Knowledge

Mass-independent fractionation

Source đź“ť

249:
Mass-independent fractionation of sulfur can be observed in ancient sediments, where it preserves a signal of the prevailing environmental conditions. The creation and transfer of the mass-independent signature into minerals would be unlikely in an atmosphere containing abundant oxygen, constraining
192:
of the two formation channels available (e.g., OO + O vs O + OO for formation of OOO.) These mass-dependent zero-point energy effects cancel one another out and do not affect the enrichment in heavy isotopes observed in ozone. The mass-independent enrichment in ozone is still not fully understood,
342:
The disappearance of distinctive non-mass-dependent (NMD) sulphur isotope fractionations in sedimentary rocks deposited after about 2.4–2.3 Gyr ago16 (Fig. 2). Almost all fractionations among isotopes of a given element scale to differences in their masses; NMD fractionations deviate from this
105:. Both ratios vary by the same amount in the inclusions, although the mass difference between O and O is almost twice as large as the difference between O and O. Originally this was interpreted as evidence of incomplete mixing of O-rich material (created and distributed by a large star in a 664:
Koren, G.; Schneider, L.; Velde, I. R.; Schaik, E.; Gromov, S. S.; Adnew, G. A.; Mrozek Martino, D. J.; Hofmann, M. E. G.; Liang, M.-C.; Mahata, S.; Bergamaschi, P.; Laan-Luijkx, I. T.; Krol, M. C.; Röckmann, T.; Peters, W. (16 August 2019).
261:. Prior to this time, the MIS record implies that sulfate-reducing bacteria did not play a significant role in the global sulfur cycle, and that the MIS signal is due primarily to changes in volcanic activity. 121:, shows that the most O-rich inclusions are close to the bulk composition of the solar system. This implies that Earth, the Moon, Mars, and asteroids all formed from O- and O-enriched material. 343:
typical behaviour. The remarkable NMD signals are tied to photochemical reactions at short wavelengths involving gaseous sulphur compounds released from volcanoes into the atmosphere.
406:
Thiemens, M. H.; Heidenreich, J. E. (1983). "The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications".
62:. Observation of mass-independently fractionated materials can therefore be used to trace these types of reactions in nature and in laboratory experiments. 206: 300:
Timothy W. Lyons; Christopher T. Reinhard; Noah J. Planavsky (February 19, 2014). "The rise of oxygen in Earth's early ocean and atmosphere".
90: 144:
air samples measured by Konrad Mauersberger. These enrichments were eventually traced to the three-body ozone formation reaction.
824:
Halevy, I.; Johnston, D.; Schrag, D. (2010). "Explaining the structure of the Archean mass-independent sulfur isotope record".
355:
Clayton, R. N.; Grossman, L.; Mayeda, T. K. (1973). "A Component of Primitive Nuclear Composition in Carbonaceous Meteorites".
38:, where the amount of separation does not scale in proportion with the difference in the masses of the isotopes. Most isotopic 270: 47: 188:
properties. The mass-dependent isotope effect occurs in asymmetric species, and arises from the difference in
168:
and others suggest that the enrichments are the result of a combination of mass-dependent and mass-independent
217:
The mass-independent distribution of isotopes in stratospheric ozone can be transferred to carbon dioxide (CO
251: 891: 169: 886: 275: 202: 181: 136:. Large, 1:1 enrichments of O/O and O/O in ozone were discovered in laboratory synthesis experiments by 43: 19: 773:
Farquhar, J.; Bao, H.; Thiemens, M. (2000). "Atmospheric Influence of Earth's Earliest Sulfur Cycle".
580:"Kinetic origin of the ozone isotope effect: a critical analysis of enrichments and rate coefficients" 833: 782: 745: 682: 630: 591: 536: 501: 466: 415: 364: 309: 280: 118: 492:
Morton, J.; Barnes, J.; Schueler, B.; Mauersberger, K. (1990). "Laboratory Studies of Heavy Ozone".
