Knowledge (XXG)

Mammatus cloud

Source đź“ť

35: 196: 274:. Being now cooler than the environmental air and unstable, they descend until in static equilibrium, at which point a restoring force curves the edges of the fallout back up, creating the lobed appearance. One problem with this theory is that observations show that cloud-base evaporation does not always produce mammatus. This mechanism could be responsible for the earliest stage of development, but other processes (namely process 1, above) may come into play as the lobes are formed and mature. 375:, where differential heating (cooling at the top and heating at the bottom) of a layer causes convective overturning. However, in this case of mammatus, the base is cooled by thermodynamical mechanisms mentioned above. As the cloud base descends, it happens on the scale of mammatus lobes, while adjacent to the lobes, there is a compensating ascent. This method has not proven to be observationally sound and is viewed as generally insubstantial. 111: 174: 185: 27: 149:
Mammatus may appear as smooth, ragged or lumpy lobes and may be opaque or translucent. Because mammatus occur as a grouping of lobes, the way they clump together can vary from an isolated cluster to a field of mammae that spread over hundreds of kilometers to being organized along a line, and may be
363:
is the name given to the instability that exists between two fluids of differing densities, when the denser of the two is atop the less dense fluid. Along a cloud-base/sub-cloud interface, the denser, hydrometeor-laden air could cause mixing with the less-dense sub-cloud air. This mixing would take
301:
along the cloud-base may cause inhomogeneous descent along the base. Frictional drag and associated eddy-like structures create the lobed appearance of the fallout. The main shortcoming of this theory is that vertical velocities in the lobes have been observed to be greater than the fall speeds of
341:
impinging upon the tropopause and spreading out in wave form over the entirety of the anvil. Therefore, this method does not explain the prevalence of mammatus clouds in one part of the anvil versus another. Furthermore, time and size scales for gravity waves and mammatus do not match up entirely.
164:
True to their ominous appearance, mammatus clouds are often harbingers of a coming storm or other extreme weather system. Typically composed primarily of ice, they can extend for hundreds of miles in each direction and individual formations can remain visibly static for ten to fifteen minutes at a
277:
There may also be destabilization at cloud base due to melting. If the cloud base exists near the freezing line, then the cooling in the immediate air caused by melting can lead to convective overturning, just as in the processes above. However, this strict temperature environment is not always
348:
is prevalent along cloud boundaries and results in the formation of wave-like protrusions (called Kelvin-Helmholtz billows) from a cloud boundary. Mammatus are not in the form of K-H billows, thus, it is proposed that the instability can trigger the formation of the protrusions, but that another
97:
is a cloud supplementary feature rather than a genus, species or variety of cloud. The distinct "lumpy" undersides are formed by cold air sinking down to form the pockets contrary to the puffs of clouds rising through the convection of warm air. These formations were first described in 1894 by
160:
kilometre (0.3 mi). A lobe can last an average of 10 minutes, but a whole cluster of mamma can range from 15 minutes to a few hours. They are usually composed of ice, but also can be a mixture of ice and liquid water or be composed of almost entirely liquid water.
325:
cloud can penetrate downward through the entire layer and emerge as mammatus at cloud-base. Another idea is that as the cloud-base warms due to radiative heating from land surface's longwave emission, the base destabilizes and overturns. This method is valid for only
250:
overturning can occur, creating a lumpy cloud-base. The problems with this theory are that there are observations of mammatus lobes that do not support the presence of strong subsidence in the lobes, and that it is difficult to separate the processes of
214:
The existence of many different types of mammatus clouds, each with distinct properties and occurring in distinct environments, has given rise to multiple hypotheses on their formation, which are also relevant to other cloud forms.
