Knowledge (XXG)

Self-energy

Source đź“ť

1003: 515: 524: 160:. In such cases, it is the real part of this self-energy that is identified with the physical self-energy (referred to above as particle's "self-energy"); the inverse of the imaginary part is a measure for the lifetime of the particle under investigation. For clarity, elementary excitations, or 172:
of the underlying many-particle system, which only momentarily, if at all, behave like those specific to isolated particles; the above-mentioned lifetime is the time over which a dressed particle behaves as if it were a single particle with well-defined momentum and energy.
628:
calculations. Self-energies also find extensive application in the calculation of particle transport through open quantum systems and the embedding of sub-regions into larger systems (for example the surface of a semi-infinite crystal).
153:), one retains a contribution to the self-energy operator (in, for instance, the momentum-energy representation). Using a small number of simple rules, each Feynman diagram can be readily expressed in its corresponding algebraic form. 71:, the energy required to assemble the charge distribution takes the form of self-energy by bringing in the constituent charges from infinity, where the electric force goes to zero. In a 507: 349: 200: 778: 387: 133:
times this value). In this, or other representations (such as the space-time representation), the self-energy is pictorially (and economically) represented by means of
255: 281: 226: 57: 444: 130: 414: 617: 771: 747: 732: 706: 168:), in interacting systems are distinct from stable particles in vacuum; their state functions consist of complicated superpositions of the 64: 663: 1006: 724: 1028: 878: 764: 801: 1038: 137:, such as the one shown below. In this particular diagram, the three arrowed straight lines represent particles, or particle 1033: 578: 169: 928: 811: 547: 949: 888: 816: 625: 452: 605: 297: 842: 156:
In general, the on-the-mass-shell value of the self-energy operator in the momentum-energy representation is
787: 964: 100: 974: 638: 33: 918: 613: 601: 179: 84: 80: 36:, the energy that a particle has as a result of changes that it causes in its environment defines 984: 959: 883: 357: 944: 913: 743: 728: 720: 702: 231: 145:) the left-most and the right-most straight lines in the diagram shown below (these so-called 717:
The Field Theoretic Renormalization Group in Critical Behavior Theory and Stochastic Dynamics
260: 205: 83:) and lifetime. Self-energy is especially used to describe electron-electron interactions in 42: 979: 862: 658: 419: 161: 115: 72: 392: 923: 908: 806: 648: 559: 539: 134: 112: 954: 543: 165: 157: 68: 1022: 609: 288: 150: 76: 514: 17: 570: 149:
lines correspond to prescribed values for, for instance, momentum and energy, or
893: 857: 832: 569:
Neutral particles with internal quantum numbers can mix with each other through
563: 75:
context, self-energy is used to describe interaction induced renormalization of
969: 898: 653: 643: 138: 590: 573:
production. The primary example of this phenomenon is the mixing of neutral
756: 562:; they do undergo mass renormalization through the renormalization of the 852: 837: 555: 551: 847: 597:
of an ion is the energy associated with the field of the ion itself.
531: 88: 60: 228:) is related to the bare and dressed propagators (often denoted by 67:, due to interactions between the particle and its environment. In 577:. Under appropriate simplifying assumptions this can be described 535: 141:, and the wavy line a particle-particle interaction; removing (or 546:
protects them from getting a mass. This is a consequence of the
574: 523: 760: 689:
A. A. Abrikosov, L. P. Gorkov and I. E. Dzyaloshinski (1963):
111:) in the momentum-energy representation (more precisely, to 87:. Another example of self-energy is found in the context of 691:
Methods of Quantum Field Theory in Statistical Physics
