Knowledge (XXG)

Maximum cut

Source đź“ť

1898: 31: 1531: 681:
of the curve is even and the subset for which the winding number is odd; these two subsets form a cut that includes all of the edges whose duals appear an odd number of times in the tour. The route inspection problem may be solved in polynomial time, and this duality allows the maximum cut problem to
786:
because the algorithm improves the cut by at least one edge at each step. When the algorithm terminates, at least half of the edges incident to every vertex belong to the cut, for otherwise moving the vertex would improve the cut. Therefore, the cut includes at least
1893:{\displaystyle {\begin{aligned}H&=-\sum _{ij\in E(V^{+})}J_{ij}-\sum _{ij\in E(V^{-})}J_{ij}+\sum _{ij\in \delta (V^{+})}J_{ij}\\&=-\sum _{ij\in E(G)}J_{ij}+2\sum _{ij\in \delta (V^{+})}J_{ij}\\&=C+2\sum _{ij\in \delta (V^{+})}J_{ij}\end{aligned}}} 224: 948: 282:
Bound (b) is often called the Edwards-Erdős bound as Erdős conjectured it. Edwards proved the Edwards-Erdős bound using probabilistic method; Crowston et al. proved the bound using linear algebra and analysis of pseudo-boolean functions.
2725: 2510:
Crowston, R.; Fellows, M.; Gutin, G.; Jones, M.; Kim, E. J.; Rosamond, F.; Ruzsa, I. Z.; Thomassé, S.; Yeo, A. (2014), "Satisfying more than half of a system of linear equations over GF(2): A multivariate approach",
957:
is true, this is the best possible approximation ratio for maximum cut. Without such unproven assumptions, it has been proven to be NP-hard to approximate the max-cut value with an approximation ratio better than
755:
and repeatedly moves one vertex at a time from one side of the partition to the other, improving the solution at each step, until no more improvements of this type can be made. The number of iterations is at most
694:, meaning that there is no polynomial-time approximation scheme (PTAS), arbitrarily close to the optimal solution, for it, unless P = NP. Thus, every known polynomial-time approximation algorithm achieves an 486: 1358: 529:. Recently, Gutin and Yeo obtained a number of lower bounds for weighted Max-Cut extending the Poljak-Turzik bound for arbitrary weighted graphs and bounds for special classes of weighted graphs. 1536: 277: 991: 717:; therefore there is a simple deterministic polynomial-time 0.5-approximation algorithm as well. One such algorithm starts with an arbitrary partition of the vertices of the given graph 149: 863: 2383:
Barahona, Francisco; Grötschel, Martin; Jünger, Michael; Reinelt, Gerhard (1988). "An Application of Combinatorial Optimization to Statistical Physics and Circuit Layout Design".
871: 1953: 114:
and its complement rather than the number of the edges. The weighted max-cut problem allowing both positive and negative weights can be trivially transformed into a weighted
1523: 1064: 1401: 1175: 665:(the problem of finding a shortest tour that visits each edge of a graph at least once), in the sense that the edges that do not belong to a maximum cut-set of a graph 1136: 1100: 753: 1487: 3208: 1457: 823: 1430: 1204: 1102:. Crowston et al. extended the fixed-parameter tractability result to the Balanced Subgraph Problem (BSP, see Lower bounds above) and improved the kernel size to 784: 709:: for each vertex flip a coin to decide to which half of the partition to assign it. In expectation, half of the edges are cut edges. This algorithm can be 1223:
and its edges as distances, the max cut algorithm divides a graph in two well-separated subsets. In other words, it can be naturally applied to perform
2929: 691: 2946: 3041: 2735: 828:
The polynomial-time approximation algorithm for Max-Cut with the best known approximation ratio is a method by Goemans and Williamson using
677:. The optimal inspection tour forms a self-intersecting curve that separates the plane into two subsets, the subset of points for which the 581:
answer is easy to prove by presenting a large enough cut. The NP-completeness of the problem can be shown, for example, by a reduction from
3081:
Poljak, S.; Turzik, Z. (1986), "A polynomial time heuristic for certain subgraph optimization problems with guaranteed worst case bound",
2602:
Dunning, Iain; Gupta, Swati; Silberholz, John (2018), "What works best when? A systematic evaluation of heuristics for Max-Cut and QUBO",
3198: 714: 1227:. Compared to more common classification algorithms, it does not require a feature space, only the distances between elements within. 3167: 2485:
Bylka, S.; Idzik, A.; Tuza, I. (1999), "Maximum cuts: Improvements and local algorithmic analogues of the Edwards-Erd6s inequality",
2354: 590: 2892:; Lingas, Andrzej; Seidel, Eike (2005), "Polynomial Time Approximation Schemes for MAX-BISECTION on Planar and Geometric Graphs", 413: 2536:
Crowston, R.; Gutin, G.; Jones, M.; Muciaccia, G. (2013), "Maximum balanced subgraph problem parameterized above lower bound",
2464:
Ausiello, Giorgio; Crescenzi, Pierluigi; Gambosi, Giorgio; Kann, Viggo; Marchetti-Spaccamela, Alberto; Protasi, Marco (2003),
586: 1267: 3203: 3193: 3171: 629: 2780:(1995), "Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming", 1964: 542: 39: 231: 961: 1220: 682:
also be solved in polynomial time for planar graphs. The Maximum-Bisection problem is known however to be NP-hard.
2955: 2894: 1009: 829: 662: 582: 400:. Bound (a) was improved for special classes of graphs: triangle-free graphs, graphs of given maximum degree, 219:{\displaystyle \left\lceil {\frac {m}{2}}+{\sqrt {{\frac {m}{8}}+{\frac {1}{64}}}}-{\frac {1}{8}}\right\rceil } 107: 2984:
Khuller, Samir; Raghavachari, Balaji; Young, Neal E. (2007), "Greedy methods", in Gonzalez, Teofilo F. (ed.),
3121:; Sorkin, Gregory; Sudan, Madhu; Williamson, David (2000), "Gadgets, Approximation, and Linear Programming", 2435: 954: 706: 59: 996:
In there is an extended analysis of 10 heuristics for this problem, including open-source implementation.
