706: 3705: 3698: 3654: 3653: 3646: 3582: 3581: 3577: 3563: 3561: 3560:(10): 1352–1353 3554:Current Science 3549: 3544: 3543: 3539: 3501: 3500: 3496: 3481: 3460: 3459: 3455: 3409: 3408: 3404: 3395: 3393: 3385: 3384: 3380: 3326: 3325: 3321: 3314: 3301: 3300: 3296: 3266: 3265: 3261: 3231: 3230: 3226: 3215:Current Science 3212: 3211: 3207: 3189: 3188: 3184: 3130: 3129: 3122: 3099:(49): 261–262. 3086: 3085: 3081: 3043: 3042: 3038: 2992: 2991: 2987: 2957: 2956: 2952: 2922: 2921: 2917: 2873: 2872: 2868: 2863:(4th ed.). 2854: 2853: 2849: 2840: 2838: 2829: 2828: 2824: 2807: 2806: 2802: 2793: 2791: 2777: 2776: 2772: 2718: 2717: 2713: 2704: 2703: 2699: 2645: 2644: 2640: 2602: 2601: 2597: 2561: 2560: 2556: 2542: 2541: 2537: 2501: 2500: 2496: 2460: 2459: 2455: 2417: 2416: 2412: 2366: 2365: 2361: 2325: 2324: 2320: 2304:10.1038/496270a 2285: 2284: 2280: 2248: 2247: 2243: 2197: 2196: 2192: 2162: 2161: 2154: 2100: 2099: 2095: 2088: 2075: 2074: 2067: 2029: 2028: 2024: 2010: 2009: 2005: 2001: 1958: 1937: 1811: 1805: 1766: 1758:worm-like chain 1751:polymer physics 1734: 1729: 1708: 1706:Circularization 1185: 1166:worm-like chain 1162:worm-like chain 1155:polymer physics 1018: 1006: 962: 947: 932: 911: 895: 884: 878: 875: 860: 844: 833: 827: 819:worm-like chain 815: 787:DNA replication 779: 746: 722: 704: 509: 435: 309: 236: 230: 200:. Before this, 186:Maurice Wilkins 178:Raymond Gosling 152: 146: 93:Raymond Gosling 65:double-stranded 35: 28: 23: 22: 15: 12: 11: 5: 4570: 4568: 4560: 4559: 4554: 4549: 4544: 4534: 4533: 4527: 4526: 4524: 4523: 4518: 4513: 4508: 4503: 4498: 4493: 4488: 4486:Protein domain 4483: 4477: 4475: 4471: 4470: 4468: 4467: 4465:Thermodynamics 4462: 4457: 4452: 4447: 4442: 4437: 4432: 4426: 4424: 4418: 4417: 4415: 4414: 4412:Thermodynamics 4409: 4404: 4399: 4394: 4389: 4384: 4379: 4373: 4371: 4365: 4364: 4359: 4357: 4356: 4349: 4342: 4334: 4327: 4326: 4291: 4240: 4183: 4124: 4083: 4042: 4007: 3980: 3923: 3869: 3844:Macromolecules 3834: 3815:(3): 775–785. 3799: 3770:(2): 145–153. 3750: 3696: 3644: 3575: 3537: 3510:(2): 207–240. 3494: 3479: 3453: 3402: 3387:"Double Helix" 3378: 3319: 3312: 3294: 3259: 3224: 3205: 3202:on 2007-05-26. 3182: 3120: 3079: 3052:(9): 758–761. 3036: 2985: 2966:(1): 229–237. 2950: 2915: 2866: 2847: 2822: 2800: 2770: 2711: 2697: 2638: 2611:(6): 201–209. 2595: 2554: 2535: 2514:(1): 223–230. 2494: 2473:(1): 155–160. 2453: 2426:(4): 143–145. 2410: 2359: 2318: 2278: 2241: 2190: 2152: 2113:(1): 200–203. 