679:(McGraw-Hill, New York, 1971); (Dover, New York, 2003) 99:
Mathematically, this energy is equal to the so-called
455: 422: 395: 360: 300: 263: 234: 208: 182: 118: 45: 59:, and represents the contribution to the particle's 937: 871: 825: 794: 501: 438: 408: 381: 343: 275: 249: 220: 194: 124: 51: 29:Energy quantum particles contribute to themselves 699:Quantum Field Theory in Condensed Matter Physics 608:physics self-energies and a myriad of related 772: 740:The Embedding Method for Electronic Structure 8: 701:(2nd ed.). Cambridge University Press. 91:softening due to electron-phonon coupling. 176:The self-energy operator (often denoted by 779: 765: 757: 502:{\displaystyle \Sigma =G_{0}^{-1}-G^{-1}.} 487: 471: 466: 454: 427: 421: 400: 394: 370: 365: 359: 344:{\displaystyle G=G_{0}^{}+G_{0}\Sigma G.} 326: 316: 311: 299: 270: 268: 262: 244: 239: 233: 215: 213: 207: 189: 187: 181: 117: 44: 677:Quantum Theory of Many-Particle Systems 354:Multiplying on the left by the inverse 119: 719:(Routledge Chapman & Hall 2004); 7: 618:Green's function (many-body theory) 622:interacting low-energy excitations 456: 332: 184: 46: 25: 1007:Template:Quantum mechanics topics 675:A. L. Fetter, and J. D. Walecka, 1002: 1001: 879:Anomalous magnetic dipole moment 693:Englewood Cliffs: Prentice-Hall. 522: 513: 103:value of the proper self-energy 686:(Westview Press, Boulder, 1998) 664:Wheeler–Feynman absorber theory 1: 684:Quantum Many-Particle Systems 682:J. W. Negele, and H. Orland, 612:properties are calculated by 558:get their masses through the 195:{\displaystyle \Sigma _{}^{}} 738:John E. Inglesfield (2015). 579:without quantum field theory 802:Euler–Heisenberg Lagrangian 1055: 697:Alexei M. Tsvelik (2007). 538:do not get a mass through 382:{\displaystyle G_{0}^{-1}} 993: 817:Path integral formulation 626:electronic band structure 202:, and less frequently by 985:Photon-photon scattering 250:{\displaystyle G_{0}^{}} 1029:Quantum electrodynamics 929:Ward–Takahashi identity 812:Gupta–Bleuler formalism 788:Quantum electrodynamics 276:{\displaystyle G_{}^{}} 221:{\displaystyle M_{}^{}} 52:{\displaystyle \Sigma } 503: 440: 439:{\displaystyle G^{-1}} 410: 383: 345: 283:respectively) via the 277: 251: 222: 196: 126: 125:{\displaystyle \hbar } 53: 1039:Renormalization group 950:Breit–Wheeler process 889:Klein–Nishina formula 593:, the self-energy or 504: 441: 411: 409:{\displaystyle G_{0}} 384: 346: 278: 252: 223: 197: 127: 54: 1034:Quantum field theory 639:Quantum field theory 453: 420: 416:and on the right by 393: 358: 298: 261: 232: 206: 180: 116: 43: 34:quantum field theory 18:Mass renormalization 965:DelbrĂĽck scattering 919:Vacuum polarization 843:Faddeev–Popov ghost 479: 378: 318: 272: 246: 217: 191: 960:Compton scattering 742:. IOP Publishing. 499: 462: 436: 406: 379: 361: 341: 307: 273: 264: 247: 235: 218: 209: 192: 183: 122: 49: 1016: 1015: 975:Møller scattering 945:Bhabha scattering 914:Uehling potential 863:Virtual particles 749:978-0-7503-1042-0 733:978-0-415-31002-4 708:978-0-521-52980-8 162:dressed particles 16:(Redirected from 1046: 1005: 1004: 980:Schwinger effect 781: 774: 767: 758: 753: 712: 659:GW approximation 624:on the basis of 614:Green's function 606:condensed-matter 526: 517: 508: 506: 505: 500: 495: 494: 478: 470: 445: 443: 442: 437: 435: 434: 415: 413: 412: 407: 405: 404: 389:of the operator 388: 386: 385: 380: 377: 369: 350: 348: 347: 342: 331: 330: 317: 315: 282: 280: 279: 274: 271: 269: 256: 254: 253: 248: 245: 243: 227: 225: 224: 219: 216: 214: 201: 199: 198: 193: 190: 188: 135:Feynman diagrams 131: 129: 128: 123: 107:(or proper mass 73:condensed matter 58: 56: 55: 50: 21: 1054: 1053: 1049: 1048: 1047: 1045: 1044: 1043: 1019: 1018: 1017: 1012: 1011: 989: 933: 924:Vertex function 909:Schwinger limit 884:Furry's theorem 867: 821: 807:Feynman diagram 790: 785: 750: 737: 715:A. N. Vasil'ev 709: 696: 672: 649:Renormalization 635: 587: 560:Higgs mechanism 540:renormalization 483: 451: 450: 423: 418: 417: 396: 391: 390: 356: 