336:
are proposed to be the formation mechanism of linearly organized mammatus clouds. Indeed, wave patterns have been observed in the mammatus environment, but this is mostly due to gravity wave creation as a response to a convective
506: 316:
Clouds undergo thermal reorganization due to radiative effects as they evolve. There are a couple of ideas as to how radiation can cause mammatus to form. One is that, because clouds radiatively cool
138:
clouds, as well as volcanic ash clouds. When occurring in cumulonimbus, mammatus are often indicative of a particularly strong storm. Due to the intensely sheared environment in which mammatus form,
364:
the form of mammatus clouds. The physical problem with this proposed method is that an instability existing along a static interface cannot necessarily be applied to the interface between two
759: 226:) across the anvil cloud/sub-cloud air boundary, which strongly influence interactions therein. The following are the proposed mechanisms, each described with its shortcomings: 313:. In CDI, cloudy air is mixed into the dry sub-cloud air rather than precipitating into it. The cloudy layer destabilizes due to evaporative cooling and mammatus are formed. 150:
composed of either unequal or similarly-sized lobes. The individual mammatus lobe average diameters of 1–3 kilometres (0.6–1.9 mi) and lengths on average of
1382: 234:
gradually subsides as it spreads out from its source cloud. As air descends, it warms. However, the cloudy air will warm more slowly (at the
146:
with mammatus as they indicate convectively induced turbulence. Contrails may also produce lobes but these are incorrectly termed as mammatus.
781: 262:
fallout is a second proposed formation mechanism. As hydrometeors fall into the dry sub-cloud air, the air containing the precipitation
644:
Winstead, Nathaniel S.; Verlinde, J.; Arthur, S. Tracy; Jaskiewicz, Francine; Jensen, Michael; Miles, Natasha; Nicosia, David (2001).
372: 801: 349:
process must form the protrusions into lobes. Still, the main downfall with this theory is that K-H instability occurs in a stably
87: 1670: 345: 330:
clouds. However, the nature of anvil clouds is that they are largely made up of ice, and are therefore relatively optically thin.
733: 379:
This plenitude of proposed formation mechanisms shows, if nothing else, that the mammatus cloud is generally poorly understood.
360: 1493: 448: 271: 1145: 1639: 1644: 1498: 1192: 1155: 298: 259: 252: 1629: 1508: 1503: 350: 235: 1742: 1378: 1049: 1044: 901: 882: 774: 310: 90: 670: 645: 318: 1404: 1165: 1034: 962: 239: 218:
One environmental trend is shared by all of the formation mechanisms hypothesized for mammatus clouds: sharp
1513: 1374: 1368: 1270: 34: 1624: 1619: 1085: 977: 702: 243: 195: 404: 1518: 1363: 1080: 998: 255:
fallout and cloud-base subsidence, thus rendering it unclear as to whether either process is occurring.
743: 738: 1568: 1456: 1039: 982: 767: 694: 685:
Kanak, Katharine M.; Straka, Jerry M.; Schultz, David M. (2008). "Numerical Simulation of Mammatus".
657: 608: 567: 518: 505:; Bryan, George H.; Durant, Adam J.; Garrett, Timothy J.; Klein, Petra M.; Lilly, Douglas K. (2006). 419: 309:, is called cloud-base detrainment instability (CDI), which acts very much like convective cloud-top 707: 1710: 1476: 1314: 1265: 1170: 1150: 793: 554:
Lane, Todd P.; Sharman, Robert D.; Trier, Stanley B.; Fovell, Robert G.; Williams, John K. (2012).
263: 99: 1573: 1292: 1246: 1219: 1202: 1063: 1017: 1003: 626: 536: 231: 200: 127: 20: 1660: 1614: 1440: 1184: 1128: 828: 501:
Schultz, David M.; Kanak, Katharine M.; Straka, Jerry M.; Trapp, Robert J.; Gordon, Brent A.;
482: 327: 282: 208: 131: 281:
The above processes specifically relied on the destabilization of the sub-cloud layer due to
1747: 1584: 1320: 1160: 712: 665: 616: 575: 526: 427: 342:
Gravity wave trains may be responsible for organizing the mammatus rather than forming them.
1665: 1634: 1559: 1399: 967: 450:
International Cloud Atlas. Volume I. Manual on the observation of clouds and other Meteors
302:
the hydrometeors within them; thus, there should be a dynamical downward forcing, as well.
297:
of the fallout alone are enough to create the lobes. Inhomogeneities in the masses of the
110: 698: 661: 612: 571: 522: 423: 173: 972: 502: 338: 294: 290: 1736: 1680: 1485: 1435: 1427: 1418: 1358: 1350: 1339: 1257: 1137: 1072: 1026: 954: 864: 797: 306: 189: 65:
raincloud, although they may be attached to other classes of parent clouds. The name
630: 540: 457: 184: 1578: 1546: 945: 927: 333: 178: 143: 135: 115: 62: 53:, meaning "mammary cloud") is a cellular pattern of pouches hanging underneath the 753: 595:
Garrett, Timothy J.; Schmidt, Clinton T.; Kihlgren, Stina; Cornet, CĂ©line (2010).
