Knowledge (XXG)

Meiotic drive

Source πŸ“

136:
removing the Y chromosome (and therefore males) from the population. The idea that meiotic drivers and their suppressors may govern speciation is supported by observations that mouse Y chromosomes lacking certain genetic loci produce female-biased offspring, implying these loci encode suppressors of drive. Moreover, matings of certain mouse strains used in research results in unequal offspring ratios. One gene responsible for sex ratio distortion in mice is r2d2 (
149: 185:) has been identified, though the mechanism by which it acts is still unknown. The strong selective pressure imposed by these driving X chromosomes has given rise to suppressors of drive, of which the genes are somewhat known for Winters, Durham, and Paris. These suppressors encode hairpin RNAs which match the sequence of driver genes (such as 670:
Didion JP, Morgan AP, Clayshulte AM, Mcmullan RC, Yadgary L, Petkov PM, Bell TA, Gatti DM, Crowley JJ, Hua K, Aylor DL, Bai L, Calaway M, Chesler EJ, French JE, Geiger TR, Gooch TJ, Garland T, Harrill AH, Hunter K, McMillan L, Holt M, Miller DR, O'Brien DA, Paigen K, Pan W, Rowe LB, Shaw GD, Simecek
135:
Early observations of mouse t-haplotypes by Mary Lyon described numerous genetic loci on chromosome 17 that suppress X-chromosome sex ratio distortion. If a driver is left unchecked, this may lead to population extinction as the population would fix for the driver (e.g. a selfish X chromosome),
42:
over another, regardless of its phenotypic expression. More simply, meiotic drive is when one copy of a gene is passed on to offspring more than the expected 50% of the time. According to Buckler et al., "Meiotic drive is the subversion of meiosis so that particular genes are preferentially
119:), which dictate that there is a random chance of each allele being passed on to offspring. Examples of selfish drive genes in animals have primarily been found in rodents and flies. These drive systems could play important roles in the process of 407:
Dawe RK, Lowry EG, Gent JI, Stitzer MC, Swentowsky KW, Higgins DM, Ross-Ibarra J, Wallace JG, Kanizay LB, Alabady M, Qiu W, Tseng KF, Wang N, Gao Z, Birchler JA, Harkess AE, Hodges AL, Hiatt EN (May 2018).
99:
outperforms the endogenous kinesins, pulling the 150 bp knobs to the poles faster than the centromeres and causing Ab10 to be preferentially inherited during meiosis
181:), where the allele of the driving copy fails to prepare the male Y chromosome for meiosis. In Winters, the gene responsible ("Distorter on the X" or 71:
kernels - in a maize line carrying abnormal chromosome 10 (Ab10). Ab10 differs from the normal chromosome 10 by the presence of a 150-base pair
841:"X-chromosome meiotic drive in Drosophila simulans: a QTL approach reveals the complex polygenic determinism of Paris drive suppression" 533:
Lyon MF (1984). "Transmission ratio distortion in mouse t-haplotypes is due to multiple distorter genes acting on a responder locus".
140:– responder to meiotic drive 2), which predicts which strains of mice can successfully breed without offspring sex ratio distortion. 92: 177:, called Paris, Durham, and Winters. In Paris, the driving gene encodes a DNA modelling protein ("heterochromatin protein 1 D2" or 160:
have had ecological consequences. Driving X chromosomes lead to reductions in male fecundity and mating success, leading to
161: 116: 43:
transmitted to the progeny. Meiotic drive generally causes the preferential segregation of small regions of the genome".
167:
Multiple species of fruit fly are known to have driving X chromosomes, of which the best-characterized are found in
79:
during division (hence called 'neocentromere') and moves to the spindle poles faster than the centromeres during
95:
motor, displaying quicker minus-end directed motility than an endogenous kinesin-14, such as Kin11. As a result
199: 205: 716: 56: 52: 23: 1025:"Suppression of Sex-Ratio Meiotic Drive and the Maintenance of Y-Chromosome Polymorphism in Drosophila" 673:"A multi-megabase copy number gain causes maternal transmission ratio distortion on mouse chromosome 2" 576:
Lyon MF (1986). "Male sterility of the mouse t-complex is due to homozygosity of the distorter genes".
