Knowledge

Manchester code

Source 📝

200: 786: 682: 244:). It specifies that for a 0 bit the signal levels will be low–high (assuming an amplitude physical encoding of the data) – with a low level in the first half of the bit period, and a high level in the second half. For a 1 bit the signal levels will be high–low. This is also known as Manchester II or Biphase-L code. 274:
The existence of guaranteed transitions allows the signal to be self-clocking, and also allows the receiver to align correctly; the receiver can identify if it is misaligned by half a bit period, as there will no longer always be a transition during each bit period. The price of these benefits is a
228:
Manchester code always has a transition at the middle of each bit period and may (depending on the information to be transmitted) have a transition at the start of the period also. The direction of the mid-bit transition indicates the data. Transitions at the period boundaries do not carry
686: 1029: 262:
If a Manchester encoded signal is inverted in communication, it is transformed from one convention to the other. This ambiguity can be overcome by using
169:
Manchester coding's data rate is only half that of a non-coded signal, which limits its usefulness to systems where bandwidth is not an issue, such as a
259:(Ethernet) standards. It states that a logic 0 is represented by a high–low signal sequence and a logic 1 is represented by a low–high signal sequence. 499: 134:
whose frequency is the data rate. Manchester code ensures frequent line voltage transitions, directly proportional to the clock rate; this helps
736: 460: 930: 616: 578: 828: 408: 403: 263: 697: 691: 544:
Manchester encoding introduces some difficult frequency-related problems that make it unsuitable for use at higher data rates.
935: 521: 184: 176:
Manchester encoding introduces difficult frequency-related problems that make it unsuitable for use at higher data rates.
904: 429: 374:
by high-to-low transition (according to G. E. Thomas's convention – in the IEEE 802.3 convention, the reverse is true).
145:
of the encoded signal is not dependent on the data and therefore carries no information. Therefore connections may be
986: 729: 153:
coupled, allowing the signal to be conveyed conveniently by galvanically isolated media (e.g., Ethernet) using a
123: 170: 107: 76: 90:
on 1600 bpi computer tapes before the introduction of 6250 bpi tapes which used the more efficient
976: 95: 489: 240:
The first of these was first published by G. E. Thomas in 1949 and is followed by numerous authors (e.g.,
199: 992: 722: 229:
information. They exist only to place the signal in the correct state to allow the mid-bit transition.
91: 37: 785: 998: 971: 874: 398: 61: 1024: 1003: 884: 844: 556: 150: 818: 813: 808: 632: 276: 146: 87: 69: 33: 608: 598: 570: 560: 869: 760: 714: 612: 594: 574: 461:"Communicating Over Billions of Miles: Long Distance Communications in the Voyager Spacecraft" 248: 158: 80: 899: 864: 765: 663: 154: 894: 180: 111: 966: 909: 889: 879: 803: 775: 241: 135: 131: 1018: 770: 604: 566: 527: 127: 701: 289: 142: 65: 531: 17: 745: 707: 99: 187:
to achieve the same data rate but may be less tolerant of frequency errors and
981: 256: 252: 795: 667: 437: 53: 654:
Forster, R. (2000). "Manchester encoding: Opposing definitions resolved".
79:, where the coding was used for storing data on the magnetic drums of the 68:. Consequently, electrical connections using a Manchester code are easily 961: 951: 388:
Transitions at the start of a period are overhead and don't signify data.
494: 914: 188: 237:
There are two opposing conventions for the representations of data.
60:
is either low then high, or high then low, for equal time. It is a
247:
The second convention is also followed by numerous authors (e.g.,
956: 859: 854: 849: 210: 103: 718: 57: 75:
Manchester code derives its name from its development at the
204: 275:
doubling of the bandwidth requirement compared to simpler
27:
Line code used in early magnetic data storage and Ethernet
110:. It was and still is used for uploading commands to the 1030:
Department of Computer Science, University of Manchester
363:
Each bit is transmitted in a fixed time (the period).