749:
NASA Astronomy Picture of the Day: Mammatus Clouds Over Mexico (30 December 2007)
1540: 810: 286: 267: 123: 1297: 1286: 580: 555: 365: 247: 223: 54: 1325: 354: 71: 26: 748: 716: 621: 596: 507:"The Mysteries of Mammatus Clouds: Observations and Formation Mechanisms" 322: 219: 204: 165:
time. They usually appear around, before, or even after severe weather.
353:
environment, and the mammatus environment is usually at least somewhat
139: 531: 432: 321:) very efficiently at their tops, entire pockets of cool, negatively 80: 126:
and also severe thunderstorms. They often extend from the base of a
754:
Mammatus Clouds over St Albans, Hertfordshire, UK on 12 August 2008
242:). Because of the differential warming, the cloud/sub-cloud layer 1685: 790: 371:
The last proposed formation mechanism is that mammatus arise from
194: 183: 172: 109: 76: 58: 33: 25: 796:
and selected species, supplementary features, and other airborne
405:"Contrail lobes or mamma? The importance of correct terminology" 293:
effects of hydrometeor fallout, another mechanism proposes that
763: 597:"Mammatus Clouds as a Response to Cloud-Base Radiative Heating" 556:"Recent Advances in the Understanding of Near-Cloud Turbulence" 1461: 1379:
Cumulus castellanus (unofficial alternative name for Cu con))
484:
Cloudland: A study on the structure and characters of clouds
911:
No differentiated sub-types; tends to resemble cirrostratus
671:
10.1175/1520-0493(2001)129<0159:HRAROO>2.0.CO;2
16:
Distinct pattern of pouches on the underside of some clouds
19:"Mammatus" redirects here. For the Ninjago character, see 646:"High-Resolution Airborne Radar Observations of Mammatus" 487:. London, England: Edward Stanford. pp. 104–105. 1385:
term for Cu con and "Cu cas" is Towering cumulus ))
1694: 1653: 1607: 1598: 1556: 1531: 1484: 1475: 1449: 1426: 1417: 1392: 1349: 1338: 1307: 1279: 1256: 1245: 1236: 1212: 1201: 1183: 1136: 1127: 1118: 1098: 1071: 1062: 1025: 1016: 991: 953: 944: 935: 926: 900: 881: 872: 863: 827: 818: 809: 456:. World Meteorological Organization. Archived from 1706:(Mother cloud)+mutatus (e.g. cumulomutatus (cumut) 1703:(Mother cloud)+genitus (e.g. cumulogenitus (cugen) 560:Bulletin of the American Meteorological Society 199:Several pouches of mammatus clouds seen under 30:Mammatus clouds formation in Coimbatore, India 775: 744:Mammatus Clouds sagging pouch-like structures 8: 305:Another method, that was first proposed by 1604: 1481: 1423: 1346: 1253: 1242: 1209: 1133: 1124: 1068: 1022: 950: 941: 932: 878: 869: 824: 815: 782: 768: 760: 398: 396: 394: 392: 188:Mammatus cloud formation lit by sunset in 883:Nacreous polar stratospheric clouds (PSC) 706: 669: 620: 579: 530: 496: 494: 431: 177:Panorama of mammatus cloud formations in 804:Latin terminology except where indicated 756:at the BBC News web site. 21 August 2008 734:Forming Mammatus Clouds Time Lapse Video 122:Mammatus are most often associated with 38:Mammatus clouds over the Nepal Himalayas 1107:Mutatus non-height specific (see below) 739:Mammatus clouds over Hastings, Nebraska 403:Schultz, David M.; Hancock, Y. (2016). 