839: 3051: 2903: 2664:
Edwards, C. S. (1975), "An improved lower bound for the number of edges in a largest bipartite subgraph",
1012:(FPT), it is much harder to show fixed-parameter tractability for the problem of deciding whether a graph 943:{\displaystyle \alpha ={\frac {2}{\pi }}\min _{0\leq \theta \leq \pi }{\frac {\theta }{1-\cos \theta }}.} 2513: 1986: 1250: 1224: 55: 2466:
Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties
1138:(holds also for BSP). Etscheid and Mnich improved the fixed-parameter tractability result for BSP to 1016:
has a cut of size at least the Edwards-Erdős lower bound (see Lower bounds above) plus (the parameter)
3163: 2994: 1995: 1906: 702: 601: 2674:
Etscheid, M.; Mnich, M. (2018), "Linear Kernels and Linear-Time Algorithms for Finding Large Cuts",
1492: 2908: 2777: 2760: 2538: 1242: 1023: 833: 695: 2571:
Crowston, R.; Jones, M.; Mnich, M. (2015), "Max-cut parameterized above the Edwards–Erdős bound",
1370: 3055: 2972: 2876: 2859: 2817: 2801: 2782: 2705: 2652: 2619: 2590: 2547: 2452: 2408: 2360: 1246: 47: 2335:"Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images" 1004:
While it is trivial to prove that the problem of finding a cut of size at least (the parameter)
1903:
Minimizing this energy is equivalent to the min-cut problem or by setting the graph weights as
1141: 3037: 2731: 2400: 2350: 1261:. For the Ising model on a graph G and only nearest-neighbor interactions, the Hamiltonian is 1105: 1069: 594: 720: 3144: 3090: 3067: 3029: 2964: 2913: 2868: 2842: 2791: 2721: 2717: 2695: 2685: 2642: 2611: 2582: 2557: 2522: 2496: 2444: 2392: 2342: 1990: 1462: 538: 1435: 790: 2889: 2833: 1406: 1180: 710: 574: 96: 51: 2854: 759: 624:
The optimization variant is known to be NP-Hard. The opposite problem, that of finding a
3011: 2773: 2487: 678: 2501: 3187: 3118: 3095: 3072: 2950: 2813: 2656: 2633: 2456: 1981: 295: 2805: 2709: 2594: 2976: 2942: 2925: 2880: 2751:
Maximum bipartite subgraph (decision version) is the problem GT25 in Appendix A1.2.
2676: 2573: 2364: 1525:
the set of edges that connect the two sets. We can then rewrite the Hamiltonian as
658: 3033: 2831:
Hadlock, F. (1975), "Finding a Maximum Cut of a Planar Graph in Polynomial Time",
2623: 669:
are the duals of the edges that are doubled in an optimal inspection tour of the
2477:
Maximum cut (optimisation version) is the problem ND14 in Appendix B (page 399).
1976: 1258: 1236: 625: 570: 286:
The proof of Crowston et al. allows us to extend the Edwards-Erdős bound to the
115: 95:
and the complementary subset is as large as possible. Equivalently, one wants a
2527: 370:
are different subsets. BSP aims at finding a partition with the maximum number
3148: 2968: 2917: 2759:
Gaur, Daya Ram; Krishnamurti, Ramesh (2007), "LP rounding and extensions", in
2690: 2586: 2562: 2448: 2339:
Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001
2334: 1254: 670: 2404: 2346: 2998: 3003:
Probability and Computing: Randomized Algorithms and Probabilistic Analysis
2647: 2615: 2951:"Optimal inapproximability results for MAX-CUT and other 2-variable CSPs?" 2872: 2796: 2631:
Edwards, C. S. (1973), "Some extremal properties of bipartite subgraphs",
2396: 3123:
Proceedings of the 37th IEEE Symposium on Foundations of Computer Science
3106:
Surveys in Combinatorics, London Mathematical Society Lecture Note Series
649:, no polynomial-time algorithms for Max-Cut in general graphs are known. 407:
Poljak and Turzik extended the Edwards-Erdős bound to weighted Max-Cut:
110:, and the objective is to maximize the total weight of the edges between 646: 17: 3178: 3162:
Pierluigi Crescenzi, Viggo Kann, MagnĂşs HalldĂłrsson, Marek Karpinski,
2727:
Computers and Intractability: A Guide to the Theory of NP-Completeness
2700: 2412: 126:
Edwards obtained the following two lower bound for Max-Cut on a graph
2177: 316:, i.e. graphs where each edge is assigned + or –. For a partition of 85: 2846: 2748:
Maximum cut (decision version) is the problem ND16 in Appendix A2.2.
2822: 50:
whose size is at least the size of any other cut. That is, it is a
30: 2552: 29: 1020:. Crowston et al. proved that the problem can be solved in time 3104:
Scott, A. (2005), "Judicious partitions and related problems",
3058:(1991), "Optimization, approximation, and complexity classes", 2260: 2283: 3024:
Newman, Alantha (2008), "Max cut", in Kao, Ming-Yang (ed.),
2249: 77:
is as large as possible. Finding such a cut is known as the
2816:; Yeo, A. (2021), "Lower Bounds for Maximum Weighted Cut", 2161: 589:). The weighted version of the decision problem was one of 2429:
Alon, N.; Krivelevich, M.; Sudakov, B. (2005), "Maxcut in
593:; Karp showed the NP-completeness by a reduction from the 481:{\displaystyle {\frac {w(G)}{2}}+{\frac {w(T_{min})}{4}},} 2053: 84:
The problem can be stated simply as follows. One wants a
2225: 106:, where each edge is associated with a real number, its 91:
of the vertex set such that the number of edges between
2986:
Handbook of Approximation Algorithms and Metaheuristics
2765:
Handbook of Approximation Algorithms and Metaheuristics
2173: 1367:
of the graph is a spin site that can take a spin value
2294: 2065: 1249:, the Max Cut problem is equivalent to minimizing the 966: 604:
of the above decision problem is usually known as the
102:
There is a more general version of the problem called
99:
subgraph of the graph with as many edges as possible.