70:
The most notable examples of mass-independent fractionation in nature are found in the isotopes of
579: 54:
or bond strengths. Mass-independent fractionation processes are less common, occurring mainly in
857: 806: 560: 439: 388: 333: 226: 185: 75: 71: 730:"Leaf-scale quantification of the effect of photosynthetic gas exchange on ΔO of atmospheric CO 881: 849: 798: 710: 646: 552: 431: 380: 325: 189: 122: 94: 79: 527:
Gao, Y.; Marcus, R. (2001). "Strange and unconventional isotope effects in ozone formation".
841: 790: 753: 700: 690: 638: 599: 544: 509: 474: 423: 372: 317: 126: 31: 27: 50:) are caused by the effects of the mass of an isotope on atomic or molecular velocities, 837: 786: 749: 686: 634: 595: 540: 505: 470: 419: 368: 313: 705: 666: 234: 165: 83: 59: 55: 875: 173: 137: 39: 861: 810: 443: 392: 667:"Global 3-D Simulations of the Triple Oxygen Isotope Signature ΔO in Atmospheric CO 337: 237:. This effect of terrestrial vegetation on the isotopic signature of atmospheric CO 141: 110: 98: 564: 427: 794: 619:"Isotopic exchange between carbon dioxide and ozone via O(D) in the stratosphere" 376: 728:
Adnew, G. A.; Pons, T. L.; Koren, G.; Peters, W.; Röckmann, T. (31 July 2020).
114: 87: 618: 129:
in the Solar nebula has been proposed to explain this isotope fractionation.
845: 758: 729: 548: 513: 478: 106: 51: 853: 802: 714: 650: 556: 435: 384: 329: 101:, show a pattern of low O/O and O/O relative to samples from the Earth and 457:
Mauersberger, K (1987). "Ozone isotope measurements in the stratosphere".
695: 321: 97:. The inclusions, thought to be among the oldest solid materials in the 256: 113:. However, recent measurement of the oxygen-isotope composition of the 86:, and Lawrence Grossman in 1973, in the oxygen isotopic composition of 35: 642: 603: 133: 241:
was simulated with a global model and confirmed experimentally.
102: 209:, resulting in a mass-independent distribution of isotopes. 132:
Mass-independent fractionation also has been observed in
617:Yung, Y. L.; DeMore, W. B.; Pinto, J. P. (1991). 140:and John Heidenreich in 1983, and later found in 213:Mass-independent carbon dioxide fractionation 197:* having a shorter lifetime than asymmetric O 8: 675:Journal of Geophysical Research: Atmospheres 221:). This anomalous isotopic composition in CO 205:distribution of energy throughout all the 193:but may be due to isotopically symmetric O 757: 704: 694: 66:Mass-independent fractionation in nature 292: 78:. The first example was discovered by 245:Mass-independent sulfur fractionation 7: 584:Physical Chemistry Chemical Physics 14: 117:, using samples collected by the 91:calcium–aluminium-rich inclusions 24:Non-mass-dependent fractionation 494:Journal of Geophysical Research 1: 428:10.1126/science.219.4588.1073 795:10.1126/science.289.5480.756 623:Geophysical Research Letters 459:Geophysical Research Letters 377:10.1126/science.182.4111.485 164:Theoretical calculations by 908: 48:equilibrium fractionations 271:Equilibrium fractionation 227:gross primary production 225:can be used to quantify 184:related to some unusual 60:spin-forbidden reactions 846:10.1126/science.1190298 759:10.5194/bg-17-3903-2020 549:10.1126/science.1058528 514:10.1029/JD095iD01p00901 479:10.1029/gl014i001p00080 259: million years ago 252:Great Oxygenation Event 201:*, thus not allowing a 170:kinetic isotope effects 578:Janssen, Carl (2001). 