388: 222:in temperature, moisture and momentum ( 238:) than the sub-cloud, dry air (at the 7: 1509:Stratocumulus stratiformis (Sc str) 1504:Stratocumulus lenticularis (Sc len) 687:Journal of the Atmospheric Sciences 601:Journal of the Atmospheric Sciences 511:Journal of the Atmospheric Sciences 1494:Stratocumulus castellanus (Sc cas) 1050:Cirrocumulus stratiformis (Cc str) 1045:Cirrocumulus lenticularis (Cc len) 346:Kelvin–Helmholtz (K–H) instability 14: 1166:Altocumulus stratiformis (Ac str) 1161:Altocumulus lenticularis (Ac len) 1035:Cirrocumulus castellanus (Cc cas) 169:Hypothesized formation mechanisms 1271:Cumulonimbus capillatus (Cb cap) 1146:Altocumulus castellanus (Ac cas) 904:polar stratospheric clouds (PSC) 142:are strongly cautioned to avoid 1450:St-only genitus cloud and other 1086:Cirrostratus nebulosus (Cs neb) 1519:Stratocumulus volutus (Sc vol) 1499:Stratocumulus floccus (Sc flo) 1280:Cb-only supplementary features 1081:Cirrostratus fibratus (Cs fib) 130:, but may also be found under 1: 1457:Stratus silvagenitus (St sil) 1315:Cumulonimbus flumen ((Cb flu) 1308:Cb-only accessories and other 1156:Altocumulus lacunosus (Ac la) 1040:Cirrocumulus floccus (Cc flo) 481:Ley, William Clement (1894). 1266:Cumulonimbus calvus (Cb cal) 1171:Altocumulus volutus (Ac vol) 1151:Altocumulus floccus (Ac flo) 845:Noctilucent type III billows 1220:Nimbostratus virga (Ns vir) 963:Cirrus castellanus (Ci cas) 361:Rayleigh–Taylor instability 1764: 1441:Stratus nebulosus (St neb) 1375:Cumulus congestus (Cu con) 1369:Cumulus mediocris (Cu med) 1004:Cirrus vertebratus (Ci ve) 848:Noctilucent type IV whirls 373:Rayleigh–BĂ©nard convection 289:effects. Discounting the 236:moist adiabatic lapse rate 69:is derived from the Latin 18: 1298:Cumulonimbus murus ((mur) 1287:Cumulonimbus cauda ((cau) 978:Cirrus spissatus (Ci spa) 842:Noctilucent type II bands 581:10.1175/BAMS-D-11-00062.1 91:International Cloud Atlas 1436:Stratus fractus (St fra) 1364:Cumulus humilis (Cu hum) 1343:Variable vertical extent 1293:Cumulonimbus incus (inc) 968:Cirrus fibratus (Ci fib) 839:Noctilucent type I veils 833:Polar mesospheric clouds 240:dry adiabatic lapse rate 1514:Stratocumulus Undulatus 999:Cirrus intortus (Ci in) 983:Cirrus uncinus (Ci unc) 973:Cirrus floccus (Ci flo) 1654:Supplementary features 1534:supplementary features 650:Monthly Weather Review 211: 192: 181: 179:Swifts Creek, Victoria 119: 39: 31: 1697:and human-made clouds 1193:Altostratus undulatus 902:Nitric acid and water 717:10.1175/2007JAS2469.1 622:10.1175/2010JAS3513.1 198: 187: 176: 114:Mammatus clouds on a 113: 37: 29: 319:Stefan–Boltzmann law 190:Visakhapatnam, India 1715:Homomutatus (homut) 1711:Homogenitus (hogen) 1681:Praecipitatio (pra) 893:Lenticular nacreous 699:2008JAtS...65.1606K 662:2001MWRv..129..159W 613:2010JAtS...67.3891G 572:2012BAMS...93..499L 523:2006JAtS...63.2409S 424:2016Wthr...71..203S 100:William Clement Ley 1477:Stratocumulus (Sc) 1464:(Fg) Surface level 1405:Trade wind cumulus 890:Cirriform nacreous 447:Anonymous (1975). 