1909: 1534: 1495: 1465: 1438: 1409: 1373: 1353:{\displaystyle H=-\sum _{ij\in E(G)}J_{ij}s_{i}s_{j}} 1270: 1183: 1144: 1108: 1072: 1026: 964: 874: 842: 793: 762: 723: 416: 234: 152: 557:, determine whether there is a cut of size at least 2341:. Vol. 1. IEEE Comput. Soc. pp. 105–112. 541:related to maximum cuts has been studied widely in 3131:Zeng, Q.; Hou, J. (2017), "Bipartite Subgraphs of 2857:(2001), "Some optimal inapproximability results", 2308: 1947: 1892: 1517: 1481: 1451: 1424: 1395: 1352: 1198: 1169: 1130: 1094: 1058: 985: 942: 857: 817: 778: 747: 480: 271: 218: 2213: 2189: 1989:, equivalent to asking for the largest bipartite 2304: 2302: 2237: 892: 272:{\displaystyle {\frac {m}{2}}+{\frac {n-1}{4}}.} 2201: 2049: 2047: 2038: 986:{\displaystyle {\tfrac {16}{17}}\approx 0.941} 2320: 118:problem by flipping the sign in all weights. 8: 2932:", in Miller, R. E.; Thacher, J. W. (eds.), 2125: 2101: 628:is known to be efficiently solvable via the 142:is arbitrary, but in (b) it is connected): 573:. It is easy to see that the problem is in 385:. The Edwards-ErdĹ‘s gives a lower bound on 27:Problem of finding a maximum cut in a graph 3172:"A compendium of NP optimization problems" 1000:Parameterized algorithms and kernelization 3177:Andrea Casini, Nicola Rebagliati (2012), 3094: 3071: 2930:Reducibility among combinatorial problems 2907: 2821: 2795: 2699: 2689: 2646: 2561: 2551: 2526: 2500: 1933: 1914: 1908: 1877: 1862: 1842: 1810: 1795: 1775: 1756: 1728: 1702: 1687: 1667: 1651: 1636: 1616: 1600: 1585: 1565: 1535: 1533: 1506: 1494: 1470: 1464: 1443: 1437: 1408: 1378: 1372: 1344: 1334: 1321: 1293: 1269: 1182: 1149: 1143: 1119: 1107: 1083: 1071: 1047: 1031: 1025: 965: 963: 913: 895: 881: 873: 841: 807: 802: 794: 792: 771: 763: 761: 722: 661:, the Maximum-Cut Problem is dual to the 454: 441: 417: 415: 248: 235: 233: 201: 186: 173: 171: 158: 151: 2226:Khuller, Raghavachari & Young (2007) 2113: 1963:The max cut problem has applications in 69:, such that the number of edges between 3060:Journal of Computer and System Sciences 2149: 2089: 2026: 2014: 2007: 1998:, a related concept for infinite graphs 3209:Computational problems in graph theory 3179:"A Python library for solving Max Cut" 2295:Dunning, Gupta & Silberholz (2018) 2272: 2066:Alon, Krivelevich & Sudakov (2005) 2378: 2376: 2374: 2174:Papadimitriou & Yannakakis (1991) 2077: 858:{\displaystyle \alpha \approx 0.878,} 836:that achieves an approximation ratio 520:and its minimum weight spanning tree 7: 2137: 2333:Boykov, Y.Y.; Jolly, M.-P. (2001). 715:method of conditional probabilities 2945:; Kindler, Guy; Mossel, Elchanan; 2934:Complexity of Computer Computation 2309:Crowston, Jones & Mnich (2015) 1432:into two sets, those with spin up 25: 396:for every connected signed graph 1403:A spin configuration partitions 2936:, Plenum Press, pp. 85–103 2666:Recent Advances in Graph Theory 2214:Mitzenmacher & Upfal (2005) 2190:Mitzenmacher & Upfal (2005) 1948:{\displaystyle w_{ij}=-J_{ij},} 3028:, Springer, pp. 489–492, 3014:; Raghavan, Prabhakar (1995), 2238:Gaur & Krishnamurti (2007) 2039:Bylka, Idzik & Tuza (1999) 1868: 1855: 1801: 1788: 1747: 1741: 1693: 1680: 1642: 1629: 1591: 1578: 1548: 1542: 1518:{\displaystyle \delta (V^{+})} 1512: 1499: 1419: 1413: 1312: 1306: 1280: 1274: 1193: 1187: 1177:and the kernel-size result to 1164: 1158: 1125: 1112: 1089: 1076: 1053: 1040: 803: 795: 772: 764: 742: 730: 591:Karp's 21 NP-complete problems 587:maximum satisfiability problem 466: 447: 429: 423: 1: 3034:10.1007/978-0-387-30162-4_219 2502:10.1016/S0012-365X(98)00115-0 2202:Motwani & Raghavan (1995) 1066:and admits a kernel of size 1059:{\displaystyle 8^{k}O(n^{4})} 404:-free graphs, etc., see e.g. 3096:10.1016/0012-365X(86)90192-5 3073:10.1016/0022-0000(91)90023-X 2604:INFORMS Journal on Computing 1396:{\displaystyle s_{i}=\pm 1.