Knowledge

Manganese nodule

Source 📝

1403:
compaction and lessen the amount of disturbed sediment at the rear of the vehicle. Since many deep seas are extremely dependent on the hard substrate of manganese nodules in their food chain, another option would be to leave at least a few tracks of nodules left and to not harvest them. Due to the extremely long growth rate, the mined manganese nodules will not return for millions of years. To combat this, distributing manufactured replacement nodules could be an option. But these possibilities also need to be further explored. The most beneficial mitigation effect would bring a reduction of the sediment plumes and their spreading, as these not only affect the immediate surroundings, but also affect the ecosystem at considerable distances from the nodule harvesting sites.Experimental studies in the 1990s concluded in part that trial mining at a reasonable scale would likely help best constrain real impacts from any commercial mining.
1079: 3846: 42: 407: 600: 53: 1354:, as many of them use sound as their primary mode of communication. The extreme background noise caused by the mining machines can interfere with the communication between animals and limit their ability to detect prey. Furthermore, noise and vibration can affect auditory senses and systems of marine animals. Noise can be caused during different processes of deep-sea mining: 1188:. This enormous demand in cobalt sets the ocean into a new light — many countries have already staked their claims. Yet at the same time, mining them might cause even greater damages to the deep-sea ecosystem. Some scientists question the prime economical interest in manganese nodules. As far as they are concerned, such biological resources could be an untapped value for 924:
processing nodules. These studies were carried out by four multinational consortia composed of companies from the United States, Canada, the United Kingdom, West Germany, Belgium, the Netherlands, Italy, Japan, and two groups of private companies and agencies from France and Japan. There were also three publicly sponsored entities from the Soviet Union, India and China.
790:. Similar to the marine nodules, concretion layers are defined based on iron and manganese content as well as their combination. High iron content nodules appear a red or brown color, while high manganese content appears black or grey. The dominant metal oxide is related to the elements enriched in the nodule. In manganese-dominated nodules, enriched elements include 1416:
million years. Their extreme slow growth rate is not continuous or regular and differs regarding the environment and surface. They may also not grow at all or be completely buried for periods of time. Altogether, manganese nodules grow with an average of 10-20 mm per million years and usually have an age of several million years – if they are not mined. Because many
1304:" need over 50 years to return to their undisturbed initial state. The DISCOL impact study aimed to reveal the potential long-term impacts of deep-sea mining-related disturbances on seafloor integrity by revisiting 26-year-old plough tracks. While nodules appeared outside the tracks dusted with sediments, the plough tracks themselves were clearly devoid of nodules. 31: 1160:
compensation depth produces the most desirable rare metal ratio in hydrogenic nodules. As the grade of ores from terrestrial mines has decreased over time, ferromanganese nodules may offer a way to meet the growing global demand for rare metals. However, the low estimated growth rate of hydrogenic nodules of about 2–5 mm per million years categorizes them as a
753:. Hydrogenetic nodules have a higher iron and cobalt enrichment with manganese to iron ratios less than 2.5, while diagenetic nodules are more enriched with manganese, nickel, and copper with manganese to iron ratios typically between 2.5 to 5 but upwards to 30+ in sub-oxic conditions. The parent mineral for hydrogenetic nodules is vernadite and 1267:, environmental scientists work in a knowledge poor situation with many gaps and high uncertainty. Nevertheless, there are several sources of cumulative impacts caused within a mining operation that must be considered. These impacts can be directly caused by the mining activities themselves but also occur as indirect impacts such as 1300:
biological effects on the seafloor and cause an altering of various deep-sea ecosystems that scientists are still working to understand. This mining method leads to an inevitable loss of life among animals while the plow tracks remained visible decades later. Recent growth estimates suggest that "microbially mediated
758:
sediment and hydrogenetic layers are found towards the top where it is exposed to the above water column. Nodule layers are discontinuous and vary in thickness on micro to nanometer scale with those composed of higher manganese content typically brighter and those with higher iron content dark and dull.
1324:
in the area around the mining site and therefore have a great impact on the ecosystem of the seabed. The produced plumes contain a mixture of dissolved material and suspended particles of a range of sizes. Dissolved material is transported inextricably by the water that contains it, whereas suspended
896:
Formation of terrestrial ferromanganese nodules involves the accumulation of iron and manganese oxides followed by repeated redox cycles of reductive dissolution and oxidative precipitation. The oscillating redox cycle is controlled by pH, microbial activity, organic matter concentration, groundwater
3037:
Sweetman, Andrew K.; Smith, Alycia J.; de Jonge, Danielle S. W.; Hahn, Tobias; Schroedl, Peter; Silverstein, Michael; Andrade, Claire; Edwards, R. Lawrence; Lough, Alastair J. M.; Woulds, Clare; Homoky, William B.; Koschinsky, Andrea; Fuchs, Sebastian; Kuhn, Thomas; Geiger, Franz; Marlow, Jeffrey J.
1368:
The surface vessel produces several high intensities sounds for example caused by the propellers, engines, generators, and hydraulic pumps. It is also important to consider the fact that the ship will operate almost continuously for many years during the mining contract which usually lasts for 20–30
418:
matrix and surrounding a nucleus. Typically terrestrial nodules are more enriched in iron, while marine nodules tend to have higher manganese to iron ratios, depending on the formation mechanism and surrounding sedimentary composition. Regardless of where they form, the nodules are characterized by
1299:
The dump-truck-sized collection vehicles that scour the seafloor for nodule-bearing sediment, do necessarily destroy the top of the seabed – at a depth of often more than three kilometers below the surface. Scientists found that collection vehicles can have long-lasting physical and
909:
activity could influence these cycles through increased nutrient loading via fertilizers. Assessment of the changing paleoclimate conditions during soil evolution can be explored by analyzing the nodule's concretion structure when combined with dating techniques. Manganese layers typically form at
1415:
is exceptionally slow within the mined areas. A significant proportion of the animals are dependent on the nodules, which create a hard substrate for them. These substrates will not return for millions of years until new nodules are formed. Nodules grow from a few to a few tens of millimeters per
1381:
through the creation of intense noise and light pollution in a naturally dark and silent environment. Light pollution is another important factor that causes environmental impacts on sea life. The light that is used to make mining work undersea possible could attract or repel some animal species,
1200:
Ferromanganese nodules are highly redox active, allowing for interaction with biogeochemical cycles primarily as an electron acceptor. Notably, terrestrial nodules uptake and trap nitrogen, phosphorus, and organic carbon. The higher rate of organic carbon uptake allows nodules to enhance a soil's
1402:
There is still a gap in research of how to reduce these environmental impacts. This is partly because the entire ocean ecosystem still needs to be discovered and researched much more. Some scientists suggest that one possibility would be to reduce the weight of mining vehicles. This could reduce
914:
including but not limited to nickel, cobalt, copper, and zinc are incorporated. Trace metals composition is a product of three processes: uptake of parent material in surrounding soil, accumulation of the products of microbial iron or manganese-reducing bacteria, and complexation on the nodule's
1209:
and release the once immobile phosphorus. Along with nutrients, ferromanganese nodules can sequester toxic heavy metals (lead, copper, zinc, cobalt, nickel, and cadmium) from the soil, improving its quality. However, similar to the release of phosphorus by microbes, reductive dissolution of the
923:
Interest in the potential exploitation of polymetallic nodules generated a great deal of activity among prospective mining consortia in the 1960s and 1970s. Almost half a billion dollars was invested in identifying potential deposits and in research and development of technology for mining and
757:
for diagenetic nodules. The majority of observed nodules are a mixture of hydrogenetic and diagenetic regions of growth, preserving the changes in formation mechanisms over time. Generally, diagenetic layers are found on the bottom where the nodule is either buried in or touching the sea floor
883:
to fuel precipitation. When sedimentation rates are too high, nodules can be completely covered in sediments, lowering the local oxygen levels and preventing precipitation. Growth rates for nodules are a current topic for research complicated by the irregular and discontinuous nature of their
1159:
in the northeastern Pacific Ocean has been observed as an area containing the highest concentration of resource-grade nodules. A bulk weight greater than 3% for nickel, copper, and cobalt is required to be considered resource-grade. Nodule formation in oxic waters at or below the carbonate
1254:
fauna, much of which lives attached to nodules or in the sediment immediately beneath it. Nodule mining could affect tens of thousands of square kilometers of these deep sea ecosystems, and ecosystems take millions of years to recover. It causes habitat alteration, direct mortality of
888:. In general hydrogenetic nodules grow slower than diagenetic at approximately 2–5 mm per million years versus 10 mm per million years. The formation of polynodules from multiple nodules growing together is possible and hypothesized to be facilitated by deposited encrusting organisms. 1424:
for deep-sea species, scientists can not rule out that some species would face extinction from habitat removal due to mining. The affected ecosystems would require extremely long time periods to recover, if ever. Nodule mining could affect tens of thousands of square kilometers of
744:
The size of marine ferromanganese nodules can range from a diameter of 1–15 cm, surrounding a nucleus. The nucleus itself can be made from a variety of small objects in the surrounding environment, including fragments from previously broken down nodules, rock fragments, or sunken
1110:
is based on an estimated amount of 21 billion tons of nodules. Around 44 million tons of cobalt are stored in that area alone, which is around three times more than the land reserves could provide. Manganese nodule fields are not equally distributed on the seafloor within the
1205:, creating a net sink. Phosphorus concentration in the nodules ranges from 2.5 to 7 times the value of the surrounding soil matrix. Microbes in the soil can utilize the nutrient enrichment on the surface of nodules coupled with their redox potential to fuel their 1332:
In addition to the plumes created by mining activities on the seabed, discharge plumes should also be considered, that will be created by the return of excess water. Excess water occurs during the dewatering process on board of the surface vessel as well as when
1183:
causes a rising demand for metals such as copper, nickel cobalt and many other metals used in technology. Manganese Nodules are therefore needed for batteries, laptops, and smartphones, in e-bikes and e-cars, solar and wind turbines as well as for the storage of
1062:, to finalize mining regulations by July 2023. Environmentalists have criticized this move on the grounds that too little is known about seabed ecosystems to understand the potential impacts of deep-sea mining, and some of the major tech companies, including 971:
while simultaneously performing a sub-bottom profile with a derived, vertically oriented, low-frequency acoustic beam. Since then, deep sea technology has improved significantly: including widespread and low cost use of navigation technology such as
1311:
is much greater. The extent of physically disturbed seabed area in one mine contract area only can be assumed to be between 200 and 600 square kilometres (77 and 232 sq mi) each year, which equals the size of a large town.