368:atmospheric flows. 232:cumulonimbus cloud 212: 201:cumulonimbus incus 193: 182: 128:cumulonimbus cloud 120: 40: 32: 21:Mammatus (Ninjago) 1730: 1729: 1726: 1725: 1722: 1721: 1640:Translucidus (tr) 1594: 1593: 1527: 1526: 1471: 1470: 1413: 1412: 1334: 1333: 1250:Towering vertical 1247:Cumulonimbus (Cb) 1232: 1231: 1228: 1227: 1203:Nimbostratus (Ns) 1179: 1178: 1114: 1113: 1094: 1093: 1064:Cirrostratus (Cs) 1058: 1057: 1018:Cirrocumulus (Cc) 1012: 1011: 992:Ci-only varieties 922: 921: 918: 917: 859: 858: 855: 854: 532:10.1175/JAS3758.1 86:According to the 1755: 1743:Accessory clouds 1605: 1585:Actinoform cloud 1482: 1424: 1347: 1321:Overshooting top 1254: 1243: 1210: 1185:Altostratus (As) 1134: 1129:Altocumulus (Ac) 1125: 1069: 1023: 951: 942: 933: 879: 870: 825: 816: 784: 777: 770: 761: 721: 720: 710: 682: 676: 675: 673: 641: 635: 634: 624: 592: 586: 585: 583: 551: 545: 544: 534: 498: 489: 488: 478: 472: 471: 469: 468: 462: 455: 444: 438: 437: 435: 433:10.1002/wea.2765 409: 400: 159: 158: 154: 1763: 1762: 1758: 1757: 1756: 1754: 1753: 1752: 1733: 1732: 1731: 1718: 1707: 1696: 1690: 1661:Asperitas (asp) 1649: 1630:Perlucidus (pe) 1615:Duplicatus (du) 1600: 1590: 1587:(Stratocumulus) 1560:accessory cloud 1558: 1552: 1533: 1523: 1467: 1445: 1409: 1388: 1342: 1330: 1303: 1275: 1249: 1238: 1224: 1205: 1197: 1175: 1120: 1110: 1100: 1099:High-level-only 1090: 1054: 1008: 987: 937: 914: 903: 896: 874: 873:Very high-level 851: 832: 820: 805: 788: 730: 725: 724: 708:10.1.1.720.2477 684: 683: 679: 643: 642: 638: 594: 593: 589: 553: 552: 548: 503:Zrnić, Dusan S. 500: 499: 492: 480: 479: 475: 466: 464: 460: 453: 446: 445: 441: 407: 402: 401: 390: 385: 328:optically thick 291:thermodynamical 258:Cooling due to 230:The anvil of a 171: 156: 152: 151: 108: 106:Characteristics 24: 17: 12: 11: 5: 1761: 1759: 1751: 1750: 1745: 1735: 1734: 1728: 1727: 1724: 1723: 1720: 1719: 1717: 1716: 1713: 1708: 1704: 1700: 1698: 1695:Mother clouds 1692: 1691: 1689: 1688: 1683: 1678: 1673: 1668: 1663: 1657: 1655: 1651: 1650: 1648: 1647: 1645:Undulatus (un) 1642: 1637: 1632: 1627: 1622: 1620:Lacunosus (la) 1617: 1611: 1609: 1602: 1596: 1595: 1592: 1591: 1589: 1588: 1581: 1576: 1571: 1565: 1563: 1557:Low-level-only 1554: 1553: 1551: 1550: 1544: 1537: 1535: 1532:Low-level-only 1529: 1528: 1525: 1524: 1522: 1521: 1516: 1511: 1506: 1501: 1496: 1490: 1488: 1479: 1473: 1472: 1469: 1468: 1466: 1465: 1459: 1453: 1451: 1447: 1446: 1444: 1443: 1438: 1432: 1430: 1421: 1415: 1414: 1411: 1410: 1408: 1407: 1402: 1396: 1394: 1390: 1389: 1387: 1386: 1371: 1366: 1361: 1355: 1353: 1344: 1336: 1335: 1332: 1331: 1329: 1328: 1323: 1318: 1311: 1309: 1305: 1304: 1302: 1301: 1295: 1290: 1283: 1281: 1277: 1276: 1274: 1273: 1268: 1262: 1260: 1251: 1240: 1234: 1233: 1230: 1229: 1226: 1225: 1223: 1222: 1216: 1214: 1207: 1199: 1198: 1196: 1195: 1189: 1187: 1181: 1180: 1177: 1176: 1174: 1173: 1168: 1163: 1158: 1153: 1148: 1142: 1140: 1131: 1122: 1116: 1115: 1112: 1111: 1109: 1108: 1104: 1102: 1096: 1095: 1092: 1091: 1089: 1088: 1083: 1077: 