} 569:This problem is known to be 543:theoretical computer science 2321:Etscheid & Mnich (2018) 351:are in the same subset, or 34:An example of a maximum cut 3225: 3199:Combinatorial optimization 3052:Papadimitriou, Christos H. 3026:Encyclopedia of Algorithms 2528:10.1016/j.jcss.2013.10.002 2126:Garey & Johnson (1979) 2102:Poljak & Turzik (1986) 1234: 645:As the Max-Cut Problem is 641:Polynomial-time algorithms 3149:10.1017/S0004972716001295 2969:10.1137/S0097539705447372 2956:SIAM Journal on Computing 2918:10.1137/s009753970139567x 2895:SIAM Journal on Computing 2691:10.1007/s00453-017-0388-z 2587:10.1007/s00453-014-9870-z 2563:10.1016/j.tcs.2013.10.026 2449:10.1017/S0963548305007017 1459:and those with spin down 1170:{\displaystyle 8^{k}O(m)} 1010:fixed-parameter tractable 288:Balanced Subgraph Problem 2988:, Chapman & Hall/CRC 2767:, Chapman & Hall/CRC 2347:10.1109/iccv.2001.937505 1131:{\displaystyle O(k^{3})} 1095:{\displaystyle O(k^{5})} 830:semidefinite programming 698:strictly less than one. 686:Approximation algorithms 663:route inspection problem 630:Ford–Fulkerson algorithm 583:maximum 2-satisfiability 533:Computational complexity 2436:Combin. Probab. Comput. 1257:model, most simply the 955:unique games conjecture 748:{\displaystyle G=(V,E)} 707:approximation algorithm 690:The Max-Cut Problem is 3137:Bull. Aust. Math. Soc. 2648:10.4153/CJM-1973-048-x 2616:10.1287/ijoc.2017.0798 2284:Trevisan et al. (2000) 2250:Ausiello et al. (2003) 2114:Gutin & Yeo (2021) 2054:Crowston et al. (2014) 1949: 1894: 1519: 1483: 1482:{\displaystyle V^{-}.} 1453: 1426: 1397: 1354: 1219:Treating its nodes as 1200: 1171: 1132: 1096: 1060: 987: 944: 859: 819: 780: 749: 585:(a restriction of the 482: 332:is balanced if either 273: 220: 35: 3016:Randomized Algorithms 2995:Mitzenmacher, Michael 2873:10.1145/502090.502098 2797:10.1145/227683.227684 2514:J. Comput. Syst. Sci. 2397:10.1287/opre.36.3.493 2090:Zeng & Hou (2017) 1987:Odd cycle transversal 1955:the max-cut problem. 1950: 1895: 1520: 1484: 1454: 1452:{\displaystyle V^{+}} 1427: 1398: 1355: 1225:binary classification 1201: 1172: 1133: 1097: 1061: 988: 945: 860: 820: 818:{\displaystyle |E|/2} 781: 750: 620:, find a maximum cut. 483: 381:of balanced edges in 274: 221: 33: 3204:NP-complete problems 3194:Graph theory objects 2778:Williamson, David P. 2761:Gonzalez, Teofilo F. 2162:Jansen et al. (2005) 1996:Unfriendly partition 1907: 1532: 1493: 1463: 1436: 1425:{\displaystyle V(G)} 1407: 1371: 1268: 1199:{\displaystyle O(k)} 1181: 1142: 1106: 1070: 1024: 962: 872: 840: 791: 760: 721: 602:optimization variant 414: 232: 150: 3056:Yannakakis, Mihalis 2539:Theor. Comput. Sci. 2385:Operations Research 1243:statistical physics 1231:Theoretical physics 834:randomized rounding 779:{\displaystyle |E|} 696:approximation ratio 612:and is defined as: 606:Maximum-Cut Problem 516:are the weights of 2860:Journal of the ACM 2783:Journal of the ACM 2774:Goemans, Michel X. 2668:, pp. 167–181 2261:Khot et al. (2007) 1945: 1890: 1888: 1872: 1805: 1751: 1697: 1646: 1595: 1515: 1479: 1449: 1422: 1393: 1350: 1316: 1247:disordered systems 1196: 1167: 1128: 1092: 1056: 983: 975: 940: 912: 855: 815: 776: 745: 701:There is a simple 478: 269: 216: 60:complementary sets 36: 3164:Gerhard Woeginger 3043:978-0-387-30770-1 2737:978-0-7167-1045-5 2722:Johnson, David S. 2718:Garey, Michael R. 1838: 1771: 1724: 1663: 1612: 1561: 1363:Here each vertex 1289: 974: 935: 891: 889: 595:partition problem 473: 436: 264: 243: 209: 196: 194: 181: 166: 16:(Redirected from 3216: 3151: 3126: 3113: 3099: 3098: 3076: 3075: 3046: 3019: 3006: 2989: 2979: 2937: 2926:Karp, Richard M. 2920: 2911: 2890:Karpinski, Marek 2883: 2849: 2826: 2825: 2808: 2799: 2790:(6): 1115–1145, 2768: 2740: 2730:, W.H. Freeman, 2712: 2703: 2693: 2684:(9): 2574–2615, 2669: 2659: 2650: 2626: 2597: 2566: 2565: 2555: 2531: 2530: 2505: 2504: 2469: 2459: 2417: 2416: 2380: 2369: 2368: 2330: 2324: 2318: 2312: 2306: 2297: 2292: 2286: 2281: 2275: 2270: 2264: 2258: 2252: 2247: 2241: 2235: 2229: 2223: 2217: 2211: 2205: 2199: 2193: 2187: 2181: 2171: 2165: 2159: 2153: 2147: 2141: 2135: 2129: 2123: 