Knowledge (XXG)

Menger's theorem

Source 📝

519: 271:
Most direct proofs consider a more general statement to allow proving it by induction. It is also convenient to use definitions that include some degenerate cases. The following proof for undirected graphs works without change for directed graphs or multi-graphs, provided we take
943:. The directed versions of the theorem immediately imply undirected versions: it suffices to replace each edge of an undirected graph with a pair of directed edges (a digon). 897:
The directed edge version of the theorem easily implies the other versions. To infer the directed graph vertex version, it suffices to split each vertex
1182:
Menger's theorem holds for infinite graphs, and in that context it applies to the minimum cut between any two elements that are either vertices or
1005: 1495: 48: 263:
All these statements in both edge and vertex versions remain true in directed graphs (when considering directed paths).
1485: 52: 954:
are often correctness proofs for max flow algorithms. It is also a special case of the still more general (strong)
1256: 951: 947: 236: 56: 1490: 1261: 136: 40: 1402: 212: 112: 1447: 1418: 1392: 1183: 955: 60: 1195: 518: 1465: 1439: 1410: 1369: 1332: 1299: 1266: 1009: 1406: 1219: 978: 959: 39:
is equal to the maximum number of disjoint paths that can be found between any pair of
1337: 1320: 1304: 1287: 1479: 1451: 1199: 1422: 1430:
Halin, R. (1974). "A note on Menger's theorem for infinite locally finite graphs".
1237:-paths and a separating set which consists of exactly one vertex from each path in 32: 24: 20: 965:
A formulation that for finite digraphs is equivalent to the above formulation is:
1191: 180: 59:, which is a weighted, edge version, and which in turn is a special case of the 44: 1414: 184: 1470: 1055:. This results in a bipartite graph, whose one side consists of the vertices 1374: 1357: 1383:
Aharoni, Ron; Berger, Eli (2008). "Menger's theorem for infinite graphs".
1012:, the minimal size of a cover is equal to the maximal size of a matching. 946:
The directed edge version in turn follows from its weighted variant, the
92: 770:. Because of its size, the endpoints of the paths in it must be exactly 1443: 1251: 36: 1074:
of the same size. In particular, exactly one endpoint of each edge of
996:-separating set that consists of exactly one vertex from each path in 1397: 402:. This variant implies the above vertex-connectivity statement: for 1432:
Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg
517: 438:-separator, and removing the end vertices in a set of independent 1206:. It is equivalent to Menger's theorem when the graph is finite. 250:
vertices) if and only if every pair of vertices has at least
246:
vertices and it remains connected after removing fewer than
1321:"Menger's theorem for graphs containing no infinite paths" 1004:
In this version the theorem follows in fairly easily from
483:, we may assume by induction that the Theorem holds for 103:(the minimum number of edges whose removal disconnects 406:
in the previous section, apply the current theorem to
91:
two distinct vertices. Then the size of the minimum
