Knowledge (XXG)

Meerwein–Ponndorf–Verley reduction

Source 📝

129: 213: 306: 385: 340: 258:. Aldehydes are reduced before ketones allowing for a measure of control over the reaction. If it is necessary to reduce one carbonyl in the presence of another, the common carbonyl protecting groups may be employed. Groups, such as alkenes and alkynes, that normally pose a problem for reduction by other means have no reactivity under these conditions. 473:
have shown high yields and high stereoselectivity in the reduction of carbonyls to alcohols. The ruthenium catalyst has been shown, however, to go through a ruthenium hydride intermediate. The Meerwein–Ponndorf–Verley reduction has also been effected with synthetically useful yield by plutonium (III)
410:
Several problems restrict the use of the Meerwein–Ponndorf–Verley reduction compared to the use of other reducing agents. The stereochemical control is seriously limited. Often a large amount of aluminium alkoxide is needed when using commercial reagent, and there are several known side reactions.
326:
The use of an intramolecular MPV reduction can give good enantiopurity. By tethering the ketone to the hydride source only one transition state is possible (Figure 4) leading to the asymmetric reduction. This method, however, has the ability to undergo the reverse
116:
catalysis in the presence of a sacrificial alcohol. The advantages of the MPV reduction lie in its high chemoselectivity and its use of a cheap environmentally friendly metal catalyst. MPV reductions have been described as "obsolete" owing to the development of
331:
due to the proximity of the two reagents. Thus the reaction runs under thermodynamic equilibrium with the ratio of the products related to their relative stabilities. After the reaction is run the hydride-source portion of the molecule can be removed.
372:
source of chirality. The low selectivity of this method is attributed to the shape of the transition state. It has been shown that the transition state is a planar six member transition state. This is different than the believed
290:) in the reduction of 2-chloroacetophenone. This enantioselection is due to the sterics of the two phenol groups in the six membered transition state as shown in Figure 3. In Figure 3, 1 is favored over 2 due to the large 414:
While commercial aluminium isopropoxide is available, the use of it often requires catalyst loadings of up to 100-200 mol%. This hinders the use of the MPV reduction on scale. Aluminium alkoxides made in situ from
233:
Each step in the cycle is reversible. The reaction is driven by the thermodynamic properties of the intermediates and the products. Several other mechanisms have been proposed for this reaction, including a
274:
alcohols. The three main ways to achieve the asymmetric reduction is by use of a chiral alcohol hydride source, use of an intramolecular MPV reduction, or use of a chiral ligand on the aluminium alkoxide.
936:
K. Haack; S. Hashiguchi; A. Fujii; T. Ikariya; R. Noyori (1997). "The Catalyst Precursor, Catalyst, and Intermediate in the RuII-Promoted Asymmetric Hydrogen Transfer between alcohols and Ketones".
773:
M. Fujita; Y. Takarada; T. Sugimura, A. Tai (1997). "Reliable chiral transfer through thermodynamic equilibrium of the intramolecular Meerwein–Ponndorf–Verley reduction and Oppenauer oxidation".
667:
R. Cohen; C. R. Graves; S. T. Nguyen, J. M. L. Martin & M. A. Ratner (2004). "The Mechanism of Aluminum-Catalyzed Meerwein-Schmidt-Ponndorf-Verley Reduction of Carbonyls to alcohols".
419:
reagents have far better activity requiring as little as 10% loading. The activity difference is believed to be due to the large aggregation state of the commercially available product.
627:
Wolfgang Ponndorf (1926). "Der reversible Austausch der Oxydationsstufen zwischen Aldehyden oder Ketonen einerseits und primären oder sekundären Alkoholen anderseits".
994: 212: 909:
D. A. Evans; S. G. Nelson; M. R. Gagne; A. R. Muci (1993). "A Chiral Samarium-Based Catalyst for the Asymmetric Meerwein–Ponndorf–Verley Reduction".
669: 128: 738:
T. Ooi; T. Miura; K. Marouka (1998). "Highly Efficient, Catalytic Meerwein–Ponndorf–Verler Reduction with a Novel Bidentate Aluminum Catalyst".