2117: 2111: 2105: 2099: 2093: 2087: 2081: 2075: 2069: 2063: 2057: 2051: 2042: 2036: 2030: 2024: 2018: 2012: 1991:induced subgraph 1954: 1952: 1951: 1946: 1941: 1940: 1922: 1921: 1899: 1897: 1896: 1891: 1889: 1885: 1884: 1871: 1867: 1866: 1822: 1818: 1817: 1804: 1800: 1799: 1764: 1763: 1750: 1714: 1710: 1709: 1696: 1692: 1691: 1659: 1658: 1645: 1641: 1640: 1608: 1607: 1594: 1590: 1589: 1524: 1522: 1521: 1516: 1511: 1510: 1488: 1486: 1485: 1480: 1475: 1474: 1458: 1456: 1455: 1450: 1448: 1447: 1431: 1429: 1428: 1423: 1402: 1400: 1399: 1394: 1383: 1382: 1359: 1357: 1356: 1351: 1349: 1348: 1339: 1338: 1329: 1328: 1315: 1215:Machine learning 1205: 1203: 1202: 1197: 1176: 1174: 1173: 1168: 1154: 1153: 1137: 1135: 1134: 1129: 1124: 1123: 1101: 1099: 1098: 1093: 1088: 1087: 1065: 1063: 1062: 1057: 1052: 1051: 1036: 1035: 992: 990: 989: 984: 976: 967: 949: 947: 946: 941: 936: 934: 914: 911: 890: 882: 864: 862: 861: 856: 824: 822: 821: 816: 811: 806: 798: 785: 783: 782: 777: 775: 767: 754: 752: 751: 746: 539:decision problem 528: 519: 515: 501: 487: 485: 484: 479: 474: 469: 465: 464: 442: 437: 432: 418: 403: 399: 395: 384: 380: 369: 365: 361: 350: 346: 342: 331: 327: 323: 319: 315: 278: 276: 275: 270: 265: 260: 249: 244: 236: 225: 223: 222: 217: 215: 211: 210: 202: 197: 195: 187: 182: 174: 172: 167: 159: 141: 137: 133: 129: 113: 104:weighted max-cut 94: 90: 76: 72: 68: 64: 21: 3224: 3223: 3219: 3218: 3217: 3215: 3214: 3213: 3184: 3183: 3159: 3135:-free Graphs", 3130: 3117: 3103: 3080: 3050: 3044: 3023: 3012:Motwani, Rajeev 3010: 2993: 2983: 2947:O'Donnell, Ryan 2941: 2924: 2888:Jansen, Klaus; 2887: 2853: 2847:10.1137/0204019 2834:SIAM J. Comput. 2830: 2812: 2772: 2758: 2738: 2716: 2673: 2663: 2630: 2601: 2570: 2535: 2509: 2484: 2463: 2433:-free graphs", 2428: 2425: 2420: 2382: 2381: 2372: 2357: 2332: 2331: 2327: 2319: 2315: 2307: 2300: 2293: 2289: 2282: 2278: 2271: 2267: 2259: 2255: 2248: 2244: 2236: 2232: 2224: 2220: 2212: 2208: 2200: 2196: 2188: 2184: 2172: 2168: 2160: 2156: 2148: 2144: 2136: 2132: 2124: 2120: 2112: 2108: 2100: 2096: 2088: 2084: 2076: 2072: 2064: 2060: 2052: 2045: 2037: 2033: 2025: 2021: 2013: 2009: 2005: 1973: 1961: 1929: 1910: 1905: 1904: 1887: 1886: 1873: 1858: 1820: 1819: 1806: 1791: 1752: 1712: 1711: 1698: 1683: 1647: 1632: 1596: 1581: 1551: 1530: 1529: 1502: 1491: 1490: 1489:We denote with 1466: 1461: 1460: 1439: 1434: 1433: 1405: 1404: 1374: 1369: 1368: 1340: 1330: 1317: 1266: 1265: 1239: 1233: 1217: 1212: 1179: 1178: 1145: 1140: 1139: 1115: 1104: 1103: 1079: 1068: 1067: 1043: 1027: 1022: 1021: 1002: 960: 959: 918: 870: 869: 838: 837: 789: 788: 758: 757: 719: 718: 688: 655: 643: 638: 553:and an integer 535: 527: 521: 517: 513: 503: 492: 450: 443: 419: 412: 411: 401: 397: 386: 382: 371: 367: 363: 352: 348: 344: 333: 329: 325: 321: 317: 298: 250: 230: 229: 157: 153: 148: 147: 139: 135: 131: 127: 124: 111: 92: 88: 79:max-cut problem 74: 70: 66: 62: 54:of the graph's 28: 23: 22: 15: 12: 11: 5: 3222: 3220: 3212: 3211: 3206: 3201: 3196: 3186: 3185: 3182: 3181: 3175: 3158: 3157:External links 3155: 3154: 3153: 3128: 3119:Trevisan, Luca 3115: 3101: 3083:Discrete Math. 3078: 3066:(3): 425–440, 3048: 3042: 3021: 3008: 2991: 2981: 2963:(1): 319–357, 2939: 2922: 2909:10.1.1.62.5082 2902:(1): 110–119, 2885: 2867:(4): 798–859, 2851: 2841:(3): 221–225, 2828: 2810: 2770: 2755: 2754: 2753: 2752: 2749: 2743: 2742: 2736: 2714: 2671: 2661: 2641:(3): 475–485, 2628: 2610:(3): 608–624, 2599: 2581:(3): 734–757, 2568: 2533: 2521:(4): 687–696, 2507: 2495:(1–3): 39–58, 2488:Discrete Math. 2481: 2480: 2479: 2478: 2472: 2471: 2461: 2424: 2421: 2419: 2418: 2391:(3): 493–513. 2370: 2355: 2325: 2313: 2298: 2287: 2276: 2265: 2253: 2242: 2230: 2218: 2206: 2194: 2182: 2180:-completeness. 