1693:
Hein, James R.; Mizell, Kira; Koschinsky, Andrea; Conrad, Tracey A. (June 2013). "Deep-ocean mineral deposits as a source of critical metals for high- and green-technology applications: Comparison with land-based resources".
1792:
Hlawatsch, S.; Neumann, T.; van den Berg, C.M.G.; Kersten, M.; Hari, J.; Suess, E. (2002). "Fast-growing, shallow-water ferro-manganese nodules from the western Baltic Sea: origin and modes of trace element incorporation".
1012:
on land, which involves mining a field partitioned into long, narrow strips. The mining support vessel follows the mining route of the seafloor mining tools, picking up the about potato-sized nodules from the seafloor.
567:
Manganese nodules are essentially composed of hydrated phyllomanganates. These are layered Mn-oxide minerals with interlayers containing water molecules in variable quantities. They strongly interact with trace metals
1325:
particles tend to sink. The contained area can be estimated much bigger than the actual mined area, since finer particles and dissolved material will be transported greater distances away from the actual mined area.
1337:
are transported from the mothership to the transport barges. Predictions of the net impact of plumes should therefore consider a range of scenarios. A lot of unknowns remain, scientists warn that there might be
1634:
Verlaan, Philomène A.; Cronan, David S. (April 2022). "Origin and variability of resource-grade marine ferromanganese nodules and crusts in the Pacific Ocean: A review of biogeochemical and physical controls".
576:) because of the octahedral vacancies present in their layers. The particular properties of phyllomanganates explain the role they play in many geochemical concentration processes. They incorporate traces of 1923:
Hein, James; Spinardi, Francesca; Okamoto, Nobuyuki; Mizell, Kira; Thorburn, Darryl; Tawake, Akuila (2015). "Critical metals in manganese nodules from the Cook Islands EEZ, abundances and distributions".
1115:
but rather occur in patches. Economically interesting patches with a high distribution of manganese nodules can cover an area of several thousand square kilometers. This rather irregular nodule
1738:
A Geological Model of Polymetallic Nodule Deposits in the Clarion-Clipperton Fracture Zone and Prospector's Guide for Polymetallic Nodule Deposits in the Clarion Clipperton Fracture Zone
227:
sediment, often partly or completely buried. They vary greatly in abundance, in some cases touching one another and covering more than 70% of the sea floor surface. The total amount of
1411:
The slow recovery potential of ecosystems can be seen as one of the major concerns of nodule mining. Seabed areas that contain nodules will be massively disturbed and the recovery of
655:(CCZ) whereas oxic-hydrogenetic type 1 layers comprise about 35–40%. The remaining part (5–10%) of the nodules consists of incorporated sediment particles occurring along cracks and 2776: 2107:
Blöthe, Marco; Wegorzewski, Anna; Müller, Cornelia; Simon, Frank; Kuhn, Thomas; Schippers, Axel (2015). "Manganese-Cycling Microbial Communities Inside Deep-Sea Manganese Nodules".
427:
content when compared to the Earth's crust and surrounding sediment. However, organically-bound elements in the surrounding environment are not readily incorporated into nodules.
2319:
Wegorzewski, A.V.; Kuhn, T. (2014). "The influence of suboxic diagenesis on the formation of manganese nodules in the Clarion Clipperton nodule belt of the Pacific Ocean".
733:
A wide range of trace elements and trace minerals are found in nodules with many of these incorporated from the seabed sediment, which itself includes particles carried as
1770: 1171:, wind turbines and solar panels require rare types of resources that can be found in the seabed. Manganese nodules provide various sources of these metals, especially 179:
to large pellets more than 20 centimetres (8 in) across. However, most nodules are between 3 and 10 cm (1 and 4 in) in diameter, about the size of hen's
1307:
The contracts to explore for manganese nodules are typically for areas up to 75,000 square kilometres (29,000 sq mi), but the total area affected by the
1420:
are rare, long-lived and slow to reproduce, and because polymetallic nodules (which may take millions of years to develop to a harvestable size) are an important
465:
phenomena, on the order of a centimeter over several million years. Several processes are hypothesized to be involved in the formation of nodules, including the
2675: 3391: 596:, HFO. Slight variations in their crystallographic structure and mineralogical composition may result in considerable changes in their chemical reactivity. 1020:
and other metal supply has needed to turn to higher cost deposits in order to meet increased demand, and commercial interest in nodules has revived. The
1078: 910:
higher redox potentials compared to iron layers, but a period of rapid increase in redox potential can form a mixed layer. As the nodules are formed,
1382:
bright lights can also blind certain marine animals. Strong lights used at the vessel and ships can influence birds as well as near surface animals.
1005: 414:
In both marine and terrestrial environments, ferromanganese nodules are composed primarily of iron and manganese oxide concretions supported by an
3272: 3230: 3211: 3182: 3163: 3091: 2888: 2855: 2609: 2569: 2363: 2254: 1745: 651:
climate. It has been estimated that suboxic-diagenetic type 2 layers make up about 50–60% of the chemical inventory of the nodules from the
2792:
Glover, A. G.; Smith, C. R. (2003). "The deep-sea floor ecosystem: current status and prospects of anthropogenic change by the year 2025".
2763:
Aljazeera Media Network, Science news( report byDwayne Oxford 24 July 2024):Explainer- What is dark oxygen found 13,000 feet under the sea?
989: 2773: 749:
matter. Total nodule composition varies based on the formation mechanism, broadly broken down into two major categories: hydrogenetic and
2531: 1550:
Huang, Laiming (September 2022). "Pedogenic ferromanganese nodules and their impacts on nutrient cycles and heavy metal sequestration".
371:
estimates that the total amount of nodules in the Clarion Clipperton Zone exceeds 21 billions of tons (Bt), containing about 5.95 Bt of
3253: 1031:
Since 2011, a number of commercial companies have received exploration contracts. These include subsidiaries of larger companies like
253:), even in lakes, and are thought to have been a feature of the seas and oceans at least since the deep oceans were oxygenated in the 1271:
and disposition. Multiple impacts can be caused from the same mining activity but affect the deep-sea environment in different ways.
1837: 1024:
has granted new exploration contracts and is progressing development of a Mining Code for The Area, with most interest being in the
2711:
Washburn, Travis W.; Turner, Phillip J.; Durden, Jennifer M.; Jones, Daniel O.B.; Weaver, Philip; Van Dover, Cindy L. (June 2019).
96:
have been identified as a potential economic interest. Depending on their composition and autorial choice, they may also be called
2153:
Novikov, C.V.; Murdmaa, I.O. (2007). "Ion exchange properties of oceanic ferromanganese nodules and enclosing pelagic sediments".
3384: 1762: 1058:
announced a plan to exploit nodules in this area, which requires the International Seabed Authority, which regulates mining in
2762: 1450: 1099: 1021: 963:
methods. In the course of these projects, a number of ancillary developments evolved, including the use of near-bottom towed
368: 3150:, Book: Deep sea mining value chain: organization, technology and development, pp 9–18, Interoceanmetal Joint Organization 985: 1329:
accumulations of plume material will therefore be thicker and contain larger particles close to the source of the plume.
1090:
serves as the largest and most popular area for mining manganese nodules. Extending from approximately 120W to 160W, the
3111:. Proceedings of the International Symposium on Environmental Studies for Deep-Sea Mining. Metal Mining Agency of Japan. 2751: 2004:
The Indian Ocean Nodule Field Geology and Resource Potential: Handbook of Exploration and Environmental Geochemistry 10
730:
and free water. In a given manganese nodule, there is one part of iron oxide for every two parts of manganese dioxide.
3880: 3377: 3900: 3885: 2627:"Life cycle climate change impacts of producing battery metals from land ores versus deep-sea polymetallic nodules" 1116: 3282:
Thomas, Elin A.; Molloy, Aoife; Hanson, Nova B.; Böhm, Monika; Seddon, Mary; Sigwart, Julia D. (9 December 2021).