233:by vegetation through 44:kinetic fractionations 34:that acts to separate 276:Kinetic fractionation 26:(NMD), refers to any 20:isotope fractionation 696:10.1029/2019JD030387 281:Isotope geochemistry 172:(KIE) involving the 838:2010Sci...329..204H 787:2000Sci...289..756F 750:2020BGeo...17.3903A 687:2019JGRD..124.8808K 635:1991GeoRL..18...13Y 596:2001PCCP....3.4718J 541:2001Sci...293..259G 506:1990JGR....95..901M 471:1987GeoRL..14...80M 420:1983Sci...219.1073T 414:(4588): 1073–1075. 369:1973Sci...182..485C 322:10.1038/nature13068 314:2014Natur.506..307L 254:to some time after 42:(including typical 229:, the uptake of CO 207:degrees of freedom 119:Genesis spacecraft 832:(5988): 204–207. 781:(5480): 756–758. 744:(14): 3903–3922. 681:(15): 8808–8836. 643:10.1029/90GL02478 535:(5528): 259–263. 363:(4111): 485–488. 308:(7488): 307–315. 190:zero-point energy 123:Photodissociation 95:Allende meteorite 80:Robert N. Clayton 899: 866: 865: 821: 815: 814: 770: 764: 763: 761: 725: 719: 718: 708: 698: 661: 655: 654: 614: 608: 607: 604:10.1039/b107171h 575: 569: 568: 524: 518: 517: 489: 483: 482: 454: 448: 447: 403: 397: 396: 352: 346: 345: 297: 260: 32:physical process 17:Mass-independent 907: 906: 902: 901: 900: 898: 897: 896: 872: 871: 870: 869: 823: 822: 818: 772: 771: 767: 733: 727: 726: 722: 670: 663: 662: 658: 616: 615: 611: 577: 576: 572: 526: 525: 521: 491: 490: 486: 456: 455: 451: 405: 404: 400: 354: 353: 349: 299: 298: 294: 289: 267: 255: 247: 240: 232: 224: 220: 215: 200: 196: 179: 159: 155: 151: 127:carbon monoxide 68: 12: 11: 5: 905: 903: 895: 894: 889: 884: 874: 873: 868: 867: 816: 765: 738:Biogeosciences 731: 720: 668: 656: 609: 570: 519: 484: 449: 398: 347: 291: 290: 288: 285: 284: 283: 278: 273: 266: 263: 246: 243: 238: 235:photosynthesis 230: 222: 218: 214: 211: 198: 194: 177: 166:Rudolph Marcus 162: 161: 157: 153: 149: 84:Toshiko Mayeda 67: 64: 40:fractionations 13: 10: 9: 6: 4: 3: 2: 904: 893: 892:Fractionation 890: 888: 885: 883: 880: 879: 877: 863: 859: 855: 851: 847: 843: 839: 835: 831: 827: 820: 817: 812: 808: 804: 800: 796: 792: 788: 784: 780: 776: 769: 766: 760: 755: 751: 747: 743: 739: 735: 724: 721: 716: 712: 707: 702: 697: 692: 688: 684: 680: 676: 672: 660: 657: 652: 648: 644: 640: 636: 632: 628: 624: 620: 613: 610: 605: 601: 597: 593: 589: 585: 581: 574: 571: 566: 562: 558: 554: 550: 546: 542: 538: 534: 530: 523: 520: 515: 511: 507: 503: 499: 495: 488: 485: 480: 476: 472: 468: 464: 460: 453: 450: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 402: 399: 394: 390: 386: 382: 378: 374: 370: 366: 362: 358: 351: 348: 344: 339: 335: 331: 327: 323: 319: 315: 