146:edges) if and only if every pair of vertices has 142:(it remains connected after removing fewer than 1158:-separating set, that every path in the family 823:, with paths whose starting points are exactly 195:(the minimum number of vertices, distinct from 1134:in the original graph consist of all vertices 1066:Applying Kőnig's theorem we obtain a matching 1015:This is done as follows: replace every vertex 472:-connector consisting of single-vertex paths. 370:-separator is equal to the maximum size of an 1218:be sets of vertices in a (possibly infinite) 211:) is equal to the maximum number of pairwise 163:statement of Menger's theorem is as follows: 111:) is equal to the maximum number of pairwise 8: 1202:, and before being proved was known as the 851:is internally disjoint from every path in 75:version of Menger's theorem is as follows: 307:. We allow a path with a single vertex in 1396: 1373: 1336: 1303: 1198:was originally a conjecture proposed by 426:. Then a set of vertices disconnecting 1278: 183:vertices. Then the size of the minimum 1471:Menger's Theorems and Max-Flow-Min-Cut 1150:. It is straightforward to check that 299:, and no internal vertices neither in 1187: 254:internally disjoint paths in between. 55:of a graph. It is generalized by the 7: 452:Induction on the number of edges in 1162:contains precisely one vertex from 227:A consequence for the entire graph 1039:; additionally, include the edges 915:, with all ingoing edges going to 14: 1325:European Journal of Combinatorics 1288:"Short proof of Menger's theorem" 570:together with either endpoint of 171:be a finite undirected graph and 83:be a finite undirected graph and 1059:, and the other of the vertices 977:be sets of vertices in a finite 922:, all outgoing edges going from 1358:"Zur allgemeinen Kurventheorie" 283:(not necessarily disjoint), an 150:edge-disjoint paths in between. 929:, and an additional edge from 744:). Hence it has size at least 522:An illustration for the proof. 422:, the neighboring vertices of 327:vertices (which may intersect 127:The implication for the graph 1: 1338:10.1016/S0195-6698(83)80012-2 1305:10.1016/S0012-365X(00)00088-1 1225:. Then there exists a family 984:. Then there exists a family 598:alone is too small to be an 203:, whose removal disconnects 1466:A Proof of Menger's Theorem 1190:). The following result of 878:and one path going through 460:with no edges, the minimum 1512: 291:with a starting vertex in 131:is the following version: 1415:10.1007/s00222-008-0157-3 1118:-paths composed of edges 673:, and consider a minimum 213:internally disjoint paths 1496:Theorems in graph theory 1385:Inventiones Mathematicae 1257:k-vertex-connected graph 1019:in the original digraph 948:max-flow min-cut theorem 870:by concatenating paths ( 566:, since if it was less, 434:is the same thing as an 57:max-flow min-cut theorem 35:, the size of a minimum 1204:Erdős–Menger conjecture 858:, and we can define an 620:be the later vertex of 382:−1 vertices disconnect 366:The minimum size of an 276:to mean directed path. 16:Theorem in graph theory 1375:10.4064/fm-10-1-96-115 1286:Göring, Frank (2000). 1262:k-edge-connected graph 1166:, and every vertex in 695:is not reachable from 523: 378:In other words, if no 61:strong duality theorem 1356:Menger, Karl (1927). 1319:Aharoni, Ron (1983). 624:on such a path. Then 550:contains a vertex of 521: 468:, which is itself an 450:Proof of the Theorem: 279:For sets of vertices 63:for linear programs. 