1230:
because, previously only living things such as plants and algae were known to be capable of producing oxygen via
973: 856: 553: 541: 494: 474: 466: 344: 172: 3147: 3890: 3875: 3870: 3127: 1168: 1051:, and smaller companies like Nauru Ocean Resources, Tonga Offshore Mining and Marawa Research and Exploration. 1025: 727: 360: 2752:
France 24 report (in English): 'Dark Oxygen' in depths of Pacific Ocean prompts new theories on life's origins
2197: 2018: 3309:
Vonnahme, T. R.; Molari, M.; Janssen, F.; Wenzhöfer, F.; Haeckel, M.; Titschack, J.; Boetius, A. (May 2020).
2909:
Vonnahme, T. R.; Molari, M.; Janssen, F.; Wenzhöfer, F.; Haeckel, M.; Titschack, J.; Boetius, A. (May 2020).
1155:, and manganese in ferromanganese nodules has promoted research into their use as a rare metal resource. The 1156: 1112: 1107: 1091: 1087: 652: 391: 308: 144:
nodule depends on the composition of the surrounding soil. The formation mechanisms and composition of the
3128:"Deep-Sea Polymetallic Nodules: Renewed Interest as Resources for Environmentally Sustainable Development" 1176: 1161: 863:. The mechanism is defined based on the source of the precipitation. Precipitation sourced from the above 3895: 3311:"Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years" 3135: 2911:"Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years" 981: 593: 273: 927:
In the late 1970s, two of the international joint ventures collected several hundred-ton quantities of
390:
All of these deposits are in international waters apart from the Penrhyn Basin, which lies within the
3322: 2922: 2838:
Clark, Malcolm R. (2019). "The Development of Environmental Impact Assessments for Deep-Sea Mining".
2801: 2724: 2638: 2392: 2328: 2283: 2217: 2162: 2116: 2081: 1968: 1933: 1866: 1802: 1703: 1644: 1559: 1202: 1059: 977: 906: 589: 549: 149: 3800: 860: 510: 250: 607:
The mineral composition of manganese-bearing minerals is dependent on how the nodules are formed;
3203: 3194: 2817: 2443: 2301: 2178: 1984: 1890: 1854: 1660: 1575: 1378: 1243: 1044: 1040: 885: 746: 656: 424: 2072:
Kobayashi, Takayuki (October 2000). "Concentration profiles of 10Be in large manganese crusts".
1102:, it covers an area of about four million square kilometers which almost equals the size of the 359:
The largest of these deposits in terms of nodule abundance and metal concentration occur in the
322: 3358: 1959:
Von Stackelberg, U (1997). "Growth history of manganese nodules and crusts of the Peru Basin".
1466: 564:...) may operate concurrently or they may follow one another during the formation of a nodule. 228: 3804: 3588: 3457: 3434: 3268: 3249: 3226: 3207: 3178: 3159: 3087: 2948: 2884: 2851: 2676:"Deep-sea mining: is it an environmental curse or could it save us? | Research and Innovation" 2605: 2565: 2359: 2250: 2132: 1882: 1833: 1741: 1247: 1219: 1206: 1180: 316: 239: 133: 129: 2880: 2498: 2244: 1394:", oxygen produced without light, which provides the seafloor in the deep ocean with oxygen. 439:
the abundance of nodules varies and is likely controlled by the thickness and stability of a
3641: 3548: 3338: 3330: 3295: 3079: 3051: 2938: 2930: 2876: 2843: 2809: 2732: 2646: 2597: 2557: 2466: 2433: 2422:"A comprehensive approach for a techno-economic assessment of nodule mining in the deep sea" 2400: 2336: 2291: 2225: 2170: 2124: 2089: 2032: 1976: 1941: 1874: 1810: 1711: 1652: 1567: 1185: 1009: 767: 666:
and the size and characteristics of their core. Those of greatest economic interest contain
608: 577: 444: 283: 231: 145: 35: 1320:
The mining robots operating on the seabed floor emit plumes of sediment, which could cover
27:
Mineral concretion on the sea bottom made of concentric layers of iron/manganese hydroxides
3850: 3814: 3744: 2780: 1471: 1456: 1444: 1438: 1417: 1308: 1301: 1048: 1032: 993: 964: 960: 902: 898: 581: 498: 415: 293: 41: 17: 3023: 2499:"Canada isn't sold on mining the world's oceans. A Canadian company is diving in anyways" 3326: 2926: 2805: 2728: 2642: 2396: 2332: 2287: 2221: 2166: 2120: 2085: 1972: 1937: 1870: 1806: 1707: 1648: 1563: 92:
around a core. As nodules can be found in vast quantities, and contain valuable metals,
3810: 3559: 3533: 3528: 3411: 3343: 3310: 3242: 2943: 2910: 2023: 1766: 1231: 1103: 1001: 956: 880: 872: 648: 561: 458: 212: 188: 141: 56: 2229: 2093: 1814: 1447: – Deep-sea drillship platform used by the CIA to recover sunken Soviet submarine 406: 3864: 3734: 3704: 3679: 3606: 3467: 3452: 2447: 2305: 1988: 1664: 1579: 1287: 1268: 1260: 1251: 1189: 1124: 1095: 936: 932: 911: 876: 663: 635:, and asbolane-buserite. The growth types termed diagenetic and hydrogenetic reflect 585: 502: 452: 364: 348: 340: 304: 290: 2821: 2737: 2712: 2182: 1945: 1715: 1571: 867:
is referred to as hydrogenetic, while precipitation from the sediment pore water is
3684: 3649: 3611: 2592:
Sharma, Rahul (2017). "Deep-Sea Mining: Current Status and Future Considerations".
1894: 1453: – Intergovernmental body to regulate mineral-related activities on the seabed 864: 644: 599: 486: 440: 420: 395: 333: 329: 297: 265: 3830: 2651: 2626: 2405: 2380: 1980: 367:
in the deep ocean between 4,000 and 6,000 m (13,000 and 20,000 ft). The
332:
in a region termed the Indian Ocean Nodule Field (IONF) roughly 500 km SE of
3139: 2847: 2340: 1656: 3729: 3714: 3659: 3626: 3596: 3553: 3492: 3482: 3447: 2601: 2503: 1391: 1351: 1227: 137: 52: 3056: 3039: 2625:
Paulikas, Daina; Katona, Steven; Ilves, Erika; Ali, Saleem H. (December 2020).
3820: 3762: 3752: 3699: 3669: 3631: 3601: 3569: 3518: 3502: 3300: 3283: 3083: 3022:
Ashford, Oliver; Baines, Jonathan; Barbanell, Melissa; Wang, Ke (2023-07-19).
2813: 2484: 2470: 2438: 2421: 2296: 2271: 2174: 2059:
NI 43-101 Technical Report TOML Clarion Clipperton Zone Project, Pacific Ocean
1120: 868: 831: 779: 750: 632: 628: 616: 612: 506: 478: 448: 246: 192: 176: 165: 109: 101: 74: 2037: 560:, surface complexation, surface precipitation, incorporation by formation of 3824: 3784: 3724: 3709: 3694: 3689: 3674: 3664: 3616: 3564: 3543: 3487: 3424: 3419: 3400: 3132:
Proc 12th International Multidisciplinary Scientific GeoConference SGEM 2012
2871:
Sharma, Rahul (2020). "Potential Impacts of Deep-Sea Mining on Ecosystems".
1246:
or the potential impacts of deep-sea mining. Polymetallic nodule fields are
928: 795: 707: 703: 691: 667: 537: 517: 372: 352: 254: 196: 161: 89: 86: 3334: 2952: 2934: 2561: 2136: 1886: 1832:. Vol. 7. Elsevier Scientific Publishing Community. pp. 341–394. 996:. There is also improved technology that could be used in mining including 859:
of primarily iron, manganese, nickel, copper, cobalt, and zinc around the
455:) likely influence the characteristics of the geochemically active layer. 30: 3788: 3757: 3719: 3654: 3621: 3538: 3523: 3442: 1426: 1339: 1279: 1264: 839: 827: 787: 775: 754: 719: 711: 624: 620: 557: 470: 261: 208: 204: 200: 105: 3263:
Teleki, P. G.; Dobson, M. R.; Moore, J. R.; von Stackelberg, U. (1987).
2017:
García, Marcelo; Correa, Jorge; Maksaev, Víctor; Townley, Brian (2020).
1878: 1828:
Callender, E.; Bowser, C. (1976). "Freshwater Ferromanganese Deposits".
473:, the remobilization of manganese in the water column (diagenetic), the 3778: 3497: 3403: 2420:
Volkmann, Sebastian Ernst; Kuhn, Thomas; Lehnen, Felix (October 2018).
1421: 1256: 1063: 835: 811: 783: 771: 695: 687: 545: 521: 482: 462: 269: 2128: 1119:
in the South Pacific can be found as a possible result of the greater
552:
of these transition metals in the manganese nodules. These processes (
3369: 2381:"Production key figures for planning the mining of manganese nodules" 1910:
Report on Deep-Sea Deposits; Scientific Results Challenger Expedition
1474: – 1974 CIA project to recover the sunken Soviet submarine K-129 1326: 1284:
Noise and light pollution that cause reduced visibility for predators
1278:
discharge plumes that have effects of clogging feeding mechanisms of
1223: 1172: 1144: 1140: 1136: 1017: 948: 944: 940: 807: 803: 799: 791: 738: 723: 715: 699: 679: 675: 671: 573: 569: 533: 529: 525: 490: 436: 384: 380: 376: 312: 235: 224: 184: 168:
in nodules has increased interest in their use as a mining resource.