1075: 1066: 1060: 1059: 1056: 1055: 1053: 1052: 1047: 1042: 1037: 1031: 1029: 1020: 1014: 1013: 1010: 1009: 1007: 1006: 1001: 995: 993: 989: 988: 986: 985: 980: 975: 970: 965: 959: 957: 948: 939: 930: 924: 923: 920: 919: 916: 915: 913: 912: 908: 906: 898: 897: 895: 894: 891: 887: 885: 876: 867: 861: 860: 857: 856: 853: 852: 850: 849: 846: 843: 840: 836: 834: 822: 813: 807: 806: 789: 787: 786: 779: 772: 764: 758: 757: 751: 746: 741: 736: 729: 728:External links 726: 723: 722: 677: 656:(1): 159–166. 636: 587: 546: 490: 473: 439: 387: 386: 384: 381: 377: 376: 369: 358: 343: 331: 314: 303: 287:latent heating 279: 275: 256: 170: 167: 107: 104: 61:, typically a 51:mammatocumulus 15: 13: 10: 9: 6: 4: 3: 2: 1760: 1749: 1746: 1744: 1741: 1740: 1738: 1714: 1712: 1709: 1705: 1702: 1701: 1699: 1693: 1687: 1684: 1682: 1679: 1677: 1674: 1672: 1671:Fluctus (flu) 1669: 1667: 1664: 1662: 1659: 1658: 1656: 1652: 1646: 1643: 1641: 1638: 1636: 1635:Radiatus (ra) 1633: 1631: 1628: 1626: 1623: 1621: 1618: 1616: 1613: 1612: 1610: 1606: 1603: 1597: 1586: 1582: 1580: 1577: 1575: 1572: 1570: 1567: 1566: 1564: 1561: 1555: 1549:Funnel cloud) 1548: 1545: 1542: 1539: 1538: 1536: 1530: 1520: 1517: 1515: 1512: 1510: 1507: 1505: 1502: 1500: 1497: 1495: 1492: 1491: 1489: 1487: 1483: 1480: 1478: 1474: 1463: 1460: 1458: 1455: 1454: 1452: 1448: 1442: 1439: 1437: 1434: 1433: 1431: 1429: 1425: 1422: 1420: 1416: 1406: 1403: 1401: 1398: 1397: 1395: 1391: 1384: 1380: 1376: 1372: 1370: 1367: 1365: 1362: 1360: 1357: 1356: 1354: 1352: 1348: 1345: 1341: 1337: 1327: 1324: 1322: 1319: 1316: 1313: 1312: 1310: 1306: 1299: 1296: 1294: 1291: 1288: 1285: 1284: 1282: 1278: 1272: 1269: 1267: 1264: 1263: 1261: 1259: 1255: 1252: 1248: 1244: 1241: 1235: 1221: 1218: 1217: 1215: 1211: 1208: 1204: 1200: 1194: 1191: 1190: 1188: 1186: 1182: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1143: 1141: 1139: 1135: 1132: 1130: 1126: 1123: 1117: 1106: 1105: 1103: 1101:mutatus cloud 1097: 1087: 1084: 1082: 1079: 1078: 1076: 1074: 1070: 1067: 1065: 1061: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1032: 1030: 1028: 1024: 1021: 1019: 1015: 1005: 1002: 1000: 997: 996: 994: 990: 984: 981: 979: 976: 974: 971: 969: 966: 964: 961: 960: 958: 956: 952: 949: 947: 943: 940: 934: 931: 929: 925: 910: 909: 907: 905: 899: 892: 889: 888: 886: 884: 880: 877: 871: 868: 866: 865:Stratospheric 862: 847: 844: 841: 838: 837: 835: 830: 826: 823: 819:Extreme-level 817: 814: 812: 808: 803: 799: 795: 792: 785: 780: 778: 773: 771: 766: 765: 762: 755: 752: 750: 747: 745: 742: 740: 737: 735: 732: 731: 727: 718: 714: 709: 704: 700: 696: 692: 688: 681: 678: 672: 667: 663: 659: 655: 651: 647: 640: 637: 632: 628: 623: 618: 614: 610: 606: 602: 598: 591: 588: 582: 577: 573: 569: 565: 561: 557: 550: 547: 542: 538: 533: 528: 524: 520: 516: 512: 508: 504: 497: 495: 491: 486: 485: 477: 474: 463:on 2017-07-08 459: 452: 451: 443: 440: 434: 429: 425: 421: 417: 413: 406: 399: 397: 395: 393: 389: 382: 380: 374: 370: 367: 362: 359: 356: 352: 347: 344: 340: 335: 334:Gravity waves 332: 329: 324: 320: 315: 