Knowledge

Eilenberg–Mazur swindle

Source 📝

89:
1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0
295: 101:, but the analogous argument can be used in some contexts where there is some sort of "addition" defined on some objects for which infinite sums do make sense, to show that if 1112: 1187: 673: 575:
have a well-defined natural number as their dimension which is additive under direct sums, and are isomorphic if and only if they have the same dimension.
979: 1076: 676:
might be seen as antecedent of the Eilenberg–Mazur swindle. In fact, the ideas are quite similar. If there are injections of sets from
183: 1219: 1094: 1058: 1032: 578:
This is false for some noncommutative rings, and a counterexample can be constructed using the Eilenberg swindle as follows. Let
371: 728:, where + means disjoint union and = means there is a bijection between two sets. Expanding the former with the latter, 959: 169:
is non-trivial. For knots it is possible to take infinite sums by making the knots smaller and smaller, so if
1263: 85:
The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0:
1258: 410: 1214:, Mathematics Lecture Series, vol. 7, Houston, TX: Publish or Perish, Inc., pp. xiv+439, 1175: 594:(for example the direct sum of an infinite number of copies of any nonzero abelian group), and let 414: 159: 130: 47: 94: 1215: 1090: 1072: 1054: 1028: 432: 1179: 1019:, Graduate Texts in Mathematics, vol. 150, New York: Springer-Verlag, pp. xvi+785, 1154: 1145: 1121: 1020: 991: 98: 67: 39: 1242: 1229: 1200: 1168: 1133: 1042: 1005: 1225: 1196: 1164: 1129: 1038: 1001: 79: 362: + ... is Euclidean space so the Mazur swindle shows that the connected sum of 1012: 1252: 1107: 391: 126: 1207: 656:
to be the group ring of the restricted direct product of infinitely many copies of
156: 46:, is a method of proof that involves paradoxical properties of infinite sums. In 755:
consist of those elements of the left hand side that correspond to an element of
1140: 1103: 440: 51: 43: 31: 1024: 975: 996: 17: 313: 309: 640:
are any groups then the Eilenberg swindle can be used to construct a ring
409:
In algebra the addition used in the swindle is usually the direct sum of
330:-manifolds have an addition operation given by connected sum, with 0 the 152: 134: 958:
Lam (1999), Corollary 2.7, p. 22; Eklof & Mekler (2002), Lemma 2.3,
97:
1 − 1 + 1 − 1 + ...
1159: 1125: 759:
on the right hand side. This bijection then expands to the bijection
125:
In geometric topology the addition used in the swindle is usually the
1108:"On the structure of certain semi-groups of spherical knot classes" 390:-sphere, and in some dimensions, such as 7, there are examples of 382:-sphere. (This does not show in the case of smooth manifolds that 27:
Method of proof involving paradoxical properties of infinite sums
571:, p.121) Finitely generated free modules over commutative rings 93:
This "proof" is not valid as a claim about real numbers because
308:
by a similar argument). The infinite sum of knots is usually a
290:{\displaystyle A=A+(B+A)+(B+A)+\cdots =(A+B)+(A+B)+\cdots =0\,} 943:
as well as the well-definedness of infinite disjoint union.
1017:
Commutative algebra. With a view toward algebraic geometry
397:
with inverses that are not diffeomorphic to the standard
366:
and Euclidean space is Euclidean space, which shows that
1212:
Knots and links. Corrected reprint of the 1976 original.