157: 153: 117: 60: 46: 2532:"'Deep-sea gold rush' for rare metals could cause irreversible harm" 2465:(Thesis). Vol. RWTH Aachen University. RWTH Aachen University. 662:
The chemical composition of nodules varies according to the type of
3359:
Report on a World Almanac 1997 documentary Universe Beneath the Sea
875:
occurs more readily in oxygenated environments with relatively low
279:(1872–1876), they were found to occur in most oceans of the world. 3574: 2019:"Potential mineral resources of the Chilean offshore: an overview" 1412: 1321: 1077: 1055: 636: 598: 405: 238:
was estimated at 500 billion tons by Alan A. Archer of the London
125: 113: 40: 29: 1853:
Fike, D.A.; Grotzinger, J.P.; Pratt, L.M.; Summons, R.E. (2006).
1152: 1148: 1036: 997: 968: 823: 819: 815: 734: 683: 640: 121: 82: 3373: 2463:
Blue mining - planning the mining of seafloor manganese nodules
1377:
Mining activities could impair the feeding and reproduction of
211:, is generally rougher than the top due to a different type of 1390:
A recent study hypothesizes that the nodules are a source of "
1334: 1082:
Research into manganese nodules in the Clarion-Clipperton Zone
1067: 952: 770:
form in a variety of soil types, including but not limited to
513: 180: 93: 78: 3265:
Marine Minerals: Advances in Research and Resource Assessment
2966: 2074:
Nuclear Instruments and Methods in Physics Research Section B
1210:
nodules would release these heavy metals back into the soil.
1192:
and medicines and should therefore be protected at all cost.
1070:, have committed to avoid using metals derived from nodules. 3109:
An overview of the United States's Benthic Impact Experiment
3040:"Evidence of dark oxygen production at the abyssal seafloor" 2996:"MIDAS | Managing Impacts Of Deep Sea Resource Exploitation" 2995: 2198:"A consistent model for surface complexation on birnessite ( 967:
array to assay the nodule population density on the abyssal
207:, or are otherwise irregular. The bottom surface, buried in 1763:"The International Seabed Authority and Deep Seabed Mining" 3364: 1263:
by sediment. Due to the complexity and remoteness of the
152:
beyond iron and manganese. The high relative abundance of
2379:
Volkmann, Sebastian Ernst; Lehnen, Felix (3 April 2018).
1361:
midwater plumes used to transfer ores to the surface ship
245:
Polymetallic nodules are found in both shallow (e.g. the
3024:"What We Know About Deep-sea Mining — And What We Don't" 2547: 2545: 884:
formation, but average rates have been calculated using
627:
while diagenetic nodules are dominated by buserite I,
2873:
Oxford Research Encyclopedia of Environmental Science
2148: 2146: 1000:, tracked and screw drive rovers, rigid and flexible 3107:
Ozturgut, E.; Trueblood, D. D.; Lawless, J. (1997).
2272:"Molecular simulations of hydrated phyllomanganates" 2057:
Lipton, Ian; Nimmo, Matthew; Parianos, John (2016).
1461:
Pages displaying wikidata descriptions as a fallback
1429:, and ecosystems take millions of years to recover. 1290:
or chemical temperature changes in the water quality
1098:, lying between Hawaii and Mexico. According to the 260:
Polymetallic nodules were discovered in 1868 in the
3771: 3743: 3640: 3587: 3511: 3475: 3466: 3433: 3410: 2246:
Surface Complexation Modeling: Hydrous Ferric Oxide
1250:of abundance and diversity for a highly vulnerable 282:Their composition varies by location, and sizeable 3284:"A Global Red List for Hydrothermal Vent Molluscs" 3241: 3198:. In Steele, J.; Turekian, K.; Thorpe, S. (eds.). 3193: 2002:Mukhopadhyay, R.; Ghosh, A.K.; Iyer, S.D. (2007). 682:(0.2–0.25 wt. %). Other constituents include 2243:Dzombak, David A.; Morel, François M. M. (1990). 1350:Human generated sound can cause direct damage to 1238:Environmental impacts of mining manganese nodules 1131:The economic interest of mining manganese nodules 643:growth, which in turn could relate to periods of 592:at the oxide surface as it is also the case with 2774:University of Ghent press bulletin, June 7, 2016 2713:"Ecological risk assessment for deep-sea mining" 1961:Geological Society, London, Special Publications 1358:noise and vibration from seabed production tools 1008:rope. Mining is considered to be similar to the 737:from all over the planet before settling to the 191:vary from smooth to rough. They frequently have 1441: – Mineral extraction from the ocean floor 124:. The formation mechanism involves a series of 1226:they may challenge the conventional theory of 919:Proposed mining – history of mining activities 410:Manganese nodules from the South Pacific Ocean 195:(mammillated or knobby) texture and vary from 3385: 2206:) and its application to a column experiment" 2052: 2050: 2048: 988:(AUV); and intervention technology including 879:rates that provide adequate levels of labile 8: 3074:Salomon, Markus; Markus, Till, eds. (2018). 855:Marine ferromanganese nodules form from the 611:nodules, which have a lower Mn content than 2526: 2524: 2522: 935:(18,000 feet (5.5 km) + depth) of the 3472: 3392: 3378: 3370: 2552:Cronan, D.S. (2001). "Manganese Nodules". 1074:Proposed mining areas of manganese nodules 3342: 3299: 3076:Handbook on Marine Environment Protection 3055: 2942: 2736: 2650: 2437: 2404: 2358:. Harcourt Brace Jovanovich. p. 89. 2295: 2270:Newton, Aric G.; Kwon, Kideok D. (2018). 2036: 1731: 1729: 1727: 1725: 588:and surface complexation by formation of 175:from tiny particles visible only under a 1830:Au, U, Fe, Mn, Hg, Sb, W, and P Deposits 1463:– A list of different manganese minerals 1006:ultra-high-molecular-weight polyethylene 286:have been found in the following areas: 51: 2840:Environmental Issues of Deep-Sea Mining 2385:Marine Georesources & Geotechnology 1736:International Seabed Authority (2010). 1484: 1407:Recovery potential of seabed ecosystems 1218:Because these nodules can produce both 951:were subsequently extracted from this " 694:(3 wt. %), with lesser amounts of 272:. During the scientific expeditions of 3202:. San Diego: Academic Press. pp.  3126:Abramowski, T.; Stoyanova, V. (2012). 3069: 3067: 3017: 3015: 2881:10.1093/acrefore/9780199389414.013.585 1773:from the original on November 27, 2020 81:bottom formed of concentric layers of 2990: 2988: 2986: 2904: 2902: 2900: 2833: 2831: 2706: 2704: 2702: 2700: 2698: 2696: 2670: 2668: 2666: 2664: 2662: 2587: 2585: 2583: 2581: 1629: 1627: 1625: 1623: 1621: 1619: 1617: 1615: 1613: 1611: 1609: 1545: 1543: 1541: 1539: 1537: 1535: 1533: 1531: 1529: 1527: 1525: 1523: 1039:(Global Sea Mineral Resources, GSR), 100:. Ferromanganese nodules are mineral 7: 3361:claiming evidence of rapid formation 1688: 1686: 1684: 1682: 1680: 1678: 1676: 1674: 1607: 1605: 1603: 1601: 1599: 1597: 1595: 1593: 1591: 1589: 1521: 1519: 1517: 1515: 1513: 1511: 1509: 1507: 1505: 1503: 990:remotely operated underwater vehicle 615:, are dominated by Fe-vernadite, Mn- 3175:Handbook of Marine Mineral Deposits 2196:Appelo, C.A.J.; Postma, D. (1999). 