Knowledge

Lower mantle

Source đź“ť

330:), asthenosphere, and mesospheric shell. Daly's hypothetical depths to the lithosphere-asthenosphere boundary ranged from 80 to 100 km (50 to 62 mi), and the top of the mesospheric shell (base of the asthenosphere) were from 200 to 480 km (124 to 298 mi). Thus, Daly's asthenosphere was inferred to be 120 to 400 km (75 to 249 mi) thick. According to Daly, the base of the solid Earth mesosphere could extend to the base of the mantle (and, thus, to the top of the 1320: 31: 279:
between ferropericlase and bridgmanite to 10–14 depleting bridgmanite and enriching ferropericlase of Fe. The HS to LS transition are reported to affect the physical properties of the iron bearing minerals. For example, the density and incompressibility was reported to increase from HS to LS state in
265:
studies at relevant pressures and temperatures revealed that a lower mantle composed of greater than 93% bridgmanite phase has corresponding shear-wave velocities to measured seismic velocities. The suggested composition is consistent with a chondritic lower mantle. Thus, the bulk composition of the
198:
as the primary heat transport contribution, while conduction and radiative heat transfer are considered negligible. As a result, the lower mantle's temperature gradient as a function of depth is approximately adiabatic. Calculation of the geothermal gradient observed a decrease from 0.47 kelvins per
274:
The electronic environment of two iron-bearing minerals in the lower mantle (bridgmanite, ferropericlase) transitions from a high-spin (HS) to a low-spin (LS) state. Fe in ferropericlase undergoes the transition between 50–90 GPa. Bridgmanite contains both Fe and Fe in the structure, the Fe occupy
260:
model. The first principle calculation of the density and velocity profile across the lower mantle geotherm of varying bridgmanite and ferropericlase proportion observed a match to the PREM model at an 8:2 proportion. This proportion is consistent with the pyrolitic bulk composition at the lower
275:
the A-site and transition to a LS state at 120 GPa. While Fe occupies both A- and B-sites, the B-site Fe undergoes HS to LS transition at 30–70 GPa while the A-site Fe exchanges with the B-site Al cation and becomes LS. This spin transition of the iron cation results in the increase in
193:
The temperature of the lower mantle ranges from 1,960 K (1,690 Â°C; 3,070 Â°F) at the topmost layer to 2,630 K (2,360 Â°C; 4,270 Â°F) at a depth of 2,700 kilometres (1,700 mi). Models of the temperature of the lower mantle approximate
66:(PREM) separates the lower mantle into three sections, the uppermost (660–770 km), mid-lower mantle (770–2700 km), and the D layer (2700–2900 km). Pressure and temperature in the lower mantle range from 24–127 GPa and 1900–2600 154:
The lower mantle was initially labelled as the D-layer in Bullen's spherically symmetric model of the Earth. The PREM seismic model of the Earth's interior separated the D-layer into three distinctive layers defined by the discontinuity in
261:
mantle. Furthermore, shear wave velocity calculations of pyrolitic lower mantle compositions considering minor elements resulted in a match with the PREM shear velocity profile within 1%. On the other hand,
222:
suggesting homogeneity between the upper and lower mantle with a Mg/Si ratio of 1.27. This model implies that the lower mantle is composed of 75% bridgmanite, 17% ferropericlase, and 8% CaSiO
82:, and calcium-silicate perovskite. The high pressure in the lower mantle has been shown to induce a spin transition of iron-bearing bridgmanite and ferropericlase, which may affect both 199:
kilometre (0.47 Â°C/km; 1.4 Â°F/mi) at the uppermost lower mantle to 0.24 kelvins per kilometre (0.24 Â°C/km; 0.70 Â°F/mi) at 2,600 kilometres (1,600 mi).
932:
Murakami, Motohiko; Ohishi, Yasuo; Hirao, Naohisa; Hirose, Kei (May 2012). "A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data".
163:
660–770 km: A discontinuity in compression wave velocity (6–11%) followed by a steep gradient is indicative of the transformation of the mineral
747: 1157: 1300: 1123: 211:-perovskite). The proportion of each component has been a subject of discussion historically where the bulk composition is suggested to be, 1036:"Effects of the Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Geochemistry" 358: 467:
Katsura, Tomoo; Yoneda, Akira; Yamazaki, Daisuke; Yoshino, Takashi; Ito, Eiji (2010). "Adiabatic temperature profile in the mantle".
730: 390: 257: 138:. This measurement is estimated from seismic data and high-pressure laboratory experiments. The base of the mesosphere includes the 63: 848:
Wang, Xianlong; Tsuchiya, Taku; Hase, Atsushi (2015). "Computational support for a pyrolitic lower mantle containing ferric iron".