2093: 2086: 2065: 2022: 2013:"Double Helix" 2002: 2000: 1997: 1996: 1995: 1990: 1988:Non-B database 1985: 1979: 1974: 1969: 1964: 1957: 1954: 1948:octamer, this 1936: 1933: 1925:topoisomerases 1913: 1912: 1887: 1881: 1876:agents (e.g., 1867: 1807:Main article: 1804: 1801: 1797:GNC hypothesis 1776:, in honor of 1765: 1762: 1733: 1730: 1728: 1725: 1713:energy barrier 1707: 1704: 1693: 1692: 1689: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1669: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1617: 1614: 1612: 1609: 1607: 1604: 1602: 1599: 1597: 1594: 1592: 1589: 1587: 1584: 1582: 1579: 1577: 1574: 1572: 1569: 1567: 1564: 1562: 1559: 1557: 1554: 1552: 1549: 1547: 1544: 1542: 1539: 1537: 1534: 1532: 1529: 1527: 1524: 1522: 1519: 1517: 1514: 1512: 1509: 1507: 1504: 1502: 1499: 1497: 1494: 1492: 1489: 1487: 1484: 1482: 1479: 1477: 1474: 1472: 1469: 1467: 1464: 1462: 1459: 1457: 1454: 1452: 1449: 1447: 1444: 1442: 1438: 1437: 1434: 1432: 1430: 1428: 1426: 1424: 1422: 1420: 1418: 1416: 1414: 1412: 1410: 1408: 1406: 1404: 1402: 1400: 1398: 1395: 1393: 1391: 1389: 1387: 1385: 1383: 1381: 1379: 1377: 1375: 1373: 1371: 1369: 1367: 1365: 1363: 1361: 1359: 1356: 1354: 1352: 1350: 1348: 1346: 1344: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1326: 1324: 1322: 1320: 1317: 1315: 1313: 1311: 1309: 1307: 1305: 1303: 1301: 1299: 1297: 1295: 1293: 1291: 1289: 1287: 1285: 1283: 1281: 1278: 1276: 1274: 1272: 1270: 1268: 1266: 1264: 1262: 1260: 1258: 1256: 1254: 1252: 1250: 1248: 1246: 1244: 1242: 1239: 1212:trypanosomatid 1184: 1181: 1145: 1144: 1141: 1135: 1134: 1131: 1121: 1120: 1117: 1107: 1106: 1103: 1093: 1092: 1089: 1083: 1082: 1079: 1069: 1068: 1065: 1055: 1054: 1051: 1045: 1044: 1041: 1031: 1030: 1027: 1021: 1020: 1015: 1005: 1002: 967: 966: 963: 960: 952: 951: 948: 945: 937: 936: 933: 930: 922: 921: 918: 914: 913: 908: 897: 896: 847: 845: 838: 829:Main article: 826: 823: 814: 811: 807:topoisomerases 778: 775: 745: 742: 739: 738: 735: 732: 729: 725: 724: 719: 716: 713: 707: 706: 701: 698: 695: 694:Glycosyl angle 691: 690: 687: 684: 681: 677: 676: 673: 670: 667: 663: 662: 659: 656: 649: 645: 644: 641: 638: 635: 631: 630: 627: 624: 621: 617: 616: 613: 610: 607: 603: 602: 599: 596: 593: 592:Repeating unit 589: 588: 585: 582: 579: 575: 574: 571: 568: 565: 434: 431: 423: 422: 416: 411: 406: 404:y-displacement 401: 399:x-displacement 396: 390: 384: 378: 372: 366: 360: 355: 349: 344: 339: 334: 308: 305: 301:DNA polymerase 293:topoisomerases 232:Main article: 229: 226: 198:Erwin Chargaff 194:Herbert Wilson 145: 142: 91:, her student 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4569: 4558: 4555: 4553: 4550: 4548: 4545: 4543: 4540: 4539: 4537: 4522: 4519: 4517: 4514: 4512: 4509: 4507: 4504: 4502: 4499: 4497: 4494: 4492: 4489: 4487: 4484: 4482: 4479: 4478: 4476: 4472: 4466: 4463: 4461: 4458: 4456: 4453: 4451: 4450:Determination 4448: 4446: 4443: 4441: 4438: 4436: 4433: 4431: 4428: 4427: 4425: 4423: 4419: 4413: 4410: 4408: 4405: 4403: 4400: 4398: 4397:Determination 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4374: 4372: 4370: 4366: 4362: 4355: 4350: 4348: 4343: 4341: 4336: 4335: 4332: 4322: 4318: 4314: 4310: 4306: 4302: 4295: 4292: 4287: 4283: 4279: 4275: 4271: 4270:10.1038/38444 4267: 4263: 4259: 4255: 4251: 4244: 4241: 4236: 4232: 4227: 4222: 4218: 4214: 