923: 837: 793: 753: 191:in the transmitter and receiver reference clocks. 634:Manchester Data Encoding for Radio Communications 203:An example of Manchester encoding showing both 730: 8: 490:"Old, but Still Useful: The Manchester Code" 370:is expressed by a low-to-high transition, a 656:Engineering Science & Education Journal 737: 723: 715: 286: 255:(token bus) and lower speed versions of 198: 420: 122:Manchester coding is a special case of 829:Differential Manchester/biphase (Bi-φ) 233:Conventions for representation of data 205:conventions for representation of data 179:There are more complex codes, such as 809:Non-return-to-zero, level (NRZ/NRZ-L) 359:Encoding conventions are as follows: 7: 814:Non-return-to-zero, inverted (NRZ-I) 483: 481: 161:which cannot convey a DC component. 126:(BPSK), where the data controls the 94:. Manchester code was used in early 86:Manchester code was widely used for 502:from the original on 22 August 2022 56:in which the encoding of each data 385:occur at the midpoint of a period. 25: 931:Carrier-suppressed return-to-zero 819:Non-return-to-zero, space (NRZ-S) 430:"Digital Magnetic Tape Recording" 784: 685: This article incorporates 680: 600:Data and Computer Communications 409:Binary offset carrier modulation 404:Differential Manchester encoding 264:differential Manchester encoding 748:(digital baseband transmission) 698:General Services Administration 98:standards and is still used in 936:Alternate-phase return-to-zero 488:Oed, Richard (22 April 2022). 377:The transitions which signify 1: 905:Eight-to-fourteen modulation 459:Hughes, Mark (2 July 2017). 428:Savard, John J. G. (2018) . 1046: 987:Pulse-amplitude modulation 944: 782: 338: 322: 314: 311: 292:logic (802.3 convention) 124:binary phase-shift keying 982:Pulse modulation methods 865:Alternate mark inversion 171:local area network (LAN) 108:near-field communication 77:University of Manchester 977:Ethernet physical layer 96:Ethernet physical layer 693:Federal Standard 1037C 687:public domain material 225: 993:Pulse-code modulation 910:Delay/Miller encoding 706: (in support of 668:10.1049/esej:20000609 523:Ethernet Technologies 202: 195:Encoding and decoding 157:—a simple one-to-one 92:group-coded recording 70:galvanically isolated 999:Serial communication 972:Digital transmission 875:Coded mark inversion 557:Tanenbaum, Andrew S. 399:Coded mark inversion 288:Encoding data using 62:self-clocking signal 1004:Category:Line codes 885:Hybrid ternary code 845:Conditioned diphase 838:Extended line codes 804:Return to zero (RZ) 704:on 22 January 2022. 534:on 28 December 2018 293: 924:Optical line codes 595:Stallings, William 465:All About Circuits 287: 226: 112:Voyager spacecraft 88:magnetic recording 34:telecommunications 1012: 1011: 870:Modified AMI code 761:Unipolar encoding 562:Computer Networks 357: 356: 307:Manchester value 249:William Stallings 159:pulse transformer 130:of a square wave 81:Manchester Mark 1 18:Manchester coding 16:(Redirected from 1037: 900:64b/66b encoding 788: 766:Bipolar encoding 739: 732: 725: 716: 711: 705: 700:. Archived from 684: 683: 672: 671: 651: 645: 644: 643: 641: 629: 623: 622: 603:(7th ed.). 591: 585: 584: 565:(4th ed.). 553: 547: 546: 541: 539: 530:, archived from 518: 512: 511: 509: 507: 485: 476: 475: 473: 471: 456: 450: 449: 447: 445: 436:. Archived from 425: 384: 380: 373: 369: 294: 279:coding schemes. 251:) as well as by 224: 183:, that use less 155:network isolator 21: 1045: 1044: 1040: 1039: 1038: 1036: 1035: 1034: 1015: 1014: 1013: 1008: 940: 919: 895:8b/10b encoding 833: 789: 780: 749: 743: 713: 690: 681: 679: 676: 675: 653: 652: 648: 639: 637: 631: 630: 626: 619: 593: 592: 588: 581: 555: 554: 550: 537: 535: 520: 519: 515: 505: 503: 487: 486: 479: 469: 467: 458: 457: 453: 443: 441: 427: 426: 422: 417: 395: 382: 378: 371: 367: 316: 285: 272: 235: 223: 216: 208: 207:, where : 197: 181:8B/10B encoding 167: 120: 44:(also known as 42:Manchester code 28: 23: 22: 15: 12: 11: 5: 1043: 1041: 1033: 1032: 1027: 1017: 1016: 1010: 1009: 1007: 1006: 1001: 996: 990: 984: 979: 974: 969: 967:Digital signal 964: 959: 954: 945: 942: 941: 939: 938: 933: 927: 925: 921: 920: 918: 917: 912: 907: 902: 897: 892: 890:6b/8b encoding 887: 882: 880:MLT-3 encoding 877: 872: 867: 862: 857: 852: 847: 841: 839: 835: 834: 832: 831: 826: 821: 816: 811: 806: 800: 798: 791: 790: 783: 781: 779: 778: 776:Mark and space 773: 768: 763: 757: 755: 751: 750: 744: 742: 741: 734: 727: 719: 677: 674: 673: 662:(6): 278–280. 