355: 322: 296: 295: 259: 258: 230: 229: 204: 203: 178: 177: 114: 113: 97: 95:Characteristics 41: 40: 30: 23: 22: 15: 12: 11: 5: 1052: 1050: 1042: 1041: 1036: 1031: 1021: 1020: 1014: 1013: 1010: 1009: 995: 994: 991: 990: 988: 987: 982: 977: 972: 967: 962: 957: 955:Bremsstrahlung 952: 947: 941: 939: 935: 934: 932: 931: 926: 921: 916: 911: 906: 901: 896: 891: 886: 881: 875: 873: 869: 868: 866: 865: 860: 855: 850: 845: 840: 835: 829: 827: 823: 822: 820: 819: 814: 809: 804: 798: 796: 792: 791: 786: 784: 783: 776: 769: 761: 755: 754: 748: 735: 713: 707: 694: 687: 680: 671: 668: 667: 666: 661: 656: 651: 646: 641: 634: 631: 586: 583: 544:gauge symmetry 528: 527: 519: 518: 510: 509: 498: 493: 490: 486: 482: 477: 474: 469: 465: 461: 458: 433: 430: 426: 403: 399: 376: 373: 368: 364: 352: 351: 340: 337: 334: 329: 325: 321: 314: 310: 306: 303: 285:Dyson equation 267: 242: 238: 212: 186: 166:quasi-particle 121: 96: 93: 69:electrostatics 65:effective mass 48: 28: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1051: 1040: 1037: 1035: 1032: 1030: 1027: 1026: 1024: 1008: 1000: 997: 996: 992: 986: 983: 981: 978: 976: 973: 971: 968: 966: 963: 961: 958: 956: 953: 951: 948: 946: 943: 942: 940: 936: 930: 927: 925: 922: 920: 917: 915: 912: 910: 907: 905: 902: 900: 897: 895: 892: 890: 887: 885: 882: 880: 877: 876: 874: 870: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 830: 828: 824: 818: 815: 813: 810: 808: 805: 803: 800: 799: 797: 793: 789: 782: 777: 775: 770: 768: 763: 762: 759: 751: 745: 741: 736: 734: 730: 726: 725:0-415-31002-4 722: 718: 714: 710: 704: 700: 695: 692: 688: 685: 681: 678: 674: 673: 669: 665: 662: 660: 657: 655: 652: 650: 647: 645: 642: 640: 637: 636: 632: 630: 627: 623: 619: 615: 611: 610:quasiparticle 607: 603: 598: 596: 592: 584: 582: 580: 576: 572: 567: 565: 561: 557: 553: 549: 548:Ward identity 545: 541: 537: 533: 525: 521: 520: 516: 512: 511: 496: 491: 488: 484: 480: 475: 472: 467: 463: 459: 449: 448: 447: 431: 428: 424: 401: 397: 374: 371: 366: 362: 338: 335: 327: 323: 319: 312: 308: 304: 301: 294: 293: 292: 290: 289:Freeman Dyson 287:(named after 286: 265: 240: 236: 210: 174: 171: 167: 163: 159: 154: 152: 151:four-momentum 148: 144: 140: 136: 132: 110: 106: 102: 101:on mass shell 94: 92: 90: 86: 85:Fermi liquids 82: 78: 77:quasiparticle 74: 70: 66: 62: 39: 35: 27: 19: 998: 903: 739: 716: 698: 690: 683: 676: 621: 616:methods and 599: 594: 588: 571:virtual pair 568: 529: 353: 284: 175: 155: 146: 142: 108: 104: 98: 37: 31: 26: 904:Self-energy 894:Landau pole 858:Positronium 833:Dual photon 602:solid state 595:Born energy 564:electroweak 170:eigenstates 139:propagators 81:dispersions 38:self-energy 1023:Categories 970:Lamb shift 899:QED vacuum 670:References 654:Self-force 644:QED vacuum 585:Other uses 143:amputating 999:See also: 938:Processes 826:Particles 795:Formalism 591:chemistry 489:− 481:− 473:− 457:Σ 429:− 372:− 333:Σ 185:Σ 120:ℏ 47:Σ 872:Concepts 853:Positron 838:Electron 633:See also 566:theory. 554:and the 542:because 147:external 109:operator 105:operator 556:Z-boson 552:W-boson 550:. The 446:yields 158:complex 848:Photon 746:  731:  723:  705:  532:photon 89:phonon 79:mass ( 61:energy 575:kaons 536:gluon 164:(see 63:, or 744:ISBN 729:ISBN 721:ISBN 703:ISBN 604:and 534:and 530:The 257:and 620:of 600:In 589:In 291:): 32:In 1025:: 727:; 581:. 780:e 773:t 766:v 752:. 711:. 497:. 492:1 485:G 476:1 468:0 464:G 460:= 432:1 425:G 402:0 398:G 375:1 367:0 363:G 339:. 336:G 328:0 324:G 320:+ 313:0 309:G 305:= 302:G 266:G 241:0 237:G 211:M 20:)

Index

Mass renormalization
quantum field theory
energy
effective mass
electrostatics
condensed matter
quasiparticle
dispersions
Fermi liquids
phonon
on mass shell
{\displaystyle \hbar }
Feynman diagrams
propagators
four-momentum
complex
dressed particles
quasi-particle
eigenstates
Freeman Dyson


photon
gluon
renormalization
gauge symmetry
Ward identity
W-boson
Z-boson
Higgs mechanism

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