4210: 4206: 4202: 4198: 4194: 4187: 4184: 4179: 4175: 4170: 4165: 4160: 4155: 4151: 4147: 4143: 4139: 4135: 4128: 4125: 4120: 4116: 4111: 4106: 4102: 4098: 4094: 4087: 4084: 4079: 4075: 4070: 4065: 4061: 4057: 4053: 4046: 4043: 4038: 4034: 4030: 4026: 4022: 4018: 4011: 4008: 4003: 3999: 3995: 3991: 3984: 3981: 3976: 3972: 3968: 3964: 3959: 3954: 3950: 3946: 3942: 3938: 3934: 3927: 3924: 3919: 3915: 3910: 3905: 3900: 3895: 3891: 3887: 3883: 3876: 3874: 3870: 3865: 3861: 3857: 3853: 3849: 3845: 3838: 3835: 3830: 3826: 3822: 3818: 3814: 3810: 3803: 3800: 3795: 3791: 3786: 3781: 3777: 3773: 3769: 3765: 3761: 3754: 3751: 3746: 3742: 3737: 3732: 3727: 3722: 3718: 3714: 3710: 3703: 3701: 3697: 3692: 3688: 3683: 3678: 3674: 3670: 3666: 3662: 3658: 3651: 3649: 3645: 3640: 3636: 3631: 3626: 3621: 3616: 3612: 3608: 3603: 3598: 3594: 3590: 3586: 3579: 3576: 3572: 3559: 3555: 3548: 3541: 3538: 3533: 3529: 3525: 3521: 3517: 3513: 3509: 3505: 3498: 3495: 3490: 3486: 3482: 3480:9780128196779 3476: 3472: 3468: 3464: 3457: 3454: 3449: 3445: 3441: 3437: 3433: 3429: 3425: 3421: 3417: 3413: 3406: 3403: 3392: 3388: 3382: 3379: 3374: 3370: 3365: 3360: 3355: 3350: 3346: 3342: 3338: 3334: 3330: 3323: 3320: 3315: 3313:0-12-645750-6 3309: 3305: 3298: 3295: 3290: 3286: 3282: 3278: 3274: 3270: 3263: 3260: 3255: 3251: 3247: 3243: 3239: 3235: 3228: 3225: 3220: 3216: 3209: 3206: 3201: 3197: 3193: 3186: 3183: 3178: 3174: 3169: 3164: 3159: 3154: 3150: 3146: 3142: 3138: 3134: 3127: 3125: 3121: 3116: 3112: 3107: 3102: 3098: 3094: 3090: 3083: 3080: 3075: 3071: 3067: 3063: 3059: 3058:10.1038/78985 3055: 3051: 3047: 3040: 3037: 3032: 3028: 3024: 3020: 3016: 3012: 3008: 3004: 3000: 2996: 2989: 2986: 2981: 2977: 2973: 2969: 2965: 2961: 2954: 2951: 2946: 2942: 2938: 2934: 2930: 2926: 2919: 2916: 2911: 2907: 2902: 2897: 2893: 2889: 2885: 2881: 2877: 2870: 2867: 2862: 2858: 2851: 2848: 2836: 2832: 2826: 2823: 2818: 2817:United States 2814: 2810: 2804: 2801: 2790:on 2015-04-30 2789: 2785: 2781: 2774: 2771: 2766: 2762: 2757: 2752: 2747: 2742: 2738: 2734: 2730: 2726: 2722: 2715: 2712: 2707: 2701: 2698: 2693: 2689: 2684: 2679: 2674: 2669: 2665: 2661: 2657: 2653: 2649: 2642: 2639: 2634: 2630: 2626: 2622: 2618: 2614: 2610: 2606: 2599: 2596: 2591: 2587: 2582: 2577: 2573: 2569: 2565: 2558: 2555: 2550: 2546: 2539: 2536: 2531: 2527: 2522: 2517: 2513: 2509: 2505: 2498: 2495: 2490: 2486: 2481: 2476: 2472: 2468: 2464: 2457: 2454: 2449: 2445: 2441: 2437: 2433: 2429: 2425: 2421: 2414: 2411: 2406: 2402: 2398: 2394: 2390: 2386: 2382: 2378: 2374: 2370: 2363: 2360: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2322: 2319: 2314: 2310: 2305: 2300: 2296: 2292: 2288: 2282: 2279: 2273: 2268: 2264: 2260: 2256: 2252: 2245: 2242: 2237: 2233: 2229: 2225: 2221: 2217: 2213: 2209: 2205: 2201: 2194: 2191: 2186: 2182: 2178: 2174: 2170: 2166: 2159: 2157: 2153: 2148: 2144: 2139: 2134: 2129: 2124: 2120: 2116: 2112: 