890:"The hpRNA/RNAi Pathway Is Essential to Resolve Intragenomic Conflict in the Drosophila Male Germline" 780:
Helleu Q, GΓ©rard PR, Dubruille R, Ogereau D, Prud'homme B, Loppin B, Montchamp-Moreau C (April 2016).
793: 361: 217: 211: 169: 782:"Rapid evolution of a Y-chromosome heterochromatin protein underlies sex chromosome meiotic drive" 619:
Cocquet J, Ellis PJ, Yamauchi Y, Mahadevaiah SK, Affara NA, Ward MA, Burgoyne PS (November 2009).
601: 558: 466: 112: 737: 621:"The multicopy gene Sly represses the sex chromosomes in the male mouse germline after meiosis" 1111: 1087: 1046: 1005: 956: 919: 870: 821: 762: 704: 652: 593: 550: 515: 431: 389: 330: 281: 137: 124: 1077: 1036: 995: 987: 946: 909: 901: 888:
Lin CJ, Hu F, Dubruille R, Vedanayagam J, Wen J, Smibert P, Loppin B, Lai EC (August 2018).
860: 852: 811: 801: 752: 694: 684: 642: 632: 585: 542: 505: 497: 458: 421: 379: 369: 320: 312: 271: 263: 250:
Buckler ES, Phelps-Durr TL, Buckler CS, Dawe RK, Doebley JF, Holtsford TP (September 1999).
190: 157: 27: 717:"R2d2 beats Mendel: Scientists find selfish gene that breaks long-held law of inheritance" 127:) may arise from the divergent evolution of sex chromosome drivers and their suppressors. 72: 839:
Courret C, GΓ©rard PR, Ogereau D, Falque M, Moreau L, Montchamp-Moreau C (December 2018).
797: 365: 1041: 1024: 1000: 975: 914: 889: 865: 840: 816: 781: 699: 672: 647: 620: 510: 485: 384: 349: 325: 300: 276: 251: 1105: 757: 589: 546: 108: 107:
The unequal inheritance of gametes has been observed since the 1950s, in contrast to
738:"Fitness effects of X chromosome drive in the stalk-eyed fly, Cyrtodiopsis dalmanni" 605: 562: 470: 230: 1066:"X chromosome drive in a widespread Palearctic woodland fly, Drosophila testacea" 905: 689: 637: 267: 991: 501: 316: 64: 786:
Proceedings of the National Academy of Sciences of the United States of America
426: 410:"A Kinesin-14 Motor Activates Neocentromeres to Promote Meiotic Drive in Maize" 409: 856: 736:
Wilkinson GS, Johns PM, Kelleher ES, Muscedere ML, Lorsong A (November 2006).
120: 83:
I and II. The mechanism for this was later found to involve the activity of a
76: 806: 221:, emphasizing the importance of these drive systems in natural populations. 148: 1091: 1050: 1009: 923: 874: 825: 766: 708: 656: 519: 435: 393: 374: 334: 285: 960: 597: 554: 951: 938: 976:"The Genetic Systems Modifying Meiotic Drive in Drosophila Paramelanica" 449:
Sandler L, Novitski E (1957). "Meiotic Drive as an Evolutionary Force".
84: 80: 39: 35: 1082: 1065: 31: 462: 147: 68: 38:
process in such a way as to favor the transmission of one or more
939:"Autosomal suppressors of sex-ratio in Drosophila mediopunctata" 60: 16:
Preferential transmission of alleles over others during meiosis
252:"Meiotic drive of chromosomal knobs reshaped the maize genome" 164:
maintaining both the driving alleles and wild-type alleles.
484:
Helleu Q, GΓ©rard PR, Montchamp-Moreau C (December 2014).