1398:Mitigation of environmental impacts 826:-dominated nodules are enriched in 461:is one of the slowest of all known 257:period over 540 million years ago. 3365:The International Seabed Authority 2461:Volkmann, Sebastian Ernst (2018). 1740:. International Seabed Authority. 980:(USBL); survey technology such as 25: 3148:Value chain of deep seabed mining 1908:Murray, J.; Renard, A.F. (1891). 1855:"Oxidation of the Ediacaran Ocea" 1295:Destruction of seabed and habitat 3844: 1494:The mineral resources of the sea 1127:diversity of the South Pacific. 943:(the primary target) as well as 937:eastern equatorial Pacific Ocean 548:, also plays a main role in the 140:, the specific composition of a 2738:10.1016/j.ocecoaman.2019.04.014 2485:"Deep Seabed Mineral Resources" 2276:Geochimica et Cosmochimica Acta 2210:Geochimica et Cosmochimica Acta 2155:Lithology and Mineral Resources 1946:10.1016/j.oregeorev.2014.12.011 1716:10.1016/j.oregeorev.2012.12.001 1572:10.1016/j.earscirev.2022.104147 1496:. Elsevier Oceanography Series. 419:enrichment in iron, manganese, 3200:Encyclopedia of Ocean Sciences 2717:Ocean & Coastal Management 2554:Encyclopedia of Ocean Sciences 1451:International Seabed Authority 1135:The high natural abundance of 1022:International Seabed Authority 986:autonomous underwater vehicles 369:International Seabed Authority 249:) and deeper waters (e.g. the 1: 2652:10.1016/j.jclepro.2020.123822 2631:Journal of Cleaner Production 2406:10.1080/1064119X.2017.1319448 2354:Broecker, Wallace S. (1974). 2230:10.1016/S0016-7037(99)00231-8 2094:10.1016/S0168-583X(00)00206-8 1981:10.1144/GSL.SP.1997.119.01.11 1815:10.1016/s0025-3227(01)00244-4 325:in the southeast Pacific, and 311:(CCZ) roughly midway between 136:processes. As a byproduct of 2848:10.1007/978-3-030-12696-4_16 2341:10.1016/j.margeo.2014.07.004 1657:10.1016/j.chemer.2021.125741 1259:creatures, or smothering of 1106:. The huge potential of the 939:. Significant quantities of 343:, including the area around 128:oscillations driven by both 3288:Frontiers in Marine Science 2602:10.1007/978-3-319-52557-0_1 1459: – a chemical compound 1242:Very little is known about 766:Terrestrial ferromanganese 493:debris by seawater and the 3917: 3248:. London: Academic Press. 3158:. London: Academic Press. 3057:10.1038/s41561-024-01480-8 2794:Environmental Conservation 1761:Michael Lodge (May 2017). 443:that forms at the seabed. 441:geochemically active layer 18:Manganese metallic nodules 3840: 3301:10.3389/fmars.2021.713022 3177:. Boca Raton: CRC Press. 3084:10.1007/978-3-319-60156-4 2814:10.1017/S0376892903000225 2471:10.18154/rwth-2018-230772 2439:10.1007/s13563-018-0143-1 2297:10.1016/j.gca.2018.05.021 2249:. John Wiley & Sons. 2175:10.1134/S0024490207020034 1234:which requires sunlight. 974:Global Positioning System 584:in their interlayer like 148:allow for couplings with 3267:. Dordrecht: D. Riedel. 3223:Marine Mineral Resources 2038:10.5027/andgeoV47n1-3260 1302:biogeochemical functions 728:water of crystallization 501:through the activity of 489:), the decomposition of 3146:Abramowski, T. (2016). 1364:the surface ship itself 1157:Clarion-Clipperton Zone 1113:Clarion-Clipperton Zone 1108:Clarion Clipperton Zone 1092:Clarion-Clipperton Zone 1088:Clarion-Clipperton Zone 1026:Clarion Clipperton Zone 678:(1–1.4 wt. %) and 674:(1.25–1.5 wt. %), 653:Clarion Clipperton Zone 392:exclusive economic zone 361:Clarion Clipperton Zone 309:Clarion Clipperton Zone 307:in a region called the 116:that form on the ocean 3335:10.1126/sciadv.aaz5922 3221:Earney, F. C. (1990). 3192:Cronan, D. S. (2001). 3173:Cronan, D. S. (2000). 3154:Cronan, D. S. (1980). 2935:10.1126/sciadv.aaz5922 2779:June 14, 2016, at the 2562:10.1006/rwos.2001.0039 2556:. pp. 1526–1533. 1386:Reduced oxygen content 1169:electric car batteries 1162:non-renewable resource 1094:can be located in the 1083: 604: 590:inner sphere complexes 411: 402:Growth and composition 345:Juan Fernández Islands 199:in shape to typically 98:ferromanganese nodules 63: 49: 38: 3225:. London: Routledge. 2356:Chemical Oceanography 2109:Environ. Sci. Technol 1552:Earth-Science Reviews 1316:Sediment laden plumes 1274:These could include: 1081: 992:(ROV) and high power 982:multibeam echosounder 602: 594:hydrous ferric oxides 544:, known to be strong 409: 150:biogeochemical cycles 59:nodules found on the 55: 44: 33: 3134:. pp. 515–522. 2842:. pp. 447–469. 2216:(19–20): 3039–3048. 1269:sedimentation plumes 1060:international waters 978:ultra-short baseline 670:(27–30 wt. %), 603:Polymetallic nodules 67:Polymetallic nodules 3851:Minerals portal 3327:2020SciA....6.5922V 3195:"Manganese nodules" 3156:Underwater Minerals 2927:2020SciA....6.5922V 2806:2003EnvCo..30..219G 2729:2019OCM...176...24W 2643:2020JCPro.27523822P 2397:2018MGG....36..360V 2333:2014MGeol.357..123W 2288:2018GeCoA.235..208N 2222:1999GeCoA..63.3039A 2167:2007LitMR..42..137N 2121:2015EnST...49.7692B 2086:2000NIMPB.172..579K 2006:. Elsevier Science. 1973:1997GSLSP.119..153V 1938:2015OGRv...68...97H 1926:Ore Geology Reviews 1879:10.1038/nature05345 1871:2006Natur.444..744F 1807:2002MGeol.182..373H 1708:2013OGRv...51....1H 1696:Ore Geology Reviews 1649:2022ChEG...82l5741V 1564:2022ESRv..23204147H 1492:Mero, John (1965). 1427:deep-sea ecosystems 1244:deep sea ecosystems 762:Terrestrial nodules 690:(5 wt. %) and 223:Nodules lie on the 112:iron and manganese 3881:Manganese minerals 3244:Manganese Deposits 2061:. AMC Consultants. 1214:Abiogenesis theory 1207:metabolic pathways 1167:Technologies like 1084: 1045:The Metals Company 1041:Keppel Corporation 961:hydrometallurgical 892:Terrestrial origin 886:radiometric dating 664:manganese minerals 605: 536:at the surface of 425:rare earth element 412: 328:Southern tropical 64: 50: 39: 3901:Underwater mining 3886:Natural resources 3858: 3857: 3583: 3582: 3458:Manganoan calcite 3274:978-90-277-2436-6 3232:978-0-415-02255-2 3213:978-0-12-227430-5 3184:978-0-8493-8429-5 3165:978-0-12-197480-0 3093:978-3-319-60154-0 3044:Nature Geoscience 2890:978-0-19-938941-4 2857:978-3-030-12695-7 2611:978-3-319-52556-3 2596:. pp. 3–21. 2571:978-0-12-227430-5 2426:Mineral Economics 2365:978-0-15-506437-9 2256:978-0-471-63731-8 2129:10.1021/es504930v 2115:(13): 7692–7700. 1865:(7120): 744–747. 1747:978-976-95268-2-2 1220:electrical energy 1186:green electricity 1181:energy transition 1016:In recent times, 957:pyrometallurgical 931:nodules from the 578:transition metals 483:volcanic activity 240:Geological Museum 71:manganese nodules 16:(Redirected from 3908: 3849: 3848: 3847: 3795:Manganese nodule 3549:Manganotantalite 3473: 3394: 3387: 3380: 3371: 3348: 3346: 3315:Science Advances 3305: 3303: 3278: 3259: 3247: 3240:Roy, S. (1981). 3236: 3217: 3197: 3188: 3169: 3143: 3113: 3112: 3104: 3098: 3097: 3071: 3062: 3061: 3059: 3034: 3028: 3027: 3019: 3010: 3009: 3007: 3006: 3000:www.eu-midas.net 2992: 2981: 2980: 2978: 2977: 2963: 2957: 2956: 2946: 2921:(18): eaaz5922. 