2108: 2104: 2097: 2094: 2089: 2083: 2079: 2072: 2070: 2066: 2061: 2057: 2053: 2049: 2045: 2041: 2037: 2033: 2026: 2023: 2018: 2014: 2007: 2004: 1998: 1994: 1991: 1989: 1986: 1984:(publication) 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1959: 1955: 1953: 1951: 1947: 1943: 1934: 1932: 1930: 1929:recombination 1926: 1922: 1917: 1911: 1907: 1903: 1899: 1895: 1891: 1888: 1885: 1882: 1879: 1875: 1874:intercalating 1871: 1868: 1865: 1862: 1861: 1860: 1856: 1851: 1849: 1848:Francis Crick 1845: 1842: 1837: 1835: 1834:transcription 1831: 1827: 1826: 1815: 1810: 1809:DNA supercoil 1802: 1800: 1798: 1792: 1788: 1786: 1781: 1779: 1778:Linus Pauling 1775: 1771: 1763: 1761: 1759: 1756: 1752: 1748: 1743: 1739: 1731: 1726: 1724: 1722: 1716: 1714: 1705: 1703: 1699: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1563: 1560: 1558: 1555: 1553: 1550: 1548: 1545: 1543: 1540: 1538: 1535: 1533: 1530: 1528: 1525: 1523: 1520: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1490: 1488: 1485: 1483: 1480: 1478: 1475: 1473: 1470: 1468: 1465: 1463: 1460: 1458: 1455: 1453: 1450: 1448: 1445: 1443: 1440: 1439: 1435: 1433: 1431: 1429: 1427: 1425: 1423: 1421: 1419: 1417: 1415: 1413: 1411: 1409: 1407: 1405: 1403: 1401: 1399: 1396: 1394: 1392: 1390: 1388: 1386: 1384: 1382: 1380: 1378: 1376: 1374: 1372: 1370: 1368: 1366: 1364: 1362: 1360: 1357: 1355: 1353: 1351: 1349: 1347: 1345: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1327: 1325: 1323: 1321: 1318: 1316: 1314: 1312: 1310: 1308: 1306: 1304: 1302: 1300: 1298: 1296: 1294: 1292: 1290: 1288: 1286: 1284: 1282: 1279: 1277: 1275: 1273: 1271: 1269: 1267: 1265: 1263: 1261: 1259: 1257: 1255: 1253: 1251: 1249: 1247: 1245: 1243: 1240: 1238: 1237: 1234: 1232: 1228: 1224: 1220: 1216: 1213: 1208: 1206: 1202: 1198: 1192: 1190: 1182: 1180: 1177: 1175: 1171: 1167: 1163: 1160: 1156: 1152: 1140: 1137: 1136: 1130: 1126: 1123: 1122: 1116: 1112: 1109: 1108: 1102: 1098: 1095: 1094: 1088: 1085: 1084: 1078: 1074: 1071: 1070: 1064: 1060: 1057: 1056: 1050: 1047: 1046: 1040: 1036: 1033: 1032: 1026: 1023: 1022: 1016: 1013: 1012: 1003: 1001: 999: 998:major grooves 995: 989: 986: 980: 979: 973: 958: 954: 953: 943: 939: 938: 928: 924: 923: 916: 915: 912:/ base pairs 909: 906: 905: 893: 890: 882: 879:November 2010 872: 868: 864: 858: 857: 853: 848:This section 846: 842: 837: 836: 832: 824: 822: 820: 812: 810: 808: 804: 800: 796: 792: 788: 784: 776: 774: 772: 767: 763: 755: 754:Hoechst 33258 750: 743: 727: 726: 712: 709: 708: 693: 692: 679: 678: 665: 664: 654: 647: 646: 633: 632: 619: 618: 605: 604: 591: 590: 577: 576: 572: 569: 566: 563: 562: 552: 544: 540: 538: 534: 530: 522: 514: 508: 503: 500: 496: 492: 488: 484: 478: 476: 472: 468: 464: 460: 459:Francis Crick 456: 452: 448: 444: 440: 432: 430: 427: 420: 417: 415: 412: 410: 407: 405: 402: 400: 397: 394: 391: 388: 385: 382: 379: 376: 373: 370: 367: 364: 361: 359: 356: 353: 350: 348: 