1064:
Keais GL, Hanson MA, Gowen BE, Perlman SJ (June 2017).
173:. Three independent driving X chromosomes are known in 197:
sequence. Autosomal suppressors of drive are known in
1029:
Evolution; International Journal of Organic Evolution
123:. For instance, the proposal that hybrid sterility ( 63:controlling the production of the purple pigment 8: 937:de Carvalho AB, Klaczko LB (November 1993). 51:The first report of meiotic drive came from 75:region called 'knob', which functions as a 490:Cold Spring Harbor Perspectives in Biology 1081: 1040: 999: 950: 913: 864: 815: 805: 756: 698: 688: 646: 636: 509: 425: 383: 373: 350:"On the anaphase movement of chromosomes" 324: 275: 242: 7: 55:who in 1942 observed a violation of 348:Rhoades, M.M.; Vilkomerson (1942). 301:"Preferential Segregation in Maize" 1042:10.1111/j.1558-5646.1999.tb05342.x 34:will affect a manipulation of the 14: 91:). Kindr protein is a functional 758:10.1111/j.1420-9101.2006.01169.x 671:P, et al. (February 2015). 87:-14 gene called Kinesin driver ( 1070:Journal of Evolutionary Biology 745:Journal of Evolutionary Biology 111:'s First and Second Laws (the 1: 162:frequency dependent selection 117:law of independent assortment 974:Stalker HD (February 1961). 906:10.1016/j.devcel.2018.07.004 690:10.1371/journal.pgen.1004850 638:10.1371/journal.pbio.1000244 590:10.1016/0092-8674(86)90770-1 547:10.1016/0092-8674(84)90393-3 1023:Jaenike J (February 1999). 502:10.1101/cshperspect.a017616 59:ratios for the R locus - a 1128: 945:. 71 ( Pt 5) (5): 546–51. 427:10.1016/j.cell.2018.03.009 268:10.1093/genetics/153.1.415 992:10.1093/genetics/46.2.177 857:10.1038/s41437-018-0163-1 317:10.1093/genetics/27.4.395 299:Rhoades MM (July 1942). 200:Drosophila mediopunctata 103:Meiotic drive in animals 807:10.1073/pnas.1519332113 451:The American Naturalist 206:Drosophila paramelanica 156:Selfish chromosomes of 47:Meiotic drive in plants 486:"Sex chromosome drive" 375:10.1073/pnas.28.10.433 153: 144:Meiotic drive in flies 26:, whereby one or more 354:Proc. Natl. Acad. Sci 151: 131:Meiotic drive in mice 57:Mendelian segregation 24:intragenomic conflict 952:10.1038/hdy.1993.174 723:. February 11, 2015. 193:pathways to degrade 798:2016PNAS..113.4110H 366:1942PNAS...28..433R 218:Drosophila testacea 212:Drosophila quinaria 170:Drosophila simulans 894:Developmental Cell 420:(4): 839–850.e18. 154: 113:law of segregation 93:minus-end directed 1083:10.1111/jeb.13089 900:(3): 316–326.e5. 1119: 1096: 1095: 1085: 1076:(6): 1185–1194. 1061: 1055: 1054: 1044: 1020: 1014: 1013: 1003: 971: 965: 964: 954: 934: 928: 927: 917: 885: 879: 878: 868: 836: 830: 829: 819: 809: 777: 771: 770: 760: 742: 733: 727: 724: 712: 702: 692: 667: 661: 660: 650: 640: 631:(11): e1000244. 616: 610: 609: 573: 567: 566: 530: 524: 523: 513: 481: 475: 474: 457:(857): 105–110. 