2166: 2154: 2150:Hadlock (1975) 2142: 2130: 2118: 2106: 2094: 2082: 2070: 2058: 2043: 2031: 2027:Edwards (1975) 2019: 2015:Edwards (1973) 2006: 2004: 2001: 2000: 1999: 1993: 1984: 1979: 1972: 1969: 1960: 1959:Circuit design 1957: 1944: 1939: 1936: 1932: 1928: 1925: 1920: 1917: 1913: 1901: 1900: 1883: 1880: 1876: 1870: 1865: 1861: 1857: 1854: 1851: 1848: 1845: 1841: 1837: 1834: 1831: 1828: 1825: 1823: 1821: 1816: 1813: 1809: 1803: 1798: 1794: 1790: 1787: 1784: 1781: 1778: 1774: 1770: 1767: 1762: 1759: 1755: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1727: 1723: 1720: 1717: 1715: 1713: 1708: 1705: 1701: 1695: 1690: 1686: 1682: 1679: 1676: 1673: 1670: 1666: 1662: 1657: 1654: 1650: 1644: 1639: 1635: 1631: 1628: 1625: 1622: 1619: 1615: 1611: 1606: 1603: 1599: 1593: 1588: 1584: 1580: 1577: 1574: 1571: 1568: 1564: 1560: 1557: 1554: 1552: 1550: 1547: 1544: 1541: 1538: 1537: 1514: 1509: 1505: 1501: 1498: 1478: 1473: 1469: 1446: 1442: 1421: 1418: 1415: 1412: 1392: 1389: 1386: 1381: 1377: 1361: 1360: 1347: 1343: 1337: 1333: 1327: 1324: 1320: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1292: 1288: 1285: 1282: 1279: 1276: 1273: 1235:Main article: 1232: 1229: 1216: 1213: 1211: 1208: 1195: 1192: 1189: 1186: 1166: 1163: 1160: 1157: 1152: 1148: 1127: 1122: 1118: 1114: 1111: 1091: 1086: 1082: 1078: 1075: 1055: 1050: 1046: 1042: 1039: 1034: 1030: 1001: 998: 982: 979: 973: 970: 951: 950: 939: 933: 930: 927: 924: 921: 917: 910: 907: 904: 901: 898: 894: 888: 885: 880: 877: 854: 851: 848: 845: 814: 810: 805: 801: 797: 774: 770: 766: 744: 741: 738: 735: 732: 729: 726: 687: 684: 679:winding number 654: 651: 642: 639: 637: 634: 622: 621: 616:Given a graph 600:The canonical 567: 566: 549:Given a graph 537:The following 534: 531: 525: 511: 489: 488: 477: 472: 468: 463: 460: 457: 453: 449: 446: 440: 435: 431: 428: 425: 422: 280: 279: 268: 263: 259: 256: 253: 247: 242: 239: 226: 214: 208: 205: 200: 193: 190: 185: 180: 177: 170: 165: 162: 156: 138:edges (in (a) 123: 120: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3221: 3210: 3207: 3205: 3202: 3200: 3197: 3195: 3192: 3191: 3189: 3180: 3176: 3173: 3169: 3168:"Maximum Cut" 3165: 3161: 3160: 3156: 3150: 3146: 3142: 3138: 3134: 3129: 3124: 3120: 3116: 3111: 3107: 3102: 3097: 3092: 3089:(1): 99–104, 3088: 3084: 3079: 3074: 3069: 3065: 3061: 3057: 3053: 3049: 3045: 3039: 3035: 3031: 3027: 3022: 3017: 3013: 3009: 3004: 3000: 2996: 2992: 2987: 2982: 2978: 2974: 2970: 2966: 2962: 2958: 2957: 2952: 2948: 2944: 2943:Khot, Subhash 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2910: 2905: 2901: 2897: 2896: 2891: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2861: 2856: 2855:HĂĄstad, Johan 2852: 2848: 2844: 2840: 2836: 2835: 2829: 2824: 2819: 2815: 2811: 2807: 2803: 2798: 2793: 2789: 2785: 2784: 2779: 2775: 2771: 2766: 2762: 2757: 2756: 2750: 2747: 2746: 2745: 2744: 2739: 2733: 2729: 2728: 2723: 2719: 2715: 2711: 2707: 2702: 2697: 2692: 2687: 2683: 2679: 2678: 2672: 2667: 2662: 2658: 2654: 2649: 2644: 2640: 2636: 2635: 2634:Can. J. Math. 2629: 2625: 2621: 2617: 2613: 2609: 2605: 2600: 2596: 2592: 2588: 2584: 2580: 2576: 2575: 2569: 2564: 2559: 2554: 2549: 2545: 2541: 2540: 2534: 2529: 2524: 2520: 2516: 2515: 2508: 2503: 2498: 2494: 2490: 2489: 2483: 2482: 2476: 2475: 2474: 2473: 2467: 2462: 2458: 2454: 2450: 2446: 2442: 2438: 2437: 2432: 2427: 2426: 2422: 2414: 2410: 2406: 2402: 2398: 2394: 2390: 2386: 2379: 2377: 2375: 2371: 2366: 2362: 2358: 2356:0-7695-1143-0 2352: 2348: 2344: 2340: 2336: 2329: 2326: 2322: 2317: 2314: 2310: 2305: 2303: 2299: 2296: 2291: 2288: 2285: 2280: 2277: 2274: 2273:HĂĄstad (2001) 2269: 2266: 2262: 2257: 2254: 2251: 2246: 2243: 2239: 2234: 2231: 2227: 2222: 2219: 2215: 2210: 2207: 2203: 2198: 2195: 2191: 2186: 2183: 2179: 2175: 2170: 2167: 2163: 2158: 2155: 2151: 2146: 2143: 2139: 2134: 2131: 2127: 2122: 2119: 2115: 2110: 2107: 2103: 2098: 2095: 2091: 2086: 2083: 2079: 2074: 2071: 2067: 2062: 2059: 2055: 2050: 2048: 2044: 2040: 2035: 2032: 2028: 2023: 2020: 2016: 2011: 2008: 2002: 1997: 1994: 1992: 1988: 1985: 1983: 1982:Minimum k-cut 1980: 1978: 1975: 1974: 1970: 1968: 1966: 1958: 1956: 1942: 1937: 1934: 1930: 1926: 1923: 1918: 1915: 1911: 1881: 1878: 1874: 1863: 1859: 