751: 278:
One method of achieving the asymmetric MPV reduction is with the use of chiral hydride donating alcohols. The use of chiral alcohol (R)-(+)-
75: 1046: 305: 364:
on the aluminium alkoxide can affect the stereochemical outcome of the MPV reduction. This method lead to the reduction of substituted
581: 560: 796:
E. J. Campbell; H. Zhou; S. T. Nguyen (2002). "The Asymmetric Meerwein-Schmidt-Ponndorf-Verley Reduction of Prochiral Ketones with
813: 384: 1041: 872:
C. R. Graves; K. A. Scheidt; S. T. Nguyen (2006). "Enantioselective MSPV Reduction of Ketimines Using 2-propanol and (BINOL)Al".
339: 157:
and ethanol could reduce aldehydes to their alcohols. Ponndorf applied the reaction to ketones and upgraded the catalyst to
60: 835:
E. J. Campbell; H. Zhou; S. T. Nguyen (2001). "Catalytic Meerwein-Pondorf-Verley Reduction by Simple Aluminum Complexes".
1008:
G.K. Chuah; S. Jaenicke; Y.Z. Zhu; S.H. Liu (2006). "Meerwein–Ponndorf–Verley reduction over Heterogeneous Catalysts".
608:
Verley, A. (1925). "Exchange of functional groups between two molecules. Exchange of alcohol and aldehyde groups".
68: 963:
Benjamin P. Warner, Joseph A. D’Alessio, Arthur N. Morgan III; d'Alessio; Morgan; Burns; Schake; Watkin (2000).
711:; Huskens, J. (1994). "Meerwein-Ponndorf-Verley Reductions and Oppenauer Oxidations: An Integrated Approach". 450:
using a chiral alkoxide. The addition of a phosphinoyl group to the nitrogen of the ketimine allowed for high
1051: 374: 477:
The standard MPV reduction is a homogeneous reaction several heterogeneous reactions have been developed.
158: 44: 988: 638: 368:
in up to 83%ee (Figure 5). The appeal of this method is that it uses a chiral ligand as opposed to a
201:. Finally, an alcohol from solution displaces the newly reduced carbonyl to regenerate the catalyst 486: 427: 416: 328: 287: 235: 194: 109: 491: 451: 423: 271: 154: 118: 543:
Brown, Herbert C.; Ramachandran, P. Veeraraghavan (1996). "Sixty Years of Hydride Reductions".
891: 854: 817: 755: 708: 686: 629: 556: 516: 239: 97: 93: 1017: 976: 945: 918: 883: 846: 809: 778: 747: 720: 678: 646: 590: 548: 525: 462: 430:. Finally, in some cases the alcohol generated by the reduction can be dehydrated giving an 255: 197:. At this point the new carbonyl dissociates and gives the tricoordinated aluminium species 174: 422:
Several side reactions are known to occur. In the case of ketones and especially aldehydes
181:, a carbonyl oxygen is coordinated to achieve the tetra coordinated aluminium intermediate 874: 837: 511: 173:
The MPV reduction is believed to go through a catalytic cycle involving a six-member ring
141:
Figure 1, Exchange of carbonyl oxidation states in the presence of aluminium isopropoxide.
579:; Schmidt, Rudolf (1925). "Ein neues Verfahren zur Reduktion von Aldehyden und Ketonen". 642: 980: 514:(1944). "Reduction with Aluminum Alkoxides (The Meerwein-Ponndorf-Verley Reduction)". 1035: 576: 369: 150: 30: 365: 267: 752:
10.1002/(SICI)1521-3773(19980918)37:17<2347::AID-ANIE2347>3.0.CO;2-U
529: 442:
The Meerwein–Ponndorf–Verley reduction has been used in the synthesis of chiral
162: 149:
The MPV reduction was independently discovered by Albert Verley and the team of
1021: 552: 458: 650: 594: 466: 949: 895: 858: 821: 759: 690: 266:
The aluminium based Meerwein–Ponndorf–Verley reduction can be performed on
814:
10.1002/1521-3773(20020315)41:6<1020::AID-ANIE1020>3.0.CO;2-S
724: 470: 447: 113: 105: 922: 254:
One of the great draws of the Meerwein–Ponndorf–Verley reduction is its
193:
the hydride is transferred to the carbonyl from the alkoxy ligand via a
243: 887: 850: 682: 782: 361: 295: 291: 101: 964: 443: 431: 426:
have been observed. Aldehydes with no α-hydrogens can undergo the
318:
Figure 3, Transition states of MPV reduction with a chiral alcohol
16:
Reduction of ketones and aldehydes to their corresponding alcohols
965:"Plutonium(III)-catalyzed Meerwein –Ponndorf –Verley reactions" 225:
Figure 2, Catalytic cycle of Meerwein–Ponndorf–Verley reduction
383: 338: 304: 246:
transfer is supported by experimental and theoretical data.