446: 440: 439: 429: 404: 398: 397: 387: 377: 345: 339: 338: 328: 296: 290: 289: 279: 247: 191:RNA interference 189:), leading host 158:stalk-eyed flies 152:A stalk-eyed fly 1127: 1126: 1122: 1121: 1120: 1118: 1117: 1116: 1102: 1101: 1100: 1099: 1063: 1062: 1058: 1022: 1021: 1017: 973: 972: 968: 936: 935: 931: 887: 886: 882: 838: 837: 833: 779: 778: 774: 740: 735: 734: 730: 715: 683:(2): e1004850. 669: 668: 664: 618: 617: 613: 575: 574: 570: 532: 531: 527: 483: 482: 478: 448: 447: 443: 406: 405: 401: 360:(10): 433–436. 347: 346: 342: 298: 297: 293: 249: 248: 244: 239: 227: 146: 133: 105: 73:heterochromatic 49: 17: 12: 11: 5: 1125: 1123: 1115: 1114: 1104: 1103: 1098: 1097: 1056: 1035:(1): 164–174. 1015: 986:(2): 177–202. 966: 929: 880: 851:(6): 906–915. 831: 792:(15): 4110–5. 772: 751:(6): 1851–60. 728: 726: 725: 662: 611: 584:(2): 357–363. 568: 541:(2): 621–628. 525: 496:(2): a017616. 476: 463:10.1086/281969 441: 399: 340: 311:(4): 395–407. 291: 241: 240: 238: 235: 234: 233: 226: 223: 145: 142: 132: 129: 125:Haldane's rule 104: 101: 53:Marcus Rhoades 48: 45: 15: 13: 10: 9: 6: 4: 3: 2: 1124: 1113: 1110: 1109: 1107: 1093: 1089: 1084: 1079: 1075: 1071: 1067: 1060: 1057: 1052: 1048: 1043: 1038: 1034: 1030: 1026: 1019: 1016: 1011: 1007: 1002: 997: 993: 989: 985: 981: 977: 970: 967: 962: 958: 953: 948: 944: 940: 933: 930: 925: 921: 916: 911: 907: 903: 899: 895: 891: 884: 881: 876: 872: 867: 862: 858: 854: 850: 846: 842: 835: 832: 827: 823: 818: 813: 808: 803: 799: 795: 791: 787: 783: 776: 773: 768: 764: 759: 754: 750: 746: 739: 732: 729: 722: 718: 714: 713: 710: 706: 701: 696: 691: 686: 682: 678: 677:PLOS Genetics 674: 666: 663: 658: 654: 649: 644: 639: 634: 630: 626: 622: 615: 612: 607: 603: 599: 595: 591: 587: 583: 579: 572: 569: 564: 560: 556: 552: 548: 544: 540: 536: 529: 526: 521: 517: 512: 507: 503: 499: 495: 491: 487: 480: 477: 472: 468: 464: 460: 456: 452: 445: 442: 437: 433: 428: 423: 419: 415: 411: 403: 400: 395: 391: 386: 381: 376: 371: 367: 363: 359: 355: 351: 344: 341: 336: 332: 327: 322: 318: 314: 310: 306: 302: 295: 292: 287: 283: 278: 273: 269: 265: 262:(1): 415–26. 261: 257: 253: 246: 243: 236: 232: 229: 228: 224: 222: 220: 219: 214: 213: 208: 207: 202: 201: 196: 192: 188: 184: 180: 176: 172: 171: 165: 163: 159: 150: 143: 141: 139: 130: 128: 126: 122: 118: 114: 110: 109:Gregor Mendel 102: 100: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 58: 54: 46: 44: 41: 37: 33: 29: 25: 22:is a type of 21: 20:Meiotic drive 1073: 1069: 1059: 1032: 1028: 1018: 983: 979: 969: 942: 932: 897: 893: 883: 848: 844: 834: 789: 785: 775: 748: 744: 731: 720: 680: 676: 665: 628: 625:PLOS Biology 624: 614: 581: 577: 571: 538: 534: 528: 493: 489: 479: 454: 450: 444: 417: 413: 402: 357: 353: 343: 308: 304: 294: 259: 255: 245: 