1852: 1849: 1846: 1843: 1839: 1835: 1832: 1829: 1826: 1824: 1814: 1811: 1807: 1796: 1792: 1785: 1782: 1779: 1776: 1772: 1768: 1765: 1760: 1757: 1753: 1744: 1738: 1735: 1732: 1729: 1725: 1721: 1718: 1716: 1706: 1703: 1699: 1688: 1684: 1677: 1674: 1671: 1668: 1664: 1660: 1655: 1652: 1648: 1637: 1633: 1626: 1623: 1620: 1617: 1613: 1609: 1604: 1601: 1597: 1586: 1582: 1575: 1572: 1569: 1566: 1562: 1558: 1555: 1553: 1545: 1539: 1528: 1527: 1526: 1507: 1503: 1496: 1476: 1471: 1467: 1444: 1440: 1416: 1410: 1390: 1387: 1384: 1379: 1375: 1366: 1345: 1341: 1335: 1331: 1325: 1322: 1318: 1309: 1303: 1300: 1297: 1294: 1290: 1286: 1283: 1277: 1271: 1264: 1263: 1262: 1260: 1256: 1252: 1248: 1244: 1238: 1230: 1228: 1226: 1222: 1214: 1209: 1207: 1190: 1184: 1161: 1155: 1150: 1146: 1120: 1116: 1109: 1084: 1080: 1073: 1048: 1044: 1037: 1032: 1028: 1019: 1015: 1011: 1007: 999: 997: 994: 980: 977: 971: 968: 956: 937: 931: 928: 925: 922: 919: 915: 908: 905: 902: 899: 896: 886: 883: 878: 875: 868: 867: 866: 852: 849: 846: 843: 835: 831: 826: 812: 808: 799: 768: 739: 736: 733: 727: 724: 716: 712: 708: 704: 699: 697: 693: 685: 683: 680: 676: 672: 668: 664: 660: 659:planar graphs 653:Planar graphs 652: 650: 648: 640: 635: 633: 631: 627: 619: 615: 614: 613: 611: 607: 603: 598: 596: 592: 588: 584: 580: 576: 572: 564: 560: 556: 552: 548: 547: 546: 544: 540: 532: 530: 524: 510: 506: 499: 495: 475: 470: 461: 458: 455: 451: 444: 438: 433: 426: 420: 410: 409: 408: 405: 393: 389: 378: 374: 359: 355: 340: 336: 320:into subsets 313: 309: 305: 301: 297: 296:signed graphs 293: 289: 284: 266: 261: 257: 254: 251: 245: 240: 237: 227: 212: 206: 203: 198: 191: 188: 183: 178: 175: 168: 163: 160: 154: 145: 144: 143: 134:vertices and 121: 119: 117: 109: 105: 100: 98: 87: 82: 80: 61: 57: 53: 49: 45: 41: 32: 19: 3140: 3136: 3132: 3122: 3109: 3105: 3086: 3082: 3063: 3059: 3025: 3015: 3002: 2985: 2960: 2954: 2933: 2899: 2893: 2864: 2858: 2838: 2832: 2787: 2781: 2764: 2726: 2681: 2677:Algorithmica 2675: 2665: 2638: 2632: 2607: 2603: 2578: 2574:Algorithmica 2572: 2543: 2537: 2518: 2512: 2492: 2486: 2465: 2440: 2434: 2430: 2388: 2384: 2338: 2328: 2316: 2290: 2279: 2268: 2256: 2245: 2233: 2221: 2216:, Sect. 6.3. 2209: 2204:, Sect. 5.1. 2197: 2192:, Sect. 6.2. 2185: 2169: 2157: 2145: 2133: 2121: 2109: 2097: 2085: 2078:Scott (2005) 2073: 2061: 2034: 2022: 2010: 1962: 1902: 1364: 1362: 1240: 1218: 1210:Applications 1017: 1013: 1005: 1003: 995: 952: 827: 711:derandomized 700: 689: 674: 666: 657:However, in 656: 644: 623: 617: 609: 605: 599: 578: 568: 562: 558: 554: 550: 536: 522: 508: 504: 497: 493: 490: 406: 391: 387: 376: 372: 357: 353: 338: 334: 311: 307: 303: 299: 291: 287: 285: 281: 125: 122:Lower bounds 103: 101: 83: 78: 43: 37: 3143:(3): 1–13, 3018:, Cambridge 3005:, Cambridge 2443:: 629–647, 2138:Karp (1972) 1977:Minimum cut 1965:VLSI design 1259:Ising model 1251:Hamiltonian 1237:Ising model 626:minimum cut 571:NP-complete 116:minimum cut 44:maximum cut 3188:Categories 2999:Upfal, Eli 2823:2104.05536 2701:11420/4693 2468:, Springer 2423:References 1255:spin glass 1206:vertices. 703:randomized 671:dual graph 636:Algorithms 328:, an edge 3125:: 617–626 2928:(1972), " 2904:CiteSeerX 2814:Gutin, G. 2657:121925638 2553:1212.6848 2546:: 53–64, 2457:123485000 2405:0030-364X 1927:− 1853:δ 1850:∈ 1840:∑ 1786:δ 1783:∈ 1773:∑ 1736:∈ 1726:∑ 1722:− 1678:δ 1675:∈ 1665:∑ 1638:− 1624:∈ 1614:∑ 1610:− 1573:∈ 1563:∑ 1559:− 1497:δ 1472:− 1388:± 1301:∈ 1291:∑ 1287:− 978:≈ 932:θ 929:⁡ 923:− 916:θ 909:π 906:≤ 903:θ 900:≤ 887:π 876:α 847:≈ 844:α 713:with the 255:− 199:− 97:bipartite 58:into two 52:partition 3166:(2000), 3112:: 95–117 3001:(2005), 2949:(2007), 2806:15794408 2724:(1979), 2710:16301072 2595:14973734 1971:See also 1221:features 692:APX-hard 213:⌉ 155:⌈ 56:vertices 2977:2090495 2881:5120748 2763:(ed.), 2365:2245438 953:If the 825:edges. 