345: 343: 340: 338: 335: 333: 330: 329: 328: 325: 323: 313: 306: 304: 302: 298: 294: 290: 286: 281: 279: 278: 273: 269: 265: 261: 257: 253: 249: 244: 241: 240:complementary 235: 227: 225: 223: 218: 213: 211: 207: 203: 202:Linus Pauling 199: 195: 191: 187: 183: 179: 175: 171: 170:Francis Crick 167: 163: 162: 157: 151: 143: 141: 139: 135: 131: 128:together. In 127: 123: 119: 115: 110: 108: 107: 102: 101:Francis Crick 98: 94: 90: 86: 82: 78: 75:. The double 74: 70: 69:nucleic acids 67:molecules of 66: 62: 58: 50: 46: 45:complementary 41: 37: 33: 19: 4520: 4501:Nucleic acid 4304: 4300: 4294: 4253: 4249: 4243: 4200: 4196: 4186: 4141: 4137: 4127: 4100: 4096: 4086: 4059: 4055: 4045: 4020: 4016: 4010: 3993: 3989: 3983: 3940: 3936: 3926: 3889: 3885: 3847: 3843: 3837: 3812: 3808: 3802: 3767: 3763: 3753: 3716: 3712: 3664: 3660: 3592: 3588: 3578: 3569: 3562:. Retrieved 3557: 3553: 3540: 3507: 3503: 3497: 3462: 3456: 3415: 3411: 3405: 3394:. Retrieved 3390: 3381: 3336: 3332: 3322: 3303: 3297: 3272: 3268: 3262: 3237: 3233: 3227: 3218: 3214: 3208: 3200:the original 3195: 3185: 3140: 3136: 3096: 3092: 3082: 3049: 3045: 3039: 2998: 2994: 2988: 2963: 2959: 2953: 2928: 2924: 2918: 2883: 2879: 2869: 2860: 2850: 2839:. Retrieved 2834: 2825: 2812: 2803: 2792:. Retrieved 2788:the original 2783: 2773: 2728: 2724: 2714: 2700: 2658:(2): 84–97. 2655: 2651: 2641: 2608: 2604: 2598: 2574:(1): 37–50. 2571: 2567: 2557: 2548: 2544: 2538: 2511: 2507: 2497: 2470: 2466: 2456: 2423: 2419: 2413: 2372: 2368: 2362: 2335: 2331: 2321: 2294: 2290: 2287:"Due credit" 2281: 2254: 2244: 2203: 2199: 2193: 2168: 2164: 2110: 2106: 2096: 2077: 2035: 2031: 2025: 2006: 1972:G-quadruplex 1949: 1938: 1918: 1914: 1909: 1905: 1901: 1897: 1893: 1889: 1883: 1869: 1863: 1858: 1853: 1846: 1838: 1829: 1823: 1820: 1793: 1789: 1784: 1782: 1773: 1767: 1755:Kratky-Porod 1754: 1738:thermal bath 1735: 1717: 1709: 1700: 1696: 1230: 1226: 1222: 1218: 1209: 1200: 1196: 1193: 1186: 1178: 1159:Kratky-Porod 1158: 1148: 1138: 1128: 1124: 1114: 1110: 1100: 1096: 1086: 1076: 1072: 1062: 1058: 1048: 1038: 1034: 1024: 1017:Stacking ΔG 990: 982: 976: 975: 970: 956: 941: 926: 885: 876: 861:Please help 849: 816: 781:Alternative 780: 770: 762:binding site 759: 721:C: C2'-endo, 711:Sugar pucker 587:left-handed 584:right-handed 581:right-handed 533:G-quadruplex 521:enantiomeric 510: 479: 470: 455:James Watson 450: 442: 436: 428: 424: 418: 413: 408: 403: 398: 392: 386: 380: 374: 368: 362: 357: 351: 346: 341: 336: 331: 326: 321: 318: 282: 275: 271: 267: 263: 259: 255: 251: 237: 217:base pairing 214: 206:Robert Corey 166:James Watson 159: 153: 138:minor groove 137: 134:major groove 133: 118:nucleic acid 111: 104: 97:James Watson 61:double helix 60: 54: 36: 18:Major groove 3275:: 791–846. 2605:Experientia 2420:Experientia 2171:: 293–321. 