1349: 1323: 1247: 786: 526: 207:
The lower mantle is mainly composed of three components, bridgmanite, ferropericlase, and calcium-silicate perovskite (CaSiO
893:"Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean" 1150: 1166: 146:
at approximately 2,700 to 2,890 km (1,678 to 1,796 mi). The base of the lower mantle is about 2700 km.
1344: 722: 1267: 1262: 182: 143: 1257: 1252: 1143: 168: 55: 1106:
Kumazawa, M; Fukao, Y (1977). "Dual Plate Tectonics Model". In Manghnani, Murli; Akimoto, Syun-Iti (eds.).
665:"Enhanced convection and fast plumes in the lower mantle induced by the spin transition in ferropericlase" 331: 304: 262: 50:, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below 1305: 276: 253: 1229: 1224: 59: 345:, based on a combination of "mesosphere" and "plate", for postulated reference frames in which mantle 1288: 1047: 1000: 941: 904: 857: 798: 759: 676: 624:"Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering" 570: 476: 428: 216: 1211: 1195: 246: 123: 75: 1065: 973: 830: 604: 308: 127: 284:
of the lower mantle is currently being investigated and discussed using numerical simulations.
1293: 1185: 1119: 1016: 965: 957: 873: 822: 814: 726: 694: 645: 596: 588: 532: 522: 492: 444: 396: 386: 346: 1180: 1111: 1055: 1008: 949: 912: 908: 865: 806: 767: 684: 635: 578: 484: 436: 789:(2010-01-08). "Iron Partitioning and Density Changes of Pyrolite in Earth's Lower Mantle". 327: 315: 1219: 1051: 1012: 1004: 945: 861: 802: 763: 680: 574: 480: 432: 229:
Chondritic: suggests that the Earth's lower mantle was accreted from the composition of
1115: 663:
Bower, Dan J.; Gurnis, Michael; Jackson, Jennifer M.; Sturhahn, Wolfgang (2009-05-28).
515: 79: 1338: 1200: 1092: 1085: 440: 1069: 834: 608: 256:. It was shown that the density profile along the geotherm is in agreement with the 1190: 977: 419:
Dziewonski, Adam M.; Anderson, Don L. (1981). "Preliminary reference Earth model".
280:
ferropericlase. The effects of the spin transition on the transport properties and
233:
suggesting a Mg/Si ratio of approximately 1. This infers that bridgmanite and CaSiO
156: 131: 90: 83: 17: 323: 164: 98: 917: 892: 891:
Hyung, Eugenia; Huang, Shichun; Petaev, Michail I.; Jacobsen, Stein B. (2016).
559:"Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity" 488: 1272: 338: 300: 296: 219: 195: 186: 1020: 961: 877: 818: 698: 649: 592: 496: 448: 400: 810: 583: 558: 536: 342: 230: 175: 969: 826: 771: 600: 30: 1034:
Lin, Jung-Fu; Speziale, Sergio; Mao, Zhu; Marquardt, Hauke (April 2013).
689: 640: 623: 281: 242: 71: 953: 785:
Irifune, T.; Shinmei, T.; McCammon, C. A.; Miyajima, N.; Rubie, D. C.;
311: 97:
at a depth of 660 kilometers (410 mi). At a depth of 660 km,
94: 1060: 1035: 622:
Shahnas, M.H.; Pysklywec, R.N.; Justo, J.F.; Yuen, D.A. (2017-05-09).
139: 1135: 869: 319: 67: 174:
770–2700 km: A gradual increase in velocity indicative of the
70:. It has been proposed that the composition of the lower mantle is 991:
Badro, James (2014-05-30). "Spin Transitions in Mantle Minerals".
318:
era, Daly (1940) inferred that the outer Earth consisted of three
51: 29: 167:
to bridgmanite and ferropericlase and the transition between the
1139: 664: 215:
Pyrolitic: derived from petrological composition trends from
185:
is considered the transition from the lower mantle to the
89:
The upper boundary is defined by the sharp increase in
178:
compression of the mineral phases in the lower mantle.