647:NP-hard 610:Max-Cut 294:) on 18:Max cut 3040:  2975:  2906:  2879:  2804:  2734:  2708:  2655:  2624:485706 2622:  2593:  2455:  2413:170992 2411:  2403:  2363:  2353:  2178:MaxSNP 2176:prove 865:where 491:where 108:weight 86:subset 3170:, in 2973:S2CID 2877:S2CID 2818:arXiv 2802:S2CID 2706:S2CID 2653:S2CID 2620:S2CID 2591:S2CID 2548:arXiv 2453:S2CID 2409:JSTOR 2361:S2CID 2003:Notes 1253:of a 981:0.941 850:0.878 360:) = – 341:) = + 130:with 46:is a 40:graph 38:In a 3038:ISBN 2732:ISBN 2401:ISSN 2351:ISBN 1245:and 832:and 705:0.5- 577:: a 502:and 366:and 362:and 347:and 343:and 324:and 228:(b) 146:(a) 73:and 65:and 42:, a 3145:doi 3110:327 3091:doi 3068:doi 3030:doi 2965:doi 2914:doi 2869:doi 2843:doi 2792:doi 2696:hdl 2686:doi 2643:doi 2612:doi 2583:doi 2558:doi 2544:513 2523:doi 2497:doi 2493:194 2445:doi 2393:doi 2343:doi 1241:In 1008:is 926:cos 893:min 673:of 608:or 579:yes 561:in 526:min 512:min 302:= ( 292:BSP 48:cut 3190:: 3141:30 3139:, 3108:, 3087:58 3085:, 3064:43 3062:, 3054:; 3036:, 2997:; 2971:, 2961:37 2959:, 2953:, 2912:, 2900:35 2898:, 2875:, 2865:48 2863:, 2837:, 2800:, 2788:42 2786:, 2776:; 2720:; 2704:, 2694:, 2682:80 2680:, 2651:, 2639:25 2637:, 2618:, 2608:30 2606:, 2589:, 2579:72 2577:, 2556:, 2542:, 2519:80 2517:, 2491:, 2451:, 2441:14 2439:, 2407:. 2399:. 2389:36 2387:. 2373:^ 2359:. 2349:. 2337:. 2301:^ 2046:^ 1967:. 1391:1. 993:. 972:17 969:16 632:. 597:. 575:NP 545:: 358:xy 339:xy 330:xy 310:, 306:, 192:64 81:. 3174:. 3152:. 3147:: 3133:H 3127:. 3114:. 3100:. 3093:: 3077:. 3070:: 3047:. 3032:: 3020:. 3007:. 2990:. 2980:. 2967:: 2938:. 2921:. 2916:: 2884:. 2871:: 2850:. 2845:: 2839:4 2827:. 2820:: 2809:. 2794:: 2769:. 2741:. 2713:. 2698:: 2688:: 2670:. 2660:. 2645:: 2627:. 2614:: 2598:. 2585:: 2567:. 2560:: 2550:: 2532:. 2525:: 2506:. 2499:: 2470:. 2460:. 2447:: 2431:H 2415:. 2395:: 2367:. 2345:: 2323:. 2311:. 2263:. 2240:. 2228:. 2164:. 2152:. 2140:. 2128:. 2116:. 2104:. 2092:. 2080:. 2068:. 2056:. 2041:. 2029:. 2017:. 1943:, 1938:j 1935:i 1931:J 1924:= 1919:j 1916:i 1912:w 1882:j 1879:i 1875:J 1869:) 1864:+ 1860:V 1856:( 1847:j 1844:i 1836:2 1833:+ 1830:C 1827:= 1815:j 1812:i 1808:J 1802:) 1797:+ 1793:V 1789:( 1780:j 1777:i 1769:2 1766:+ 1761:j 1758:i 1754:J 1748:) 1745:G 1742:( 1739:E 1733:j 1730:i 1719:= 1707:j 1704:i 1700:J 1694:) 1689:+ 1685:V 1681:( 1672:j 1669:i 1661:+ 1656:j 1653:i 1649:J 1643:) 1634:V 1630:( 1627:E 1621:j 1618:i 1605:j 1602:i 1598:J 1592:) 1587:+ 1583:V 1579:( 1576:E 1570:j 1567:i 1556:= 1549:] 1546:s 1543:[ 1540:H 1513:) 1508:+ 1504:V 1500:( 1477:. 1468:V 1445:+ 1441:V 1420:) 1417:G 1414:( 1411:V 1385:= 1380:i 1376:s 1365:i 1346:j 1342:s 1336:i 1332:s 1326:j 1323:i 1319:J 1313:) 1310:G 1307:( 1304:E 1298:j 1295:i 1284:= 1281:] 1278:s 1275:[ 1272:H 1194:) 1191:k 1188:( 1185:O 1165:) 1162:m 1159:( 1156:O 1151:k 1147:8 1126:) 1121:3 1117:k 1113:( 1110:O 1090:) 1085:5 1081:k 1077:( 1074:O 1054:) 1049:4 1045:n 1041:( 1038:O 1033:k 1029:8 1018:k 1014:G 1006:k 938:. 920:1 897:0 884:2 879:= 853:, 813:2 809:/ 804:| 800:E 796:| 773:| 769:E 765:| 743:) 740:E 737:, 734:V 731:( 728:= 725:G 675:G 667:G 618:G 565:. 563:G 559:k 555:k 551:G 523:T 518:G 514:) 509:T 507:( 505:w 500:) 498:G 496:( 494:w 476:, 471:4 467:) 462:n 459:i 456:m 452:T 448:( 445:w 439:+ 434:2 430:) 427:G 424:( 421:w 402:H 398:G 394:) 392:G 390:( 388:b 383:G 379:) 377:G 375:( 373:b 368:y 364:x 356:( 354:s 349:y 345:x 337:( 335:s 326:W 322:U 318:V 314:) 312:s 308:E 304:V 300:G 290:( 267:. 262:4 258:1 252:n 246:+ 241:2 238:m 207:8 204:1 189:1 184:+ 179:8 176:m 169:+ 164:2 161:m 140:G 136:m 132:n 128:G 112:S 93:S 89:S 75:T 71:S 67:T 63:S 20:)

Index

Max cut

graph
cut
partition
vertices
complementary sets
subset
bipartite
weight
minimum cut
signed graphs
decision problem
theoretical computer science
NP-complete
NP
maximum 2-satisfiability
maximum satisfiability problem
Karp's 21 NP-complete problems
partition problem
optimization variant
minimum cut
Ford–Fulkerson algorithm
NP-hard
planar graphs
route inspection problem
dual graph
winding number
APX-hard
approximation ratio

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