1825:supercoiled 1215:kinetoplast 1189:anisotropic 1170:Hooke's law 771:(see below) 723:G: C2'-exo 606:Rotation/bp 578:Helix sense 409:inclination 122:nucleotides 59:, the term 4547:Biophysics 4536:Categories 4496:Proteasome 4455:Prediction 4445:Quaternary 4402:Prediction 4392:Quaternary 3719:(3): 687. 3602:1907.01585 3396:2022-06-10 3391:Genome.gov 2841:2022-06-10 2794:2008-10-02 1999:References 1942:nucleosome 1785:S-form DNA 1774:P-form DNA 1727:Stretching 1205:nucleosome 1174:piconewton 1019:/kcal mol 519:-DNA (the 505:See also: 499:methylated 243:base pairs 114:biopolymer 49:base pairs 4435:Secondary 4382:Secondary 3713:Materials 3489:239504252 3190:Xiang J. 3031:205209705 907:Sequence 850:does not 795:chromatin 515:, E-DNA, 352:Propeller 297:Helicases 289:helicases 126:base pair 4474:See also 4440:Tertiary 4387:Tertiary 4321:12079350 4119:29233227 4078:29233223 4037:19845321 3975:10568179 3967:15916938 3918:31282669 3829:15342236 3794:17981824 3745:33540751 3691:16935960 3639:32601596 3532:29369576 3524:11620855 3254:12657780 3115:17150733 3066:10966645 3023:12736678 2980:11601858 2692:16578429 2625:15421335 2590:14778802 2530:14917668 2489:14938364 2448:36803326 2440:14945441 2397:13054693 2313:23607133 2228:13054692 2060:37100935 1956:See also 1841:plasmids 1742:entropic 791:plasmids 728:Diameter 718:C2'-endo 715:C3'-endo 703:C: anti, 535:and the 523:form of 182:Photo 51 71:such as 4557:Helices 4481:Protein 4430:Primary 4377:Primary 4286:4328827 4278:9305837 4258:Bibcode 4235:9591679 4226:1299595 4205:Bibcode 4178:1066673 4146:Bibcode 4103:: e15. 4062:: e11. 3945:Bibcode 3909:6694408 3852:Bibcode 3785:3943392 3736:7867263 3682:1630458 3630:7323118 3607:Bibcode 3595:: 195. 3448:4315465 3440:7432492 3420:Bibcode 3373:7937803 3341:Bibcode 3289:6383204 3177:9826669 3145:Bibcode 3074:4420623 3003:Bibcode 2945:9917397 2910:2928107 2765:3459152 2733:Bibcode 2683:1063734 2660:Bibcode 2633:2522535 2405:4280080 2377:Bibcode 2340:Bibcode 2259:Bibcode 2236:4253007 2208:Bibcode 2185:6236744 2115:Bibcode 2040:Bibcode 1950:paradox 1946:histone 1830:in vivo 965:137±10 950:124±10 935:133±10 920:154±10 917:Random 871:removed 856:sources 813:Bending 744:Grooves 705:G: syn 620:bp/turn 537:i-motif 491:in vivo 358:Opening 342:Stagger 337:Stretch 248:enzymes 184:", and 144:History 77:helical 4460:Design 4407:Design 4319:  4284:  4276:  4250:Nature 4233:  4223:  4176:  4169:430703 4166:  4117:  4076:  4035:  3973:  3965:  3916:  3906:  3827:  3792:  3782:  3743:  3733:  3689:  3679:  3637:  3627:  3564:25 May 3530:  3522:  3487:  3477:  3446:  3438:  3412:Nature 3371:  3361:  3310:  3287:  3252:  3175:  3165:  3113:  3072:  3064:  3029:  3021:  2995:Nature 2978:  2943:  2908:  2901:317523 2898:  2763:  2756:323600 2753:  2690:  2680:  2631:  2623:  2588:  2528:  2487:  2446:  2438:  2403:  2395:  2369:Nature 2332:Nature 2311:  2291:Nature 2234:  2226:  2200:Nature 2183:  2147:284332 2145:  2138:382905 2135:  2084:  2058:  2032:Nature 1828:. DNA 