186: 289: 8: 1188:Notices of the American Mathematical Society 151:in geometric topology is the proof that the 147:, chapter 4B): A typical application of the 1158: 1051:Almost free modules: set-theoretic models 995: 899:This argument depended on the bijections 286: 185: 1049:Eklof, Paul C.; Mekler, Alan H. (2002), 568: 951: 317: 144: 880:with the inverse of the bijection for 790:Substituting the right hand side for 59: 55: 7: 1143:(1961), "On embeddings of spheres", 1113:Publications Mathématiques de l'IHÉS 692:, this means that formally we have 629: 66:. In algebra it was introduced by 1180:"What is ... an infinite swindle?" 1069:Exercises in Classical Ring Theory 674:Cantor–Bernstein–Schroeder theorem 25: 980:"Big projective modules are free" 427:in algebra is the proof that if 374:of Euclidean space and therefore 598:be the ring of endomorphisms of 984:Illinois Journal of Mathematics 460:. To see this, choose a module 320:) for more geometric examples. 1245:on Mazur's swindle in topology 837:Switching every adjacent pair 582:be an abelian group such that 474:is free, which can be done as 423:A typical application of the 271: 259: 253: 241: 229: 217: 211: 199: 1: 1087:Lectures on modules and rings 876:Composing the bijection for 652:are isomorphic rings: take 644:such that the group rings 1280: 1071:, New York, NY: Springer, 610:is isomorphic to the left 62:) and is often called the 1243:Exposition by Terence Tao 1025:10.1007/978-1-4612-5350-1 386:is diffeomorphic to the 1085:Lam, Tsit-Yuen (1999), 1067:Lam, Tsit-Yuen (2003), 751:In this bijection, let 478:is projective, and put 378:is homeomorphic to the 36:Eilenberg–Mazur swindle 997:10.1215/ijm/1255637479 291: 292: 70:and is known as the 50:it was introduced by 806:gives the bijection 632:, Exercise 8.16) If 184: 109: = 0 then 76:Eilenberg telescope 1160:10.1007/BF02559532 1126:10.1007/bf02684388 287: 48:geometric topology 1176:Poénaru, Valentin 1078:978-0-387-00500-3 672:The proof of the 433:projective module 425:Eilenberg swindle 405:Eilenberg swindle 99:does not converge 72:Eilenberg swindle 16:(Redirected from 1271: 1232: 1203: 1184: 1171: 1162: 1146:Acta Mathematica 1136: 1099: 1081: 1063: 1045: 1008: 999: 963: 956: 942: 916: 719: 705: 602:. Then the left 473: 459: 439:then there is a 372:compactification 326:: The oriented 304:is trivial (and 296: 294: 293: 288: 177:is trivial then 68:Samuel Eilenberg 40:Samuel Eilenberg 21: 1279: 1278: 1274: 1273: 1272: 1270: 1269: 1268: 1249: 1248: 1239: 1222: 1206: 1182: 1174: 1141:Mazur, Barry C. 1139: 1102: 1097: 1084: 1079: 1066: 1061: 1048: 1035: 1013:Eisenbud, David 1011: 974: 971: 966: 957: 953: 949: 918: 900: 707: 693: 670: 465: 447: 407: 370:is the 1-point 182: 181: 123: 95:Grandi's series 80:telescoping sum 28: 23: 22: 15: 12: 11: 5: 1277: 1275: 1267: 1266: 1261: 1251: 1250: 1247: 1246: 1238: 1237:External links 1235: 1234: 1233: 1220: 1204: 1195:(5): 619–622, 1172: 1137: 1100: 1095: 1082: 1077: 1064: 1059: 1046: 1033: 1009: 970: 967: 965: 964: 950: 948: 945: 897: 896: 874: 873: 835: 834: 788: 787: 749: 748: 720:for some sets 669: 668:Other examples 666: 562: 561: 507: 506: 406: 403: 392:exotic