1292:Discrete Mathematics 1170:lies on a path from 800:-separator has size 394:disjoint paths from 295:, a final vertex in 1407:2009InMat.176....1A 1047:that is neither in 862:-connector of size 833:Furthermore, since 804:, and there is an 780:Similarly, letting 613:be the earlier and 503:-connector of size 499:, then there is an 495:-separator of size 390:, then there exist 311:and zero edges. An 161:vertex-connectivity 155:Vertex connectivity 113:edge-disjoint paths 1486:Graph connectivity 1444:10.1007/BF02993589 1130:belongs to M. Let 1114:be the set of all 901:into two vertices 650:is reachable from 631:is reachable from 574:would be a better 538:of size less than 524: 242:(it has more than 1098:and all vertices 1043:for every vertex 1031:, and every edge 737:-path intersects 240:-vertex-connected 231:is this version: 73:edge-connectivity 67:Edge connectivity 1503: 1455: 1426: 1400: 1379: 1377: 1343: 1342: 1340: 1316: 1310: 1309: 1307: 1298:(1–3): 295–296. 1283: 1267:Vertex separator 1023:by two vertices 844:, every path in 748:. By induction, 542:, so that every 442:-paths gives an 355:vertex-disjoint 29:Menger's theorem 1511: 1510: 1506: 1505: 1504: 1502: 1501: 1500: 1476: 1475: 1462: 1429: 1382: 1355: 1352: 1350:Further reading 1347: 1346: 1318: 1317: 1313: 1285: 1284: 1280: 1275: 1248: 1180: 1178:Infinite graphs 1138:such that both 1010:bipartite graph 1006:Kőnig's theorem 960:linear programs 956:duality theorem 941: 934: 927: 920: 913: 906: 895: 887: 883: 856: 849: 838: 828: 817: 809: 797: 789: 785: 775: 764: 757: 742: 733:(because every 715: 704: 693: 678: 670: 666: 648: 629: 618: 611: 526:Otherwise, let 511:, and hence in 479:having an edge 269: 261: 259:Directed graphs 157: 140:-edge-connected 69: 31:says that in a 17: 12: 11: 5: 1509: 1507: 1499: 1498: 1493: 1491:Network theory 1488: 1478: 1477: 1474: 1473: 1468: 1461: 1460:External links 1458: 1457: 1456: 1427: 1380: 1351: 1348: 1345: 1344: 1311: 1277: 1276: 1274: 1271: 1270: 1269: 1264: 1259: 1254: 1247: 1244: 1243: 1242: 1186:of the graph ( 1179: 1176: 1174:, as desired. 1002: 1001: 992:-paths and an 939: 932: 925: 918: 911: 904: 894: 891: 885: 881: 874:paths through 854: 847: 836: 826: 815: 807: 795: 787: 783: 773: 762: 755: 740: 729:-separator in 717:-separator in 713: 702: 691: 676: 668: 664: 646: 627: 616: 609: 602:-separator of 590:-path through 578:-separator of 558:. The size of 534:-separator of 491:has a minimal 464:-separator is 376: 375: 351:is a union of 268: 265: 260: 257: 256: 255: 225: 224: 156: 153: 152: 151: 125: 124: 68: 65: 23:discipline of 15: 13: 10: 9: 6: 4: 3: 2: 1508: 1497: 1494: 1492: 1489: 1487: 1484: 1483: 1481: 1472: 1469: 1467: 1464: 1463: 1459: 1453: 1449: 1445: 1441: 1437: 1433: 1428: 1424: 1420: 1416: 1412: 1408: 1404: 1399: 1394: 1390: 1386: 1381: 1376: 1371: 1367: 1363: 1359: 1354: 1353: 1349: 1339: 1334: 1330: 1326: 1322: 1315: 1312: 1306: 1301: 1297: 1293: 1289: 1282: 1279: 1272: 1268: 1265: 1263: 1260: 1258: 1255: 1253: 1250: 1249: 1245: 1240: 1236: 1232: 1228: 1224: 1221: 1217: 1213: 1209: 1208: 1207: 1205: 1201: 1197: 1193: 1189: 1185: 1177: 1175: 1173: 1169: 1165: 1161: 1157: 1153: 1149: 1145: 1141: 1137: 1133: 1129: 1125: 1121: 1117: 1113: 1109: 1105: 1101: 1097: 1093: 1089: 1086:all vertices 1085: 1081: 1077: 1073: 1069: 1064: 1062: 1058: 1054: 1050: 1046: 1042: 1038: 1034: 1030: 1026: 1022: 1018: 1013: 