2915:Science Advances 2906: 2895: 2894: 2868: 2862: 2861: 2835: 2826: 2825: 2789: 2783: 2771: 2765: 2760: 2754: 2749: 2743: 2742: 2740: 2708: 2691: 2690: 2688: 2687: 2672: 2657: 2656: 2654: 2622: 2616: 2615: 2589: 2576: 2575: 2549: 2540: 2539: 2538:. 29 April 2022. 2528: 2517: 2516: 2514: 2512: 2495: 2489: 2488: 2481: 2475: 2474: 2458: 2452: 2451: 2441: 2417: 2411: 2410: 2408: 2376: 2370: 2369: 2351: 2345: 2344: 2316: 2310: 2309: 2299: 2267: 2261: 2260: 2240: 2234: 2233: 2193: 2187: 2186: 2150: 2141: 2140: 2104: 2098: 2097: 2080:(1–4): 579–582. 2069: 2063: 2062: 2054: 2043: 2042: 2040: 2014: 2008: 2007: 1999: 1993: 1992: 1956: 1950: 1949: 1920: 1914: 1913: 1905: 1899: 1898: 1850: 1844: 1843: 1825: 1819: 1818: 1801:(3–4): 373–387. 1789: 1783: 1782: 1780: 1778: 1758: 1752: 1751: 1733: 1720: 1719: 1690: 1669: 1668: 1631: 1584: 1583: 1547: 1498: 1497: 1489: 1462: 1418:deep-sea species 1379:deep-sea species 1288:Ecotoxicological 1203:sequester carbon 1179:, transport and 1125:sedimentological 994:umbilical cables 686:(6 wt. %), 542:Fe-oxyhydroxides 505:(biogenic). The 499:metal hydroxides 481:associated with 447:type and seabed 445:Pelagic sediment 189:surface textures 171:Nodules vary in 120:and terrestrial 21: 3916: 3915: 3911: 3910: 3909: 3907: 3906: 3905: 3891:Nickel minerals 3876:Copper minerals 3871:Cobalt minerals 3861: 3860: 3859: 3854: 3845: 3843: 3836: 3767: 3739: 3636: 3579: 3507: 3462: 3429: 3406: 3398: 3355: 3308: 3281: 3275: 3262: 3256: 3239: 3233: 3220: 3214: 3191: 3185: 3172: 3166: 3153: 3125: 3122: 3120:Further reading 3117: 3116: 3106: 3105: 3101: 3094: 3073: 3072: 3065: 3038:(August 2024). 3036: 3035: 3031: 3021: 3020: 3013: 3004: 3002: 2994: 2993: 2984: 2975: 2973: 2967:"Home – DISCOL" 2965: 2964: 2960: 2908: 2907: 2898: 2891: 2870: 2869: 2865: 2858: 2837: 2836: 2829: 2791: 2790: 2786: 2781:Wayback Machine 2772: 2768: 2761: 2757: 2750: 2746: 2710: 2709: 2694: 2685: 2683: 2674: 2673: 2660: 2624: 2623: 2619: 2612: 2594:Deep-Sea Mining 2591: 2590: 2579: 2572: 2551: 2550: 2543: 2530: 2529: 2520: 2510: 2508: 2497: 2496: 2492: 2487:. 29 July 2022. 2483: 2482: 2478: 2460: 2459: 2455: 2419: 2418: 2414: 2378: 2377: 2373: 2366: 2353: 2352: 2348: 2318: 2317: 2313: 2269: 2268: 2264: 2257: 2242: 2241: 2237: 2205: 2195: 2194: 2190: 2152: 2151: 2144: 2106: 2105: 2101: 2071: 2070: 2066: 2056: 2055: 2046: 2016: 2015: 2011: 2001: 2000: 1996: 1958: 1957: 1953: 1922: 1921: 1917: 1907: 1906: 1902: 1852: 1851: 1847: 1840: 1827: 1826: 1822: 1791: 1790: 1786: 1776: 1774: 1760: 1759: 1755: 1748: 1735: 1734: 1723: 1692: 1691: 1672: 1633: 1632: 1587: 1549: 1548: 1501: 1491: 1490: 1486: 1481: 1472:Project Azorian 1460: 1457:Manganese oxide 1445:Glomar Explorer 1439:Deep sea mining 1435: 1409: 1400: 1388: 1375: 1373:Light pollution 1348: 1346:Noise pollution 1318: 1297: 1240: 1216: 1198: 1190:biotechnologies 1133: 1076: 1049:China Minmetals 1033:Lockheed Martin 1002:drilling risers 965:side-scan sonar 921: 903:redox potential 899:soil saturation 894: 853: 848: 822:. In contrast, 764: 582:cation exchange 562:solid solutions 477:of metals from 469:of metals from 433: 416:aluminosilicate 404: 383:and 0.05 Bt of 341:Eastern Pacific 251:central Pacific 221: 45:Nodules on the 28: 23: 22: 15: 12: 11: 5: 3914: 3912: 3904: 3903: 3898: 3893: 3888: 3883: 3878: 3873: 3863: 3862: 3856: 3855: 3841: 3838: 3837: 3835: 3834: 3828: 3818: 3811:Zincobotryogen 3808: 3798: 3792: 3782: 3781:(borosilicate) 3775: 3773: 3769: 3768: 3766: 3765: 3760: 3755: 3749: 3747: 3741: 3740: 3738: 3737: 3732: 3727: 3722: 3717: 3712: 3707: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3662: 3657: 3652: 3646: 3644: 3638: 3637: 3635: 3634: 3629: 3624: 3619: 3614: 3609: 3604: 3599: 3593: 3591: 3585: 3584: 3581: 3580: 3578: 3577: 3572: 3567: 3562: 3557: 3556:(calvonigrite) 3551: 3546: 3541: 3536: 3534:Ferrotantalite 3531: 3529:Ferrocolumbite 3526: 3521: 3515: 3513: 3509: 3508: 3506: 3505: 3500: 3495: 3490: 3485: 3479: 3477: 3470: 3464: 3463: 3461: 3460: 3455: 3450: 3445: 3439: 3437: 3431: 3430: 3428: 3427: 3422: 3416: 3414: 3408: 3407: 3399: 3397: 3396: 3389: 3382: 3374: 3368: 3367: 3362: 3354: 3353:External links 3351: 3350: 3349: 3306: 3279: 3273: 3260: 3255:978-0126010800 3254: 3237: 3231: 3218: 3212: 3189: 3183: 3170: 3164: 3151: 3144: 3121: 3118: 3115: 3114: 3099: 3092: 3063: 3050:(8): 737–739. 3029: 3011: 2982: 2958: 2896: 2889: 2863: 2856: 2827: 2784: 2766: 2755: 2744: 2692: 2658: 2617: 2610: 2577: 2570: 2541: 2518: 2507:. 12 July 2023 2490: 2476: 2453: 2432:(3): 319–336. 2412: 2391:(3): 360–375. 2371: 2364: 2346: 2321:Marine Geology 2311: 2262: 2255: 2235: 2203: 2188: 2161:(2): 137–167. 2142: 2099: 2064: 2044: 2024:Andean Geology 2009: 1994: 1967:(1): 153–176. 1951: 1915: 1900: 1845: 1838: 1820: 1795:Marine Geology 1784: 1767:United Nations 1753: 1746: 1721: 1670: 1585: 1499: 1483: 1482: 1480: 1477: 1476: 1475: 1469: 1464: 1454: 1448: 1442: 1434: 1431: 1408: 1405: 1399: 1396: 1387: 1384: 1374: 1371: 1366: 1365: 1362: 1359: 1352:marine animals 1347: 1344: 1317: 1314: 1296: 1293: 1292: 1291: 1285: 1282: 1261:filter feeders 1239: 1236: 1232:photosynthesis 1215: 1212: 1197: 1194: 1177:digitalization 1175:. The ongoing 1132: 1129: 1104:European Union 1075: 1072: 1054:In July 2021, 1010:potato harvest 933:abyssal plains 920: 917: 912:trace elements 893: 890: 881:organic matter 852: 849: 847: 844: 763: 760: 503:microorganisms 432: 431:Marine nodules 429: 403: 400: 365:abyssal plains 357: 356: 337: 326: 320: 303:North central 301: 220: 217: 142:ferromanganese 73:, are mineral 69:, also called 57:Ferromanganese 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3913: 3902: 3899: 3897: 3894: 3892: 3889: 3887: 3884: 3882: 3879: 3877: 3874: 3872: 3869: 3868: 3866: 3853: 3852: 3839: 3832: 3829: 3826: 3822: 3819: 3816: 3812: 3809: 3806: 3802: 3799: 3796: 3793: 3790: 3786: 3783: 3780: 3777: 3776: 3774: 3770: 3764: 3761: 3759: 3756: 3754: 3751: 3750: 3748: 3746: 3742: 3736: 3735:Zircophyllite 3733: 3731: 3728: 3726: 3723: 3721: 3718: 3716: 3713: 3711: 3708: 3706: 3705:Pyroxferroite 3703: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3680:Glaucochroite 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3661: 3658: 3656: 3653: 3651: 3648: 3647: 3645: 3643: 3639: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3607:Lithiophilite 3605: 3603: 3600: 3598: 3595: 3594: 3592: 3590: 3586: 3576: 3573: 3571: 3568: 3566: 3563: 3561: 3558: 3555: 3552: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3520: 3517: 3516: 3514: 3510: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3480: 3478: 3474: 3471: 3469: 3465: 3459: 3456: 3454: 3453:Rhodochrosite 3451: 3449: 3446: 3444: 3441: 3440: 3438: 3436: 3432: 3426: 3423: 3421: 3418: 3417: 3415: 3413: 3409: 3405: 3402: 3395: 3390: 3388: 3383: 3381: 3376: 3375: 3372: 3366: 3363: 3360: 3357: 3356: 3352: 3345: 3340: 3336: 3332: 3328: 3324: 3320: 3316: 3312: 3307: 3302: 3297: 3293: 3289: 3285: 3280: 3276: 3270: 3266: 3261: 3257: 3251: 3246: 3245: 3238: 3234: 3228: 3224: 3219: 3215: 3209: 3205: 3201: 3196: 3190: 3186: 3180: 3176: 3171: 3167: 3161: 3157: 3152: 3149: 3145: 3141: 3137: 3133: 3129: 3124: 3123: 3119: 3110: 3103: 3100: 3095: 3089: 3085: 3081: 3077: 3070: 3068: 3064: 3058: 3053: 3049: 3045: 3041: 3033: 3030: 3025: 3018: 3016: 3012: 3001: 2997: 2991: 2989: 2987: 2983: 2972: 2971:www.discol.de 2968: 2962: 2959: 2954: 2950: 2945: 2940: 2936: 2932: 2928: 2924: 2920: 2916: 2912: 2905: 2903: 2901: 2897: 2892: 2886: 2882: 2878: 2874: 2867: 2864: 2859: 2853: 2849: 2845: 2841: 2834: 2832: 2828: 2823: 2819: 2815: 2811: 2807: 2803: 2800:(3): 21–241. 