spheres 346:-sphere, then 298: 297: 285: 282: 279: 276: 273: 270: 267: 264: 261: 258: 255: 252: 249: 246: 243: 240: 237: 234: 231: 228: 225: 222: 219: 216: 213: 210: 207: 204: 201: 198: 195: 192: 189: 122: 119: 91: 90: 38:, named after 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1276: 1265: 1264:Module theory 1262: 1260: 1257: 1256: 1254: 1244: 1241: 1240: 1236: 1231: 1227: 1223: 1221:0-914098-16-0 1217: 1213: 1209: 1208:Rolfsen, Dale 1205: 1202: 1198: 1194: 1190: 1189: 1181: 1177: 1173: 1170: 1166: 1161: 1156: 1153:(1–2): 1–17, 1152: 1148: 1147: 1142: 1138: 1135: 1131: 1127: 1123: 1119: 1115: 1114: 1109: 1105: 1101: 1098: 1096:0-387-98428-3 1092: 1088: 1083: 1080: 1074: 1070: 1065: 1062: 1060:0-444-50492-3 1056: 1052: 1047: 1044: 1040: 1036: 1034:0-387-94268-8 1030: 1026: 1022: 1018: 1014: 1010: 1007: 1003: 998: 993: 989: 985: 981: 977: 973: 972: 968: 961: 955: 952: 946: 944: 941: 937: 933: 929: 925: 921: 915: 911: 907: 903: 894: 890: 887: 886: 885: 883: 879: 871: 867: 863: 859: 855: 851: 848: 847: 846: 844: 840: 832: 828: 824: 820: 816: 812: 809: 808: 807: 805: 801: 797: 793: 785: 781: 777: 773: 769: 765: 762: 761: 760: 758: 754: 746: 742: 738: 734: 731: 730: 729: 727: 723: 718: 714: 710: 704: 700: 696: 691: 687: 683: 679: 675: 667: 665: 663: 660: ⨯  659: 655: 651: 647: 643: 639: 635: 631: 627: 623: 621: 618: ⊕  617: 613: 609: 605: 601: 597: 593: 590: ⊕  589: 586: ≅  585: 581: 576: 574: 570: 569:Eisenbud 1995 566: 559: 555: 551: 547: 543: 539: 535: 531: 527: 523: 519: 515: 512: 511: 510: 504: 500: 496: 492: 488: 484: 481: 480: 479: 477: 472: 468: 463: 458: 454: 450: 445: 442: 438: 434: 430: 426: 422: 418: 416: 412: 404: 402: 400: 396: 393: 389: 385: 381: 377: 373: 369: 365: 361: 358: +  357: 354: +  353: 350: +  349: 345: 341: 338: +  337: 333: 329: 325: 321: 319: 315: 311: 307: 303: 283: 280: 277: 274: 268: 265: 262: 256: 250: 247: 244: 238: 235: 232: 226: 223: 220: 214: 208: 205: 202: 196: 193: 190: 187: 180: 179: 178: 176: 173: +  172: 168: 164: 161: 158: 154: 150: 149:Mazur swindle 146: 142: 138: 136: 132: 128: 127:connected sum 121:Mazur swindle 120: 118: 116: 112: 108: 105: +  104: 100: 96: 88: 87: 86: 83: 81: 77: 73: 69: 65: 64:Mazur swindle 61: 57: 53: 49: 45: 41: 37: 33: 19: 18:Mazur swindle 1211: 1192: 1186: 1150: 1144: 1117: 1111: 1104:Mazur, Barry 1089:, Springer, 1086: 1068: 1053:, Elsevier, 1050: 1016: 987: 983: 954: 939: 935: 931: 927: 923: 919: 913: 909: 905: 901: 898: 892: 888: 884:then yields 881: 877: 875: 869: 865: 861: 857: 853: 849: 842: 838: 836: 830: 826: 822: 818: 814: 810: 803: 799: 795: 791: 789: 783: 779: 775: 771: 767: 763: 756: 752: 750: 744: 740: 736: 732: 725: 721: 716: 712: 708: 702: 698: 694: 689: 685: 681: 677: 671: 661: 657: 653: 649: 645: 641: 637: 633: 625: 624: 619: 615: 611: 607: 603: 599: 595: 591: 587: 583: 579: 577: 572: 564: 563: 557: 553: 549: 545: 541: 537: 533: 529: 525: 521: 517: 513: 508: 502: 498: 494: 490: 486: 482: 475: 470: 466: 461: 456: 452: 448: 443: 436: 435:over a ring 428: 424: 420: 419: 408: 398: 394: 387: 383: 379: 375: 367: 363: 359: 355: 351: 347: 343: 339: 335: 334:-sphere. If 331: 327: 323: 322: 318:Poénaru 2007 305: 301: 299: 174: 170: 166: 162: 148: 145:Rolfsen 1990 140: 139: 124: 114: 110: 106: 102: 92: 84: 75: 71: 63: 35: 29: 1259:Knot theory 976:Bass, Hyman 441:free module 157:non-trivial 44:Barry Mazur 32:mathematics 1253:Categories 969:References 464:such that 401:-sphere.) 