1011: 1007: 999: 995: 991: 987: 983: 980: 976: 972: 968: 967: 966: 963: 961: 957: 953: 949: 944: 942: 935: 928: 921: 914: 907: 900: 892: 890: 888: 877: 873: 869: 865: 861: 857: 850: 843: 839: 831: 829: 822: 818: 811: 803: 799: 791: 778: 776: 769: 765: 758: 751: 747: 743: 736: 732: 728: 724: 720: 716: 709: 705: 698: 694: 687: 683: 679: 672: 659: 657: 654:but not from 653: 649: 642: 638: 635:but not from 634: 630: 623: 619: 612: 605: 601: 597: 593: 589: 585: 581: 577: 573: 569: 565: 561: 557: 553: 549: 545: 541: 537: 533: 529: 520: 516: 514: 510: 506: 502: 498: 494: 490: 486: 482: 478: 473: 471: 467: 463: 459: 455: 451: 447: 445: 441: 437: 433: 429: 425: 421: 417: 413: 409: 405: 401: 397: 393: 389: 385: 381: 373: 369: 365: 362: 361: 360: 358: 354: 350: 346: 342: 338: 334: 330: 326: 322: 318: 314: 310: 306: 302: 298: 294: 290: 287:is a path in 286: 282: 277: 275: 266: 264: 258: 253: 249: 245: 241: 239: 234: 233: 232: 230: 222: 218: 214: 210: 206: 202: 198: 194: 190: 186: 182: 178: 174: 170: 166: 165: 164: 162: 154: 149: 145: 141: 139: 134: 133: 132: 130: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 77: 76: 74: 66: 64: 62: 58: 54: 50: 49:characterizes 46: 42: 38: 34: 30: 26: 22: 1435: 1431: 1398:math/0509397 1388: 1384: 1365: 1361: 1331:(3): 201–4. 1328: 1324: 1314: 1295: 1291: 1281: 1238: 1234: 1230: 1229:of disjoint 1226: 1222: 1215: 1211: 1203: 1181: 1171: 1167: 1163: 1159: 1155: 1151: 1147: 1143: 1139: 1135: 1131: 1127: 1123: 1119: 1115: 1111: 1107: 1103: 1099: 1095: 1091: 1087: 1083: 1079: 1075: 1071: 1070:and a cover 1067: 1065: 1060: 1056: 1052: 1048: 1044: 1040: 1036: 1035:by the edge 1032: 1028: 1024: 1020: 1016: 1014: 1003: 997: 993: 989: 988:of disjoint 985: 981: 974: 970: 964: 945: 937: 930: 923: 916: 909: 902: 898: 896: 893:Other proofs 879: 875: 871: 867: 863: 859: 852: 845: 841: 840:disconnects 834: 832: 824: 820: 813: 805: 801: 793: 792:, a minimum 781: 779: 771: 767: 760: 753: 752:contains an 749: 745: 738: 734: 730: 726: 722: 718: 711: 707: 700: 696: 689: 685: 681: 674: 662: 660: 655: 651: 644: 640: 636: 632: 625: 621: 614: 607: 603: 599: 595: 591: 587: 586:there is an 583: 579: 575: 571: 567: 563: 559: 555: 554:or the edge 551: 547: 543: 539: 535: 531: 527: 525: 512: 508: 504: 500: 496: 492: 488: 484: 480: 476: 474: 469: 465: 461: 457: 453: 449: 448: 446:-connector. 443: 439: 435: 431: 427: 423: 419: 415: 411: 407: 403: 399: 395: 391: 387: 383: 379: 377: 371: 367: 363: 356: 352: 348: 345:AB-connector 344: 340: 339:contains no 336: 335:) such that 332: 328: 324: 320: 316: 313:AB-separator 312: 308: 304: 300: 296: 292: 288: 284: 280: 278: 273: 270: 262: 251: 247: 243: 237: 228: 226: 220: 216: 208: 204: 200: 196: 192: 188: 176: 172: 168: 160: 158: 147: 143: 137: 128: 126: 120: 116: 108: 104: 100: 96: 88: 84: 80: 72: 70: 53:connectivity 47:in 1927, it 43:. Proved by 33:finite graph 28: 25:graph theory 21:mathematical 18: 1438:: 111–114. 1391:(1): 1–62. 1192:Ron Aharoni 812:-connector 759:-connector 725:is also an 710:is also an 680:-separator 374:-connector. 267:Short proof 235:A graph is 181:nonadjacent 135:A graph is 45:Karl Menger 1480:Categories 1368:: 96–115. 