211: 127: 177:
as shown in Figure 2. Starting with the aluminium alkoxide
352:
Figure 4, Transition state of intramolecular MPV reduction
153:
and Rudolf Schmidt in 1925. They found that a mixture of
547:. ACS Symposium Series. Vol. 641. pp. 1–30. 309:
Meerwein–Ponndorf–Verley reduction with chiral alcohol
388:
Meerwein–Ponndorf–Verley reduction with chiral ligand
216:Meerwein–Ponndorf–Verley reduction catalytic cycle 465:for the Meerwein–Ponndorf–Verley reduction. Both 343:Intramolecular Meerwein–Ponndorf–Verley reduction 238:mechanism as well as a mechanism involving an 286:-bromophen-ethyl alcohol gave 82%ee (percent 8: 993:: CS1 maint: multiple names: authors list ( 18: 397:Figure 5, MPV reaction with chiral ligand 911:Journal of the American Chemical Society 702: 700: 670:Journal of the American Chemical Society 90:Meerwein–Ponndorf–Verley (MPV) reduction 662: 660: 503: 986: 242:species. The commonly accepted direct 7: 22:Meerwein–Ponndorf–Verley reduction 132:Meerwein–Ponndorf–Verley reduction 61:meerwein-ponndorf-verley-reduction 14: 800:PrOH Catalyzed by Al Catalysts". 707:De Graauw, C. F.; Peters, J. A.; 582:Justus Liebigs Annalen der Chemie 457:Work has been done in the use of 545:Reductions in Organic Synthesis 1: 981:10.1016/S0020-1693(00)00227-9 1047:Organic reduction reactions 530:10.1002/0471264180.or002.05 1068: 1022:10.2174/138527206778249621 938:Angew. Chem. Int. Ed. Engl 553:10.1021/bk-1996-0641.ch001 1010:Current Organic Chemistry 294:effect in 2 from the two 82: 56:Organic Chemistry Portal 50: 21: 651:10.1002/ange.19260390504 595:10.1002/jlac.19254440112 185:. Between intermediates 1042:Organic redox reactions 969:Inorganica Chimica Acta 775:Chemical Communications 377:like transition state. 375:Zimmerman-Traxler model 108:to their corresponding 950:10.1002/anie.199702851 389: 344: 310: 217: 159:aluminium isopropoxide 133: 121:and related reagents. 45:Organic redox reaction 387: 342: 308: 215: 131: 802:Angew. Chem. Int. Ed 740:Angew. Chem. Int. Ed 725:10.1055/s-1994-25625 195:pericyclic mechanism 112:utilizing aluminium 923:10.1021/ja00074a057 677:(45): 14796–14803. 643:1926AngCh..39..138P 610:Bull. Soc. Chim. Fr 487:Oppenauer oxidation 428:Tishchenko reaction 424:aldol condensations 417:trimethyl aluminium 329:Oppenauer oxidation 288:enantiomeric excess 270:ketones leading to 492:Carbonyl reduction 452:enantioselectivity 390: 345: 311: 218: 155:aluminium ethoxide 134: 119:sodium borohydride 34:Wolfgang Ponndorf 1016:(13): 1639–1654. 917:(21): 9800–9801. 888:10.1021/ol060110w 851:10.1021/ol0162116 845:(15): 2391–2393. 777:(17): 1631–1632. 746:(17): 2347–2349. 