311: 307: 303: 296: 293: 286: 282: 279: 277: 274: 272: 269: 268: 264: 262: 258: 253: 244: 242: 236: 228: 212: 210: 208: 204: 191: 187: 183: 175: 174:excited state 171: 167: 147: 146: 145: 143: 142:stratospheric 139: 138:Mark Thiemens 135: 130: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 89: 85: 81: 77: 73: 65: 63: 61: 57: 56:photochemical 53: 52:diffusivities 49: 45: 41: 37: 33: 29: 25: 21: 18: 887:Geochemistry 829: 825: 819: 778: 774: 768: 741: 737: 723: 678: 674: 659: 629:(1): 13–16. 626: 622: 612: 590:(21): 4718. 587: 583: 573: 532: 528: 522: 497: 493: 487: 465:(1): 80–83. 462: 458: 452: 411: 407: 401: 360: 356: 350: 341: 305: 301: 295: 248: 216: 182:intermediate 163: 131: 111:Solar nebula 99:Solar System 69: 23: 16: 15: 500:(D1): 901. 203:statistical 109:) into the 876:Categories 287:References 115:Solar wind 88:refractory 156:* + M → O 107:supernova 882:Isotopes 862:45825809 854:20508089 811:12287304 803:10926533 715:31598450 651:11538378 557:11387441 444:26466899 436:17811750 393:22386977 385:17832468 330:24553238 265:See also 186:symmetry 36:isotopes 28:chemical 834:Bibcode 826:Science 783:Bibcode 775:Science 746:Bibcode 706:6774299 683:Bibcode 631:Bibcode 592:Bibcode 537:Bibcode 529:Science 502:Bibcode 467:Bibcode 416:Bibcode 408:Science 365:Bibcode 357:Science 338:4443958 310:Bibcode 93:in the 860:  852:  809:  801:  713:  703:  649:  565:867229 563:  555:  442:  434:  391:  383:  336:  328:  302:Nature 76:sulfur 72:oxygen 858:S2CID 807:S2CID 561:S2CID 440:S2CID 389:S2CID 334:S2CID 257:2,450 148:O + O 134:ozone 850:PMID 799:PMID 711:PMID 647:PMID 553:PMID 432:PMID 381:PMID 326:PMID 250:the 160:+ M* 103:Moon 74:and 58:and 46:and 22:or 842:doi 830:329 791:doi 779:289 754:doi 701:PMC 691:doi 679:124 639:doi 600:doi 545:doi 533:293 510:doi 475:doi 424:doi 412:219 373:doi 361:182 318:doi 306:506 152:→ O 125:of 30:or 878:: 856:. 848:. 840:. 828:. 805:. 797:. 789:. 777:. 752:. 742:17 740:. 736:. 709:. 699:. 689:. 677:. 673:. 645:. 637:. 627:18 625:. 621:. 598:. 586:. 582:. 559:. 551:. 543:. 531:. 508:. 498:95 496:. 473:. 463:14 461:. 438:. 430:. 422:. 410:. 387:. 379:. 371:. 359:. 340:. 332:. 324:. 316:. 304:. 180:* 82:, 864:. 844:: 836:: 813:. 793:: 785:: 762:. 756:: 748:: 734:" 732:2 717:. 693:: 685:: 671:" 669:2 653:. 641:: 633:: 606:. 602:: 594:: 588:3 567:. 547:: 539:: 516:. 512:: 504:: 481:. 477:: 469:: 446:. 426:: 418:: 395:. 375:: 367:: 320:: 312:: 239:2 231:2 223:2 219:2 199:3 195:3 178:3 176:O 158:3 154:3 150:2

Index

isotope fractionation
chemical
physical process
isotopes
fractionations
kinetic fractionations
equilibrium fractionations
diffusivities
photochemical
spin-forbidden reactions
oxygen
sulfur
Robert N. Clayton
Toshiko Mayeda
refractory
calcium–aluminium-rich inclusions
Allende meteorite
Solar System
Moon
supernova
Solar nebula
Solar wind
Genesis spacecraft
Photodissociation
carbon monoxide
ozone
Mark Thiemens
stratospheric
Rudolph Marcus
kinetic isotope effects

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