1143:-2.17 1133:-1.81 1119:-1.44 1105:-1.43 1091:-1.34 1081:-1.11 1067:-1.06 1053:-0.91 1043:-0.55 1029:-0.19 961:repeat 946:repeat 931:repeat 615:60°/2 573:Z-DNA 570:B-DNA 567:A-DNA 493:, and 449:. The 445:, and 347:Buckle 322:normal 192:, and 161:Nature 124:which 99:, and 4282:S2CID 3971:S2CID 3597:arXiv 3550:(PDF) 3528:S2CID 3485:S2CID 3444:S2CID 3364:44850 3168:24342 3070:S2CID 3027:S2CID 2629:S2CID 2444:S2CID 2401:S2CID 2232:S2CID 1900:and Δ 1014:Step 994:minor 640:−1.2° 612:34.3° 609:32.7° 601:2 bp 513:C-DNA 471:pitch 447:Z-DNA 443:B-DNA 439:A-DNA 419:pitch 393:Twist 369:Slide 363:Shift 332:Shear 130:B-DNA 4317:PMID 4274:PMID 4231:PMID 4174:PMID 4115:PMID 4074:PMID 4033:PMID 3963:PMID 3914:PMID 3825:PMID 3790:PMID 3741:PMID 3687:PMID 3635:PMID 3566:2012 3520:PMID 3475:ISBN 3436:PMID 3369:PMID 3308:ISBN 3285:PMID 3250:PMID 3173:PMID 3111:PMID 3062:PMID 3019:PMID 2976:PMID 2941:PMID 2906:PMID 2761:PMID 2688:PMID 2621:PMID 2586:PMID 2526:PMID 2485:PMID 2436:PMID 2393:PMID 2309:PMID 2224:PMID 2181:PMID 2143:PMID 2082:ISBN 2056:PMID 1721:nick 1229:and 1221:and 1199:and 996:and 957:TATA 854:any 852:cite 793:and 700:anti 697:anti 686:+16° 683:+18° 643:−9° 637:+19° 626:10.5 598:1 bp 595:1 bp 457:and 387:Roll 381:Tilt 375:Rise 277:TATA 270:and 262:and 254:and 168:and 136:and 43:Two 4542:DNA 4511:RNA 4506:DNA 4309:doi 4305:319 4266:doi 4254:389 4221:PMC 4213:doi 4164:PMC 4154:doi 4105:doi 4064:doi 4025:doi 4021:113 3998:doi 3994:118 3953:doi 3904:PMC 3894:doi 3860:doi 3817:doi 3813:342 3780:PMC 3772:doi 3768:143 3731:PMC 3721:doi 3677:PMC 3669:doi 3625:PMC 3615:doi 3512:doi 3467:doi 3428:doi 3416:287 3359:PMC 3349:doi 3277:doi 3242:doi 3163:PMC 3153:doi 3101:doi 3054:doi 3011:doi 2999:423 2968:doi 2964:313 2933:doi 2929:285 2896:PMC 2888:doi 2751:PMC 2741:doi 2678:PMC 2668:doi 2613:doi 2576:doi 2572:186 2516:doi 2512:192 2475:doi 2471:195 2428:doi 2385:doi 2373:171 2348:doi 2336:568 2299:doi 2295:496 2267:doi 2216:doi 2204:171 2173:doi 2133:PMC 2123:doi 2048:doi 2036:616 1908:+ Δ 1904:= Δ 1139:G C 1129:G T 1127:or 1125:A C 1115:G G 1113:or 1111:C C 1101:T C 1099:or 1097:G A 1087:A T 1077:T T 1075:or 1073:A A 1063:C T 1061:or 1059:A G 1049:C G 1039:C A 1037:or 1035:T G 1025:T A 942:CAG 865:by 789:in 689:0° 629:12 487:RNA 414:tip 272:T G 268:T A 164:by 156:DNA 116:of 73:DNA 55:In 4538:: 4315:. 4303:. 4280:. 4272:. 4264:. 4252:. 4229:. 4219:. 4211:. 4201:74 4199:. 4195:. 4172:. 4162:. 4152:. 4142:73 4140:. 4136:. 4113:. 4101:50 4099:. 4095:. 4072:. 4060:50 4058:. 4054:. 4031:. 4019:. 3992:. 3969:. 3961:. 3951:. 3941:15 3939:. 3935:. 3912:. 3902:. 3890:15 3888:. 3884:. 3872:^ 3858:. 3848:17 3846:. 3823:. 3811:. 3788:. 3778:. 3766:. 3762:. 3739:. 3729:. 3717:14 3715:. 3711:. 3699:^ 3685:. 3675:. 3665:91 3663:. 3659:. 3647:^ 3633:. 3623:. 3613:. 3605:. 3591:. 3587:. 3568:. 3558:86 3556:. 3552:. 3526:. 3518:. 3508:12 3506:. 3483:. 3473:. 3442:. 3434:. 3426:. 