231:Fixed allele 216: 210: 204: 198: 194: 186: 182: 178: 174: 168: 166: 155: 134: 106: 96: 88: 50: 19: 18: 175:D. simulans 65:anthocyanin 237:References 121:speciation 77:centromere 30:within a 1112:Genetics 1106:Category 1092:28402000 1051:28565182 1010:17248041 980:Genetics 943:Heredity 924:30086302 875:30518968 845:Heredity 826:26979956 767:17040382 721:Phys.org 709:25679959 657:19918361 606:30795392 563:21065216 520:25524548 471:85014310 436:29628142 394:16588574 335:17247049 305:Genetics 286:10471723 256:Genetics 225:See also 115:and the 1001:1210188 961:8276637 915:6114144 866:6781156 817:4839453 794:Bibcode 700:4334553 648:2770110 598:3943128 555:6722884 511:4315933 385:1078510 362:Bibcode 326:1209167 277:1460728 85:kinesin 81:meiosis 40:alleles 36:meiotic 1090:  1049:  1008:  998:  959:  922:  912:  873:  863:  824:  814:  765:  707:  697:  655:  645:  604:  596:  561:  553:  518:  508:  469:  434:  392:  382:  333:  323:  284:  274:  215:, and 32:genome 741:(PDF) 602:S2CID 559:S2CID 467:S2CID 179:HP1D2 97:Kindr 89:Kindr 69:maize 1088:PMID 1047:PMID 1006:PMID 957:PMID 920:PMID 871:PMID 822:PMID 763:PMID 705:PMID 653:PMID 594:PMID 578:Cell 551:PMID 535:Cell 516:PMID 432:PMID 414:Cell 390:PMID 331:PMID 282:PMID 138:r2d2 61:gene 28:loci 1078:doi 1037:doi 996:PMC 988:doi 947:doi 910:PMC 902:doi 861:PMC 853:doi 849:122 812:PMC 802:doi 790:113 753:doi 695:PMC 685:doi 643:PMC 633:doi 586:doi 543:doi 506:PMC 498:doi 459:doi 422:doi 418:173 380:PMC 370:doi 321:PMC 313:doi 272:PMC 264:doi 260:153 195:Dox 187:Dox 183:Dox 67:in 1108:: 1086:. 1074:30 1072:. 1068:. 1045:. 1033:53 1031:. 1027:. 1004:. 994:. 984:46 982:. 978:. 955:. 941:. 918:. 908:. 898:46 896:. 892:. 869:. 859:. 847:. 843:. 820:. 810:. 800:. 788:. 784:. 761:. 749:19 747:. 743:. 719:. 703:. 693:. 681:11 679:. 675:. 651:. 641:. 627:. 623:. 600:. 592:. 582:44 580:. 557:. 549:. 539:37 537:. 514:. 504:. 492:. 488:. 465:. 455:91 453:. 430:. 416:. 412:. 388:. 378:. 368:. 358:28 356:. 352:. 329:. 319:. 309:27 307:. 303:. 280:. 270:. 258:. 254:. 209:, 203:, 1094:. 1080:: 1053:. 1039:: 1012:. 990:: 963:. 949:: 926:. 904:: 877:. 855:: 828:. 804:: 796:: 769:. 755:: 711:. 687:: 659:. 635:: 629:7 608:. 588:: 565:. 545:: 522:. 500:: 494:7 473:. 461:: 438:. 424:: 396:. 372:: 364:: 337:. 315:: 288:. 266::

Index

intragenomic conflict
loci
genome
meiotic
alleles
Marcus Rhoades
Mendelian segregation
gene
anthocyanin
maize
heterochromatic
centromere
meiosis
kinesin
minus-end directed
Gregor Mendel
law of segregation
law of independent assortment
speciation
Haldane's rule
r2d2

stalk-eyed flies
frequency dependent selection
Drosophila simulans
RNA interference
Drosophila mediopunctata
Drosophila paramelanica
Drosophila quinaria
Drosophila testacea

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