1362:Fund. Math 1273:References 1200:Paul Erdős 1196:Eli Berger 1188:Halin 1974 1146:belong to 1126:such that 889:). Q.E.D. 343:-path. An 185:vertex cut 1452:120915644 1082:. Add to 786:= S ∪ {v 661:Now, let 546:-path in 319:is a set 1423:15355399 1246:See also 819:of size 766:of size 688:. Since 667:= S ∪ {v 643:, while 594:, since 562:must be 420:B = N(y) 416:A = N(x) 364:Theorem: 359:-paths. 347:of size 315:of size 93:edge cut 41:vertices 1403:Bibcode 1252:Gammoid 1220:digraph 1008:: in a 979:digraph 721:. Then 414:} with 404:x,y ∈ G 303:nor in 285:AB-path 281:A,B ⊂ G 37:cut set 19:In the 1450:  1421:  1154:is an 1110:. Let 1102:, for 1090:, for 1078:is in 952:proofs 950:. Its 606:. Let 456:. For 1448:S2CID 1419:S2CID 1393:arXiv 1128:u'v'' 1041:v'v'' 1037:u'v'' 641:G−S−e 582:. In 530:be a 487:. If 466:A ∩ B 386:from 309:A ∩ B 215:from 115:from 1214:and 1210:Let 1194:and 1184:ends 1142:and 1051:nor 973:and 969:Let 958:for 475:For 430:and 331:and 274:path 207:and 199:and 191:and 187:for 179:two 175:and 167:Let 159:The 107:and 99:and 95:for 87:and 79:Let 71:The 51:the 1440:doi 1411:doi 1389:176 1370:doi 1333:doi 1300:doi 1296:219 1144:v'' 1140:v' 1122:in 1106:in 1100:b' 1094:in 1088:a'' 1061:v'' 1057:v' 1029:v'' 1025:v' 936:to 880:e=v 872:k−1 866:in 750:G−e 701:G−S 699:in 686:G−e 684:in 639:in 584:G−S 564:k-1 536:G−e 509:G−e 507:in 489:G−e 485:G−e 424:x,y 412:x,y 398:to 337:G−S 323:of 219:to 119:to 1482:: 1446:. 1436:40 1434:. 1417:. 1409:. 1401:. 1387:. 1366:10 1364:. 1360:. 1327:. 1323:. 1294:. 1290:. 1156:AB 1120:uv 1116:AB 1096:A, 1063:. 1033:uv 1027:, 994:AB 990:AB 962:. 908:, 860:AB 830:. 777:. 754:AS 735:AB 727:AB 712:AS 706:, 675:AS 658:. 600:AB 588:AB 576:AB 544:AB 532:AB 515:. 501:AB 493:AB 470:AB 462:AB 444:AB 440:xy 436:AB 418:, 410:−{ 372:AB 368:AB 357:AB 341:AB 27:, 1454:. 1442:: 1425:. 1413:: 1405:: 1395:: 1378:. 1372:: 1341:. 1335:: 1329:4 1308:. 1302:: 1241:. 1239:P 1235:B 1233:- 1231:A 1227:P 1223:G 1216:B 1212:A 1172:P 1168:Q 1164:Q 1160:P 1152:Q 1148:C 1136:v 1132:Q 1124:D 1112:P 1108:B 1104:b 1092:a 1084:C 1080:C 1076:M 1072:C 1068:M 1053:B 1049:A 1045:v 1021:D 1017:v 1000:. 998:P 986:P 982:G 975:B 971:A 940:2 938:v 933:1 931:v 926:2 924:v 919:1 917:v 912:2 910:v 905:1 903:v 899:v 886:2 884:v 882:1 876:S 868:G 864:k 855:2 853:C 848:1 846:C 842:G 837:1 835:S 827:2 825:S 821:k 816:2 814:C 810:B 808:2 806:S 802:k 798:B 796:2 794:S 790:} 788:2 784:2 782:S 774:1 772:S 768:k 763:1 761:C 756:1 746:k 741:1 739:S 731:G 723:T 719:G 714:1 708:T 703:1 697:A 692:2 690:v 682:T 677:1 671:} 669:1 665:1 663:S 656:A 652:B 647:2 645:v 637:B 633:A 628:1 626:v 622:e 617:2 615:v 610:1 608:v 604:G 596:S 592:e 580:G 572:e 568:S 560:S 556:e 552:S 548:G 540:k 528:S 513:G 505:k 497:k 481:e 477:G 458:G 454:G 432:y 428:x 408:G 400:B 396:A 392:k 388:B 384:A 380:k 353:k 349:k 333:B 329:A 325:k 321:S 317:k 305:B 301:A 297:B 293:A 289:G 252:k 248:k 244:k 238:k 229:G 223:. 221:y 217:x 209:y 205:x 201:y 197:x 193:y 189:x 177:y 173:x 169:G 148:k 144:k 138:k 129:G 123:. 121:y 117:x 109:y 105:x 101:y 97:x 89:y 85:x 81:G

Index

mathematical
graph theory
finite graph
cut set
vertices
Karl Menger
characterizes
connectivity
max-flow min-cut theorem
strong duality theorem
edge cut
edge-disjoint paths
k-edge-connected
nonadjacent
vertex cut
internally disjoint paths
k-vertex-connected

max-flow min-cut theorem
proofs
duality theorem
linear programs
digraph
Kőnig's theorem
bipartite graph
ends
Halin 1974
Ron Aharoni
Eli Berger
Paul Erdős

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.