3414:. 3389:. 3367:. 3357:. 3347:. 3337:91 3335:. 3331:. 3283:. 3273:53 3271:. 3248:. 3238:59 3236:. 3219:85 3217:. 3194:. 3171:. 3161:. 3151:. 3141:95 3139:. 3135:. 3123:^ 3109:. 3097:49 3095:. 3091:. 3068:. 3060:. 3048:. 3025:. 3017:. 3009:. 2997:. 2974:. 2962:. 2939:. 2927:. 2904:. 2894:. 2884:17 2882:. 2878:. 2859:. 2833:. 2811:. 2782:. 2759:. 2749:. 2739:. 2729:83 2727:. 2723:. 2686:. 2676:. 2666:. 2656:39 2654:. 2650:. 2627:. 2619:. 2607:. 2584:. 2570:. 2566:. 2549:38 2547:. 2524:. 2510:. 2506:. 2483:. 2469:. 2465:. 2442:. 2434:. 2422:. 2399:. 2391:. 2383:. 2371:. 2346:. 2334:. 2330:. 2307:. 2293:. 2289:. 2265:. 2253:. 2230:. 2222:. 2214:. 2202:. 2179:. 2169:53 2167:. 2155:^ 2141:. 2131:. 2121:. 2111:76 2109:. 2105:. 2068:^ 2054:. 2046:. 2034:. 2015:. 1896:+ 1892:= 1836:. 1691:C 1436:¦ 1000:. 927:CA 653:nm 623:11 539:. 467:bp 441:, 303:. 212:. 188:, 109:. 95:, 4353:e 4346:t 4339:v 4323:. 4311:: 4288:. 4268:: 4260:: 4237:. 4215:: 4207:: 4180:. 4156:: 4148:: 4121:. 4107:: 4080:. 4066:: 4039:. 4027:: 4004:. 4000:: 3977:. 3955:: 3947:: 3920:. 3896:: 3866:. 3862:: 3854:: 3831:. 3819:: 3796:. 3774:: 3747:. 3723:: 3693:. 3671:: 3641:. 3617:: 3609:: 3599:: 3593:7 3534:. 3514:: 3491:. 3469:: 3450:. 3430:: 3422:: 3399:. 3375:. 3351:: 3343:: 3316:. 3291:. 3279:: 3256:. 3244:: 3179:. 3155:: 3147:: 3117:. 3103:: 3076:. 3056:: 3050:7 3033:. 3013:: 3005:: 2982:. 2970:: 2947:. 2935:: 2912:. 2890:: 2844:. 2797:. 2767:. 2743:: 2735:: 2708:. 2694:. 2670:: 2662:: 2635:. 2615:: 2609:6 2592:. 2578:: 2532:. 2518:: 2491:. 2477:: 2450:. 2430:: 2424:8 2407:. 2387:: 2379:: 2356:. 2350:: 2342:: 2315:. 2301:: 2275:. 2269:: 2261:: 2238:. 2218:: 2210:: 2187:. 2175:: 2149:. 2125:: 2117:: 2090:. 2062:. 2050:: 2042:: 2019:. 1910:W 1906:T 1902:L 1898:W 1894:T 1890:L 1884:W 1870:T 1864:L 1686:A 1681:A 1676:A 1671:C 1666:C 1661:C 1656:T 1651:A 1646:A 1641:A 1636:A 1631:A 1626:A 1621:C 1616:C 1611:G 1606:T 1601:A 1596:A 1591:A 1586:A 1581:A 1576:A 1571:C 1566:G 1561:G 1556:A 1551:T 1546:A 1541:A 1536:A 1531:A 1526:A 1521:A 1516:C 1511:T 1506:G 1501:T 1496:A 1491:A 1486:A 1481:A 1476:A 1471:C 1466:C 1461:C 1456:T 1451:T 1446:A 1441:G 1397:¦ 1358:¦ 1319:¦ 1280:¦ 1241:¦ 1231:C 1227:G 1223:A 1219:T 1201:T 1197:A 959:) 955:( 944:) 940:( 929:) 925:( 892:) 886:( 881:) 877:( 873:. 859:. 756:. 655:) 525:D 517:L 463:Å 451:B 264:G 260:C 256:A 252:T 51:. 34:. 20:)

Index

Major groove
Double helix (disambiguation)

complementary
base pairs
molecular biology
double-stranded
nucleic acids
DNA
helical
secondary structure
tertiary structure
Rosalind Franklin
Raymond Gosling
James Watson
Francis Crick
The Double Helix: A Personal Account of the Discovery of the Structure of DNA
biopolymer
nucleic acid
nucleotides
base pair
B-DNA
History of molecular biology
DNA
Nature
James Watson
Francis Crick
Rosalind Franklin
Raymond Gosling
Photo 51

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.