683:10.1021/ja047613m 630:Angewandte Chemie 517:Organic Reactions 463:transition metals 403: 402: 398: 358: 357: 353: 324: 323: 319: 262:Stereoselectivity 240:aluminium hydride 231: 230: 226: 147: 146: 142: 94:organic chemistry 86: 85: 1059: 1026: 1025: 1005: 999: 998: 992: 984: 960: 954: 953: 933: 927: 926: 906: 900: 899: 882:(6): 1229–1232. 869: 863: 862: 832: 826: 825: 808:(6): 1020–1022. 793: 787: 786: 783:10.1039/A704341D 770: 764: 763: 735: 729: 728: 704: 695: 694: 664: 655: 654: 624: 618: 617: 605: 599: 598: 573: 567: 566: 540: 534: 533: 508: 396: 380: 379: 351: 335: 334: 317: 301: 300: 256:chemoselectivity 250:Chemoselectivity 224: 208: 207: 175:transition state 140: 124: 123: 78: 63: 19: 1067: 1066: 1062: 1061: 1060: 1058: 1057: 1056: 1032: 1031: 1030: 1029: 1007: 1006: 1002: 985: 962: 961: 957: 935: 934: 930: 908: 907: 903: 875:Organic Letters 871: 870: 866: 838:Organic Letters 834: 833: 829: 795: 794: 790: 772: 771: 767: 737: 736: 732: 706: 705: 698: 666: 665: 658: 626: 625: 621: 607: 606: 602: 575: 574: 570: 563: 542: 541: 537: 510: 509: 505: 500: 483: 440: 408: 399: 354: 320: 264: 252: 227: 171: 143: 74: 59: 35: 33: 17: 12: 11: 5: 1065: 1063: 1055: 1054: 1052:Name reactions 1049: 1044: 1034: 1033: 1028: 1027: 1000: 975:(1–2): 45–48. 955: 944:(3): 285–288. 928: 901: 864: 827: 788: 765: 730: 709:Van Bekkum, H. 696: 656: 637:(5): 138–143. 619: 600: 589:(1): 221–238. 577:Meerwein, Hans 568: 561: 535: 524:(5): 178–223. 502: 501: 499: 496: 495: 494: 489: 482: 479: 474:isopropoxide. 439: 436: 407: 404: 401: 400: 395: 392: 391: 370:stoichiometric 356: 355: 350: 347: 346: 322: 321: 316: 313: 312: 263: 260: 251: 248: 229: 228: 223: 220: 219: 170: 167: 145: 144: 139: 136: 135: 84: 83: 80: 79: 72: 65: 64: 57: 53: 52: 48: 47: 42: 41:Reaction type 38: 37: 36:Albert Verley 28: 24: 23: 15: 13: 10: 9: 6: 4: 3: 2: 1064: 1053: 1050: 1048: 1045: 1043: 1040: 1039: 1037: 1023: 1019: 1015: 1011: 1004: 1001: 996: 990: 982: 978: 974: 970: 966: 959: 956: 951: 947: 943: 939: 932: 929: 924: 920: 916: 912: 905: 902: 897: 893: 889: 885: 881: 877: 876: 868: 865: 860: 856: 852: 848: 844: 840: 839: 831: 828: 823: 819: 815: 811: 807: 803: 799: 792: 789: 784: 780: 776: 769: 766: 761: 757: 753: 749: 745: 741: 734: 731: 726: 722: 718: 714: 710: 703: 701: 697: 692: 688: 684: 680: 676: 672: 671: 663: 661: 657: 652: 648: 644: 640: 636: 632: 631: 623: 620: 615: 611: 604: 601: 596: 592: 588: 584: 583: 578: 572: 569: 564: 562:9780841233812 558: 554: 550: 546: 539: 536: 531: 527: 523: 519: 518: 513: 507: 504: 497: 493: 490: 488: 485: 484: 480: 478: 475: 472: 468: 464: 460: 455: 454:up to 98%ee. 453: 449: 445: 437: 435: 433: 429: 425: 420: 418: 412: 405: 394: 393: 386: 382: 381: 378: 376: 371: 367: 366:acetophenones 363: 349: 348: 341: 337: 336: 333: 330: 315: 314: 307: 303: 302: 