312: 308: 307:Kerry Emanuel 304: 300: 296: 292: 288: 284: 280: 276: 273: 269: 265: 261: 257: 254: 249: 245: 241: 237: 233: 229: 228: 227: 225: 221: 216: 210: 206: 202: 197: 191: 186: 180: 175: 168: 166: 162: 147: 145: 141: 137: 133: 129: 125: 117: 112: 105: 103: 101: 96: 92: 89: 84: 82: 78: 74: 73: 68: 64: 60: 56: 52: 48: 45:(also called 44: 36: 28: 22: 1675: 1579:Pannus (pan) 1569:Pileus (pil) 1541:Arcus ((arc) 1419:Stratus (St) 1340:Cumulus (Cu) 1317:Beaver tail) 1119:Medium-level 928:Tropospheric 798:hydrometeors 690: 686: 680: 653: 649: 639: 607:(12): 3891. 604: 600: 590: 563: 559: 549: 517:(10): 2409. 514: 510: 483: 476: 465:. Retrieved 458:the original 449: 442: 415: 411: 378: 299:hydrometeors 244:destabilizes 217: 213: 163: 148: 144:cumulonimbus 124:anvil clouds 121: 116:cumulonimbus 94: 85: 70: 66: 63:cumulonimbus 50: 46: 42: 41: 1686:Virga (vir) 1676:Mamma (mam) 1666:Cavum (cav) 1625:Opacus (op) 1574:Velum (vel) 1547:Tuba ((tub) 1300:Wall cloud) 1289:Tail cloud) 1206:Multi-level 946:Cirrus (Ci) 829:Noctilucent 811:Mesospheric 693:(5): 1606. 311:entrainment 272:sublimation 268:evaporation 260:hydrometeor 253:hydrometeor 132:altostratus 1737:Categories 1599:Non-height 936:High-level 566:(4): 499. 467:2017-05-13 418:(8): 203. 383:References 351:stratified 248:convective 224:wind shear 118:capillatus 75:(meaning " 1608:Varieties 1562:and other 1400:Horseshoe 1326:Hot tower 1237:Low-level 1213:Varieties 703:CiteSeerX 355:turbulent 283:adiabatic 220:gradients 1601:specific 875:15–30 km 821:80–85 km 631:54938314 541:53128552 295:dynamics 278:present. 140:aviators 67:mammatus 43:Mammatus 1748:Cumulus 1583:Other- 1486:Species 1428:Species 1359:Fractus 1351:Species 1258:Species 1138:Species 1073:Species 1027:Species 955:Species 938:3–18 km 695:Bibcode 658:Bibcode 609:Bibcode 568:Bibcode 519:Bibcode 420:Bibcode 412:Weather 366:sheared 339:updraft 323:buoyant 266:due to 155:⁄ 1543:Shelf) 1239:0–2 km 1121:2–8 km 794:genera 705:  629:  539:  209:Laguna 136:cirrus 134:, and 81:breast 79:" or " 1393:Other 831:(NLC) 791:Cloud 627:S2CID 537:S2CID 461:(PDF) 454:(PDF) 408:(PDF) 264:cools 205:Biñan 95:mamma 77:udder 72:mamma 59:cloud 57:of a 47:mamma 1383:ICAO 246:and 83:"). 55:base 49:or 1462:Fog 802:WMO 713:doi 666:doi 654:129 617:doi 576:doi 527:doi 428:doi 285:or 270:or 203:in 88:WMO 1739:: 800:- 711:. 701:. 691:65 689:. 664:. 652:. 648:. 625:. 615:. 605:67 603:. 599:. 574:. 564:93 562:. 558:. 535:. 525:. 515:63 513:. 509:. 493:^ 426:. 416:71 414:. 410:. 391:^ 207:, 102:. 93:, 1381:( 1377:( 1373:( 783:e 776:t 769:v 719:. 715:: 697:: 674:. 668:: 660:: 633:. 619:: 611:: 584:. 578:: 570:: 543:. 529:: 521:: 470:. 436:. 430:: 422:: 357:. 317:( 157:2 153:1 23:.

Index

Mammatus (Ninjago)


base
cloud
cumulonimbus
mamma
udder
breast
WMO
International Cloud Atlas
William Clement Ley

cumulonimbus
anvil clouds
cumulonimbus cloud
altostratus
cirrus
aviators
cumulonimbus

Swifts Creek, Victoria

Visakhapatnam, India

cumulonimbus incus
Biñan
Laguna
gradients
wind shear

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