2799: 2795: 2788: 2785: 2782: 2778: 2775: 2770: 2767: 2764: 2759: 2756: 2753: 2748: 2745: 2739: 2734: 2730: 2726: 2722: 2718: 2714: 2707: 2705: 2703: 2701: 2699: 2697: 2693: 2681: 2677: 2671: 2669: 2667: 2665: 2663: 2659: 2653: 2648: 2644: 2640: 2636: 2632: 2628: 2621: 2618: 2613: 2607: 2603: 2599: 2595: 2588: 2586: 2584: 2582: 2578: 2573: 2567: 2563: 2559: 2555: 2548: 2546: 2542: 2537: 2533: 2527: 2525: 2523: 2519: 2506: 2505: 2500: 2494: 2491: 2486: 2480: 2477: 2472: 2468: 2464: 2457: 2454: 2449: 2445: 2440: 2435: 2431: 2427: 2423: 2416: 2413: 2407: 2402: 2398: 2394: 2390: 2386: 2382: 2375: 2372: 2367: 2361: 2357: 2350: 2347: 2342: 2338: 2334: 2330: 2326: 2322: 2315: 2312: 2307: 2303: 2298: 2293: 2289: 2285: 2281: 2277: 2273: 2266: 2263: 2258: 2252: 2248: 2247: 2239: 2236: 2231: 2227: 2223: 2219: 2215: 2211: 2207: 2201: 2192: 2189: 2184: 2180: 2176: 2172: 2168: 2164: 2160: 2156: 2149: 2147: 2143: 2138: 2134: 2130: 2126: 2122: 2118: 2114: 2110: 2103: 2100: 2095: 2091: 2087: 2083: 2079: 2075: 2068: 2065: 2060: 2053: 2051: 2049: 2045: 2039: 2034: 2030: 2026: 2025: 2020: 2013: 2010: 2005: 1998: 1995: 1990: 1986: 1982: 1978: 1974: 1970: 1966: 1962: 1955: 1952: 1947: 1943: 1939: 1935: 1931: 1927: 1919: 1916: 1911: 1904: 1901: 1896: 1892: 1888: 1884: 1880: 1876: 1872: 1868: 1864: 1860: 1856: 1849: 1846: 1841: 1839:9780444599438 1835: 1831: 1824: 1821: 1816: 1812: 1808: 1804: 1800: 1796: 1788: 1785: 1772: 1768: 1764: 1757: 1754: 1749: 1743: 1739: 1732: 1730: 1728: 1726: 1722: 1717: 1713: 1709: 1705: 1701: 1697: 1689: 1687: 1685: 1683: 1681: 1679: 1677: 1675: 1671: 1666: 1662: 1658: 1654: 1650: 1646: 1643:(1): 125741. 1642: 1638: 1630: 1628: 1626: 1624: 1622: 1620: 1618: 1616: 1614: 1612: 1610: 1608: 1606: 1604: 1602: 1600: 1598: 1596: 1594: 1592: 1590: 1586: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1546: 1544: 1542: 1540: 1538: 1536: 1534: 1532: 1530: 1528: 1526: 1524: 1522: 1520: 1518: 1516: 1514: 1512: 1510: 1508: 1506: 1504: 1500: 1495: 1488: 1485: 1478: 1473: 1470: 1468: 1465: 1458: 1455: 1452: 1449: 1446: 1443: 1440: 1437: 1436: 1432: 1430: 1428: 1423: 1419: 1414: 1406: 1404: 1397: 1395: 1393: 1385: 1383: 1380: 1372: 1370: 1363: 1360: 1357: 1356: 1355: 1353: 1345: 1343: 1341: 1340:toxic impacts 1336: 1330: 1328: 1323: 1315: 1313: 1310: 1305: 1303: 1294: 1289: 1286: 1283: 1281: 1277: 1276: 1275: 1272: 1270: 1266: 1262: 1258: 1253: 1249: 1245: 1237: 1235: 1233: 1229: 1225: 1221: 1213: 1211: 1208: 1204: 1195: 1193: 1191: 1187: 1182: 1178: 1174: 1170: 1165: 1163: 1158: 1154: 1150: 1146: 1142: 1138: 1130: 1128: 1126: 1122: 1118: 1114: 1109: 1105: 1101: 1097: 1096:Pacific Ocean 1093: 1089: 1080: 1073: 1071: 1069: 1065: 1061: 1057: 1052: 1050: 1046: 1042: 1038: 1034: 1029: 1027: 1023: 1019: 1014: 1011: 1007: 1003: 999: 995: 991: 987: 983: 979: 975: 970: 966: 962: 958: 955:" using both 954: 950: 946: 942: 938: 934: 930: 925: 918: 916: 913: 908: 907:Anthropogenic 904: 900: 891: 889: 887: 882: 878: 877:sedimentation 874: 870: 866: 862: 858: 857:precipitation 851:Marine origin 850: 845: 843: 841: 837: 833: 829: 825: 821: 817: 813: 809: 805: 801: 797: 793: 789: 785: 781: 777: 773: 769: 761: 759: 756: 752: 748: 742: 740: 736: 731: 729: 725: 721: 718:, along with 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 677: 673: 669: 665: 660: 658: 654: 650: 646: 642: 638: 634: 630: 626: 622: 618: 614: 610: 601: 597: 595: 591: 587: 586:clay minerals 583: 579: 575: 571: 565: 563: 559: 555: 554:precipitation 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 512: 508: 504: 500: 496: 495:precipitation 492: 488: 484: 480: 476: 472: 468: 467:precipitation 464: 460: 459:Nodule growth 456: 454: 453:geomorphology 450: 446: 442: 438: 430: 428: 426: 422: 417: 408: 401: 399: 397: 393: 388: 386: 382: 379:, 0.23 Bt of 378: 375:, 0.27 Bt of 374: 370: 366: 362: 354: 350: 349:abyssal plain 346: 342: 338: 335: 331: 327: 324: 321: 318: 314: 310: 306: 305:Pacific Ocean 302: 299: 295: 292: 289: 288: 287: 285: 280: 278: 277: 271: 267: 263: 258: 256: 252: 248: 243: 241: 237: 233: 230: 226: 218: 216: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 169: 167: 163: 159: 155: 151: 147: 143: 139: 135: 131: 127: 123: 119: 115: 111: 107: 103: 99: 95: 91: 88: 84: 80: 76: 72: 68: 62: 58: 54: 48: 43: 37: 32: 19: 3896:Oceanography 3842: 3794: 3685:Jeffersonite 3650:Babingtonite 3612:Natrophilite 3318: 3314: 3291: 3287: 3264: 3243: 3222: 3199: 3174: 3155: 3131: 3108: 3102: 3075: 3047: 3043: 3032: 3003:. Retrieved 2999: 2974:. Retrieved 2970: 2961: 2918: 2914: 2872: 2866: 2839: 2797: 2793: 2787: 2769: 2758: 2747: 2720: 2716: 2684:. Retrieved 2682:. 2021-08-12 2680:ec.europa.eu 2679: 2634: 2630: 2620: 2593: 2553: 2536:The Guardian 2535: 2509:. Retrieved 2502: 2493: 2479: 2462: 2456: 2429: 2425: 2415: 2388: 2384: 2374: 2355: 2349: 2324: 2320: 2314: 2279: 2275: 2265: 2245: 2238: 2213: 2209: 2199: 2191: 2158: 2154: 2112: 2108: 2102: 2077: 2073: 2067: 2058: 2028: 2022: 2012: 2003: 1997: 1964: 1960: 1954: 1929: 1925: 1918: 1909: 1903: 1862: 1858: 1848: 1829: 1823: 1798: 1794: 1787: 1775:. Retrieved 1756: 1737: 1699: 1695: 1640: 1637:Geochemistry 1636: 1555: 1551: 1493: 1487: 1410: 1401: 1389: 1376: 1367: 1349: 1335:ore slurries 1331: 1319: 1306: 1298: 1273: 1241: 1217: 1199: 1166: 1134: 1117:distribution 1085: 1053: 1030: 1015: 926: 922: 895: 865:water column 854: 765: 743: 732: 661: 645:interglacial 606: 566: 550:accumulation 487:hydrothermal 457: 434: 421:heavy metals 413: 396:Cook Islands 389: 358: 334:Diego Garcia 330:Indian Ocean 298:Cook Islands 281: 275: 266:Arctic Ocean 259: 244: 229:polymetallic 222: 203:, sometimes 170: 164:, and other 104:composed of 97: 70: 66: 65: 3833:(tungstate) 3730:Zakharovite 3715:Spessartine 3660:Brownleeite 3627:Triploidite 3597:Childrenite 3560:Romanèchite 3554:Psilomelane 3493:Manganosite 3483:Hausmannite 3448:Kutnohorite 2504:The Narwhal 2327:: 123–138. 2282:: 208–223. 2031:(1): 1–13. 