646: 624: 617: 586: 579: 548: 513: 477: 451: 440:on 2 July 2018 419: 418: 416: 413: 412: 411: 406: 401: 394: 391: 390: 389: 386: 375: 364: 355: 354: 351: 347: 346: 343: 340: 336: 335: 332: 328: 327: 324: 321: 318: 313: 309: 308: 305: 303: 300: 298: 297:Original data 284: 281: 271: 268: 242:Andy Tanenbaum 234: 231: 221: 214: 196: 193: 166: 163: 136:clock recovery 119: 116: 46:phase encoding 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1042: 1031: 1028: 1026: 1023: 1022: 1020: 1005: 1002: 1000: 997: 994: 991: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 958: 955: 953: 950: 947: 946: 943: 937: 934: 932: 929: 928: 926: 922: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 856: 853: 851: 848: 846: 843: 842: 840: 836: 830: 827: 825: 822: 820: 817: 815: 812: 810: 807: 805: 802: 801: 799: 797: 792: 787: 777: 774: 772: 771:On-off keying 769: 767: 764: 762: 759: 758: 756: 754:Main articles 752: 747: 740: 735: 733: 728: 726: 721: 720: 717: 712: 709: 703: 699: 695: 694: 688: 669: 665: 661: 657: 650: 647: 636: 635: 628: 625: 620: 618:0-13-100681-9 614: 610: 606: 605:Prentice Hall 602: 601: 596: 590: 587: 582: 580:0-13-066102-3 576: 572: 568: 567:Prentice Hall 564: 563: 558: 552: 549: 545: 533: 529: 528:Cisco Systems 525: 524: 517: 514: 501: 497: 496: 491: 484: 482: 478: 466: 462: 455: 452: 439: 435: 431: 424: 421: 414: 410: 407: 405: 402: 400: 397: 396: 392: 387: 376: 365: 362: 361: 360: 352: 349: 348: 344: 341: 337: 333: 330: 329: 325: 319: 310: 306: 304: 301: 299: 296: 295: 291: 282: 280: 278: 269: 267: 265: 260: 258: 254: 250: 245: 243: 238: 232: 230: 220: 213: 212: 206: 201: 194: 192: 190: 186: 182: 177: 174: 172: 164: 162: 160: 156: 152: 148: 144: 139: 137: 133: 129: 125: 117: 115: 113: 109: 105: 101: 97: 93: 89: 84: 82: 78: 73: 71: 67: 63: 59: 55: 51: 47: 43: 39: 35: 30: 19: 948: 823: 702:the original 692: 678: 659: 655: 649: 638:, retrieved 633: 627: 599: 589: 561: 551: 543: 538:12 September 536:, retrieved 532:the original 522: 516: 504:. Retrieved 493: 470:27 September 468:. Retrieved 464: 454: 442:. Retrieved 438:the original 433: 423: 358: 290:exclusive or 273: 261: 246: 239: 236: 227: 218: 209: 178: 175: 168: 151:capacitively 143:DC component 140: 121: 85: 74: 66:DC component 49: 45: 41: 38:data storage 31: 29: 746:Line coding 708:MIL-STD-188 607:. pp.  569:. pp.  219:10100111001 165:Limitations 147:inductively 102:protocols, 100:consumer IR 1025:Line codes 1019:Categories 824:Manchester 796:line codes 506:2 February 415:References 257:IEEE 802.3 253:IEEE 802.4 83:computer. 949:See also: 434:quadibloc 185:bandwidth 54:line code 962:Bit rate 952:Baseband 597:(2004). 559:(2002). 500:Archived 393:See also 283:Encoding 270:Decoding 118:Features 64:with no 609:137–138 571:274–275 495:DigiKey 444:16 July 132:carrier 52:) is a 915:TC-PAM 794:Basic 640:28 May 615:  577:  302:Clock 189:jitter 995:(PCM) 989:(PAM) 689:from 128:phase 48:, or 957:Baud 860:2B1Q 855:4B5B 850:4B3T 642:2018 613:ISBN 575:ISBN 540:2017 508:2023 472:2024 446:2018 315:XOR 211:1337 141:The 106:and 104:RFID 36:and 664:doi 381:or 277:NRZ 149:or 58:bit 32:In 1021:: 710:). 696:. 658:. 611:. 573:. 542:, 526:, 498:. 492:. 480:^ 463:. 432:. 366:A 353:0 345:1 339:1 334:1 326:0 323:= 320:0 317:⊕ 312:0 266:. 217:= 215:10 173:. 138:. 114:. 72:. 50:PE 40:, 738:e 731:t 724:v 670:. 666:: 660:9 621:. 583:. 510:. 474:. 448:. 383:1 379:0 372:1 368:0 350:1 342:0 331:1 222:2 20:)

Index

Manchester coding
telecommunications
data storage
line code
bit
self-clocking signal
DC component
galvanically isolated
University of Manchester
Manchester Mark 1
magnetic recording
group-coded recording
Ethernet physical layer
consumer IR
RFID
near-field communication
Voyager spacecraft
binary phase-shift keying
phase
carrier
clock recovery
DC component
inductively
capacitively
network isolator
pulse transformer
local area network (LAN)
8B/10B encoding
bandwidth
jitter

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.