299: 297: 293: 289: 285: 281: 276: 273: 269: 261: 259: 257: 249: 247: 245: 241: 237: 222: 221: 214: 210: 209: 206: 204: 200: 196: 192: 188: 184: 180: 176: 168: 166: 164: 160: 156: 152: 151:Hans Meerwein 138: 137: 130: 126: 125: 122: 120: 115: 111: 107: 103: 99: 95: 91: 81: 77: 73: 70: 67: 66: 62: 58: 55: 54: 49: 46: 43: 40: 39: 32: 31:Hans Meerwein 29: 26: 25: 20: 1013: 1009: 1003: 989:cite journal 972: 968: 958: 941: 937: 931: 914: 910: 904: 879: 873: 867: 842: 836: 830: 805: 801: 797: 791: 774: 768: 743: 739: 733: 719:(10): 1007. 716: 712: 674: 668: 634: 628: 622: 613: 609: 603: 586: 580: 571: 544: 538: 521: 515: 512:Wilds, A. L. 506: 476: 456: 441: 421: 413: 409: 359: 325: 283: 279: 277: 265: 253: 232: 202: 198: 190: 186: 182: 178: 172: 148: 89: 87: 76:RXNO:0000089 71:ontology ID 51:Identifiers 27:Named after 459:lanthanides 163:isopropanol 1036:Categories 616:: 537–542. 498:References 438:Variations 713:Synthesis 467:ruthenium 448:ketimines 268:prochiral 169:Mechanism 106:aldehydes 98:reduction 896:16524310 859:11463324 822:12491299 760:29710956 691:15535705 481:See also 471:samarium 434:carbon. 298:groups. 114:alkoxide 110:alcohols 639:Bibcode 362:ligands 360:Chiral 244:hydride 236:radical 102:ketones 96:is the 894:  857:  820:  758:  689:  559:  444:amines 296:phenyl 292:steric 272:chiral 446:from 432:alkyl 406:Scope 995:link 892:PMID 855:PMID 818:PMID 756:PMID 717:1994 687:PMID 557:ISBN 469:and 461:and 189:and 104:and 88:The 1018:doi 977:doi 973:309 946:doi 919:doi 915:115 884:doi 847:doi 810:doi 779:doi 748:doi 721:doi 679:doi 675:126 647:doi 591:doi 587:444 549:doi 526:doi 280:sec 161:in 100:of 92:in 69:RSC 1038:: 1014:10 1012:. 991:}} 987:{{ 971:. 967:. 942:36 940:. 913:. 890:. 878:. 853:. 841:. 816:. 806:41 804:. 754:. 744:37 742:. 715:. 699:^ 685:. 673:. 659:^ 645:. 635:39 633:. 614:37 612:. 585:. 555:. 520:. 205:. 165:. 1024:. 1020:: 997:) 983:. 979:: 952:. 948:: 925:. 921:: 898:. 886:: 880:8 861:. 849:: 843:3 824:. 812:: 798:i 785:. 781:: 762:. 750:: 727:. 723:: 693:. 681:: 653:. 649:: 641:: 597:. 593:: 565:. 551:: 532:. 528:: 522:2 284:o 282:- 203:1 199:4 191:3 187:2 183:2 179:1

Index

Hans Meerwein
Organic redox reaction
meerwein-ponndorf-verley-reduction
RSC
RXNO:0000089
organic chemistry
reduction
ketones
aldehydes
alcohols
alkoxide
sodium borohydride
Meerwein–Ponndorf–Verley reduction
Hans Meerwein
aluminium ethoxide
aluminium isopropoxide
isopropanol
transition state
pericyclic mechanism
Meerwein–Ponndorf–Verley reduction catalytic cycle
radical
aluminium hydride
hydride
chemoselectivity
prochiral
chiral
enantiomeric excess
steric
phenyl
Meerwein–Ponndorf–Verley reduction with chiral alcohol

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.