1392:dark oxygen 1309:extractions 1228:abiogenesis 1201:ability to 1121:topographic 984:(MBES) and 780:inceptisols 726:as well as 609:sedimentary 580:mainly via 479:hot springs 296:within the 166:rare metals 138:pedogenesis 102:concretions 75:concretions 3865:Categories 3821:Wolframite 3763:Rambergite 3753:Alabandite 3700:Piemontite 3670:Chloritoid 3632:Zanazziite 3602:Graftonite 3589:Phosphates 3570:Todorokite 3519:Birnessite 3503:Pyrolusite 3435:Carbonates 3140:1443920171 3005:2023-12-12 2976:2023-12-12 2686:2023-12-12 2637:: 123822. 1932:: 97–116. 1558:: 104147. 1479:References 976:(GPS) and 869:diagenetic 832:phosphorus 751:diagenetic 633:todorokite 629:birnessite 617:feroxyhyte 613:diagenetic 475:derivation 463:geological 449:bathymetry 323:Peru Basin 317:Clipperton 276:Challenger 247:Baltic Sea 219:Occurrence 193:botryoidal 177:microscope 90:hydroxides 34:Manganese 3831:Hübnerite 3825:tungstate 3805:sulfosalt 3801:Samsonite 3797:(various) 3785:Geigerite 3725:Tephroite 3710:Rhodonite 3695:Ottrelite 3690:Knebelite 3675:Eudialyte 3665:Calderite 3642:Silicates 3617:Purpurite 3565:Tantalite 3544:Jacobsite 3488:Manganite 3425:Tusionite 3420:Sussexite 3401:Manganese 3204:1526–1533 2723:: 24–39. 2448:134526684 2306:104263989 1989:219189224 1665:234066886 1580:251353813 1467:Polymetal 929:manganese 915:surface. 871:. Nodule 846:Formation 796:strontium 788:mollisols 776:vertisols 708:potassium 704:magnesium 692:aluminium 668:manganese 373:manganese 353:Loa River 351:offshore 264:, in the 255:Ediacaran 242:in 1981. 236:sea floor 197:spherical 162:manganese 110:insoluble 106:silicates 87:manganese 3789:arsenate 3758:Hauerite 3745:Sulfides 3720:Sugilite 3655:Braunite 3622:Triplite 3539:Galaxite 3524:Bixbyite 3443:Ankerite 3404:minerals 3136:ProQuest 2953:32426478 2822:53666031 2777:Archived 2183:95097062 2137:26020127 1887:17151665 1771:Archived 1702:: 1–14. 1433:See also 1413:epifauna 1280:plankton 1265:deep-sea 1248:hotspots 840:chromium 828:vanadium 784:alfisols 772:ultisols 755:buserite 747:biogenic 720:hydrogen 712:titanium 625:buserite 621:asbolane 558:sorption 546:sorbents 516:such as 511:divalent 507:sorption 491:basaltic 471:seawater 363:on vast 347:and the 319:Islands. 284:deposits 262:Kara Sea 209:sediment 187:. Their 185:potatoes 118:seafloor 94:deposits 61:seafloor 3815:sulfate 3779:Axinite 3498:Nsutite 3412:Borates 3344:7190355 3323:Bibcode 2944:7190355 2923:Bibcode 2802:Bibcode 2725:Bibcode 2639:Bibcode 2511:14 July 2393:Bibcode 2329:Bibcode 2284:Bibcode 2218:Bibcode 2163:Bibcode 2117:Bibcode 2082:Bibcode 1969:Bibcode 1934:Bibcode 1895:4337003 1867:Bibcode 1803:Bibcode 1777:May 23, 1704:Bibcode 1645:Bibcode 1560:Bibcode 1422:habitat 1369:years. 1257:benthic 1252:abyssal 1196:Ecology 1064:Samsung 897:level, 861:nucleus 836:arsenic 812:cadmium 768:nodules 696:calcium 688:silicon 649:glacial 637:suboxic 514:cations 435:On the 394:of the 339:In the 336:Island. 291:Penrhyn 270:Siberia 234:on the 232:nodules 205:prolate 146:nodules 130:abiotic 77:on the 3476:Simple 3468:Oxides 3341:  3321:(18). 3271:  3252:  3229:  3210:  3181:  3162:  3138:  3090:  2951:  2941:  2887:  2854:  2820:  2608:  2568:  2446:  2362:  2304:  2253:  2181:  2135:  1987:  1893:  1885:  1859:Nature 1836:  1744:  1663:  1578:  1327:Seabed 1224:oxygen 1173:cobalt 1145:cobalt 1141:copper 1137:nickel 1047:, and 1018:nickel 1004:, and 949:cobalt 945:copper 941:nickel 901:, and 873:growth 838:, and 818:, and 808:copper 804:cobalt 800:nickel 792:barium 786:, and 739:seabed 724:oxygen 716:barium 700:sodium 680:cobalt 676:copper 672:nickel 619:, and 532:, and 437:seabed 423:, and 385:cobalt 381:copper 377:nickel 313:Hawaii 225:seabed 213:growth 201:oblate 158:copper 154:nickel 134:biotic 114:oxides 47:seabed 36:nodule 3772:Other 3575:Umber 3512:Mixed 2818:S2CID 2444:S2CID 2302:S2CID 2179:S2CID 1985:S2CID 1891:S2CID 1661:S2CID 1576:S2CID 1322:fauna 1056:Nauru 998:pumps 657:pores 294:Basin 126:redox 122:soils 3269:ISBN 3250:ISBN 3227:ISBN 3208:ISBN 3179:ISBN 3160:ISBN 3088:ISBN 2949:PMID 2885:ISBN 2852:ISBN 2606:ISBN 2566:ISBN 2513:2023 2360:ISBN 2251:ISBN 2202:−MnO 2133:PMID 1883:PMID 1834:ISBN 1779:2024 1742:ISBN 1222:and 1153:iron 1149:zinc 1123:and 1086:The 1066:and 1037:DEME 969:silt 959:and 947:and 824:iron 820:zinc 816:lead 735:dust 722:and 714:and 684:iron 647:and 641:oxic 639:and 540:and 451:(or 315:and 274:HMS 181:eggs 173:size 132:and 108:and 85:and 83:iron 3339:PMC 3331:doi 3296:doi 3080:doi 3052:doi 2939:PMC 2931:doi 2877:doi 2844:doi 2810:doi 2733:doi 2721:176 2647:doi 2635:275 2598:doi 2558:doi 2467:doi 2434:doi 2401:doi 2337:doi 2325:357 2292:doi 2280:235 2226:doi 2171:doi 2125:doi 2090:doi 2078:172 2033:doi 1977:doi 1965:119 1942:doi 1875:doi 1863:444 1811:doi 1799:182 1712:doi 1653:doi 1568:doi 1556:232 1100:ISA 1068:BMW 953:ore 572:, 538:Mn- 528:, 509:of 497:of 268:of 183:or 79:sea 3867:: 3337:. 3329:. 3317:. 3313:. 3294:. 3290:. 3286:. 3206:. 3130:. 3086:. 3078:. 3066:^ 3048:17 3046:. 3042:. 3014:^ 2998:. 2985:^ 2969:. 2947:. 2937:. 2929:. 2917:. 2913:. 2899:^ 2883:. 2875:. 2850:. 2830:^ 2816:. 2808:. 2798:30 2796:. 2731:. 2719:. 2715:. 2695:^ 2678:. 2661:^ 2645:. 2633:. 2629:. 2604:. 2580:^ 2564:. 2544:^ 2534:. 2521:^ 2501:. 2442:. 2430:31 2428:. 2424:. 2399:. 2389:36 2387:. 2383:. 2335:. 2323:. 2300:. 2290:. 2278:. 2274:. 2224:. 2214:63 2212:. 2208:. 2177:. 2169:. 2159:42 2157:. 2145:^ 2131:. 2123:. 2113:49 2111:. 2088:. 2076:. 2047:^ 2029:47 2027:. 2021:. 1983:. 1975:. 1963:. 1940:. 1930:68 1928:. 1889:. 1881:. 1873:. 1861:. 1857:. 1809:. 1797:. 1769:. 1765:. 1724:^ 1710:. 1700:51 1698:. 1673:^ 1659:. 1651:. 1641:82 1639:. 1588:^ 1574:. 1566:. 1554:. 1502:^ 1342:. 1164:. 1151:, 1147:, 1143:, 1139:, 1043:, 1035:, 1028:. 905:. 842:. 834:, 830:, 814:, 810:, 806:, 802:, 798:, 794:, 782:, 778:, 774:, 741:. 710:, 706:, 702:, 698:, 659:. 631:, 574:Ni 570:Co 556:, 534:Cu 530:Ni 526:Co 524:, 522:Fe 520:, 518:Mn 398:. 387:. 215:. 160:, 156:, 3827:) 3823:( 3817:) 3813:( 3807:) 3803:( 3791:) 3787:( 3393:e 3386:t 3379:v 3347:. 3333:: 3325:: 3319:6 3304:. 3298:: 3292:8 3277:. 3258:. 3235:. 3216:. 3187:. 3168:. 3142:. 3096:. 3082:: 3060:. 3054:: 3026:. 3008:. 2979:. 2955:. 2933:: 2925:: 2919:6 2893:. 2879:: 2860:. 2846:: 2824:. 2812:: 2804:: 2741:. 2735:: 2727:: 2689:. 2655:. 2649:: 2641:: 2614:. 2600:: 2574:. 2560:: 2515:. 2473:. 2469:: 2450:. 2436:: 2409:. 2403:: 2395:: 2368:. 2343:. 2339:: 2331:: 2308:. 2294:: 2286:: 2259:. 2232:. 2228:: 2220:: 2204:2 2200:δ 2185:. 2173:: 2165:: 2139:. 2127:: 2119:: 2096:. 2092:: 2084:: 2041:. 2035:: 1991:. 1979:: 1971:: 1948:. 1944:: 1936:: 1912:. 1897:. 1877:: 1869:: 1842:. 1817:. 1813:: 1805:: 1781:. 1750:. 1718:. 1714:: 1706:: 1667:. 1655:: 1647:: 1582:. 1570:: 1562:: 623:- 568:( 485:( 355:. 300:. 20:)

Index

Manganese metallic nodules

nodule

seabed

Ferromanganese
seafloor
concretions
sea
iron
manganese
hydroxides
deposits
concretions
silicates
insoluble
oxides
seafloor
soils
redox
abiotic
biotic
pedogenesis
ferromanganese
nodules
biogeochemical cycles
nickel
copper
manganese

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.