1120:: 19–27, 990:: 24–31, 684:and from 540:) ⊕ ⋯ = ( 314:tame knot 312:, not a 310:wild knot 278:⋯ 236:⋯ 135:manifolds 1210:(1990), 1178:(2007), 1106:(1959), 1015:(1995), 978:(1963), 630:Lam 2003 614:-module 606:-module 556:) ⊕ ⋯ ≅ 509:so that 421:Example: 1230:1277811 1201:2311984 1169:0125570 1134:0116347 1043:1322960 1006:0143789 845:yields 626:Example 565:Example 413:over a 411:modules 342:is the 324:Example 316:. See ( 155:of two 141:Example 54: ( 1228:  1218:  1199:  1167:  1132:  1093:  1075:  1057:  1041:  1031:  1004:  868:+ ⋯ + 829:+ ⋯ + 782:+ ⋯ + 34:, the 1183:(PDF) 947:Notes 930:) = ( 548:) ⊕ ( 532:) ⊕ ( 446:with 431:is a 160:knots 131:knots 117:= 0. 78:(see 52:Mazur 1216:ISBN 1091:ISBN 1073:ISBN 1055:ISBN 1029:ISBN 960:p. 9 938:) + 917:and 724:and 706:and 648:and 636:and 505:⊕ ⋯. 415:ring 165:and 60:1961 56:1959 42:and 1155:doi 1151:105 1122:doi 1021:doi 992:doi 922:+ ( 794:in 688:to 680:to 628:: ( 567:: ( 524:⊕ ( 300:so 153:sum 133:or 129:of 82:). 74:or 30:In 1255:: 1226:MR 1224:, 1197:MR 1193:54 1191:, 1185:, 1165:MR 1163:, 1149:, 1130:MR 1128:, 1116:, 1110:, 1039:MR 1037:, 1027:, 1002:MR 1000:, 986:, 982:, 934:+ 926:+ 912:+ 908:= 904:+ 891:= 864:+ 860:+ 856:+ 852:= 841:+ 825:+ 821:+ 817:+ 813:= 802:+ 798:= 778:+ 774:+ 770:+ 766:= 743:+ 739:+ 735:= 715:+ 711:= 701:+ 697:= 664:. 622:. 552:⊕ 544:⊕ 536:⊕ 528:⊕ 520:= 516:⊕ 501:⊕ 497:⊕ 493:⊕ 489:⊕ 485:= 469:⊕ 455:≅ 451:⊕ 417:. 137:. 113:= 58:, 1157:: 1124:: 1118:3 1023:: 994:: 988:7 962:. 940:C 936:B 932:A 928:C 924:B 920:A 914:A 910:B 906:B 902:A 895:. 893:Y 889:X 882:Y 878:X 872:. 870:Z 866:B 862:A 858:B 854:A 850:Y 843:A 839:B 833:. 831:Z 827:A 823:B 819:A 815:B 811:Y 804:X 800:B 796:Y 792:X 786:. 784:Z 780:B 776:A 772:B 768:A 764:X 757:X 753:Z 747:. 745:B 741:A 737:X 733:X 726:B 722:A 717:B 713:X 709:Y 703:A 699:Y 695:X 690:X 686:Y 682:Y 678:X 662:B 658:A 654:R 650:R 646:R 642:R 638:B 634:A 620:R 616:R 612:R 608:R 604:R 600:X 596:R 592:X 588:X 584:X 580:X 573:R 560:. 558:F 554:B 550:A 546:B 542:A 538:A 534:B 530:A 526:B 522:A 518:F 514:A 503:B 499:A 495:B 491:A 487:B 483:F 476:A 471:B 467:A 462:B 457:F 453:F 449:A 444:F 437:R 429:A 399:n 395:A 388:n 384:A 380:n 376:A 368:A 364:A 360:B 356:A 352:B 348:A 344:n 340:B 336:A 332:n 328:n 306:B 302:A 284:0 281:= 275:+ 272:) 269:B 266:+ 263:A 260:( 257:+ 254:) 251:B 248:+ 245:A 242:( 239:= 233:+ 230:) 227:A 224:+ 221:B 218:( 215:+ 212:) 209:A 206:+ 203:B 200:( 197:+ 194:A 191:= 188:A 175:B 171:A 167:B 163:A 143:( 115:B 111:A 107:B 103:A 20:)

Index

Mazur swindle
mathematics
Samuel Eilenberg
Barry Mazur
geometric topology
Mazur
1959
1961
Samuel Eilenberg
telescoping sum
Grandi's series
does not converge
connected sum
knots
manifolds
Rolfsen 1990
sum
non-trivial
knots
wild knot
tame knot
Poénaru 2007
compactification
exotic spheres
modules
ring
projective module
free module
Eisenbud 1995
Lam 2003

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.