27:
The region from 660 to 2900 km below Earth's surface
1281: 1240: 1173: 748:"The density variation of the earth's central core" 383:
The Earth's lower mantle: composition and structure
266:lower mantle is currently a subject of discussion. 1108:High-Pressure Research: Applications in Geophysics 1084: 514: 241:Laboratory multi-anvil compression experiments of 303:) is derived from "mesospheric shell", coined by 34:Structure of Earth. The mesosphere is labeled as 752:Bulletin of the Seismological Society of America 719:'Mantle Plumes and Their Record in Earth History 517:Composition and petrology of the earth's mantle 130:. This reaction marks the boundary between the 1151: 993:Annual Review of Earth and Planetary Sciences 8: 469:Physics of the Earth and Planetary Interiors 421:Physics of the Earth and Planetary Interiors 1158: 1144: 1136: 1059: 916: 688: 639: 582: 712: 710: 708: 370: 245:simulated conditions of the adiabatic 86:dynamics and lower mantle chemistry. 7: 552: 550: 548: 546: 508: 506: 462: 460: 458: 414: 412: 410: 376: 374: 1087:Strength and Structure of the Earth 1013:10.1146/annurev-earth-042711-105304 897:Earth and Planetary Science Letters 74:, containing three major phases of 1116:10.1016/B978-0-12-468750-9.50014-0 359:Large low-shear-velocity provinces 237:-perovskites are major components. 25: 628:Geophysical Journal International 64:preliminary reference Earth model 46:, historically also known as the 1319: 1318: 1263:D’’ discontinuity (lower mantle) 1258:660 discontinuity (upper mantle) 1253:410 discontinuity (upper mantle) 1083:Daly, Reginald Aldworth (1940). 1110:. Academic Press. p. 127. 249:and measured the density using 142:zone which lies just above the 1: 669:Geophysical Research Letters 513:Ringwood, Alfred E. (1976). 441:10.1016/0031-9201(81)90046-7 381:Kaminsky, Felix V. (2017). 1366: 1248:MohoroviÄŤić (crust–mantle) 918:10.1016/j.epsl.2016.02.001 723:Cambridge University Press 489:10.1016/j.pepi.2010.07.001 171:layer to the lower mantle. 1314: 295:(not to be confused with 1301:Gutenberg (upper mantle) 1282:Regional discontinuities 717:Condie, Kent C. (2001). 557:Badro, J. (2003-04-03). 909:2016E&PSL.440..158H 811:10.1126/science.1181443 584:10.1126/science.1081311 263:Brillouin spectroscopic 181:2700–2900 km: The 1350:Structure of the Earth 1306:Lehmann (upper mantle) 1241:Global discontinuities 772:10.1785/BSSA0320010019 341:, was introduced as a 314:professor. In the pre- 305:Reginald Aldworth Daly 226:-perovskite by volume. 39: 1040:Reviews of Geophysics 746:Bullen, K.E. (1942). 277:partition coefficient 33: 1268:Core–mantle boundary 690:10.1029/2009GL037706 270:Spin transition zone 231:chondritic meteorite 144:mantle–core boundary 1273:Inner-core boundary 1196:Lithospheric mantle 1052:2013RvGeo..51..244L 1005:2014AREPS..42..231B 954:10.1038/nature11004 946:2012Natur.485...90M 862:2015NatGe...8..556W 803:2010Sci...327..193I 764:1942BuSSA..32...19B 681:2009GeoRL..3610306B 575:2003Sci...300..789B 481:2010PEPI..183..212K 433:1981PEPI...25..297D 337:A derivative term, 150:Physical properties 18:Mesosphere (mantle) 1167:Structure of Earth 641:10.1093/gji/ggx198 385:. Cham: Springer. 309:Harvard University 122:) decomposes into 40: 1332: 1331: 1294:continental crust 1125:978-0-12-468750-9 1061:10.1002/rog.20010 850:Nature Geoscience 797:(5962): 193–195. 725:. pp. 3–10. 569:(5620): 789–791. 299:, a layer of the 254:X-ray diffraction 16:(Redirected from 1357: 1322: 1321: 1160: 1153: 1146: 1137: 1130: 1129: 1103: 1097: 1096: 1090: 1080: 1074: 1073: 1063: 1031: 1025: 1024: 988: 982: 981: 929: 923: 922: 920: 888: 882: 881: 870:10.1038/ngeo2458 845: 839: 838: 782: 776: 775: 743: 737: 736: 714: 703: 702: 692: 660: 654: 653: 643: 619: 613: 612: 586: 554: 541: 540: 520: 510: 501: 500: 475:(1–2): 212–218. 464: 453: 452: 416: 405: 404: 378: 124:Mg-Si perovskite 121: 120: 119: 111: 110: 38:in this diagram. 21: 1365: 1364: 1360: 1359: 1358: 1356: 1355: 1354: 1335: 1334: 1333: 1328: 1310: 1277: 1236: 1169: 1164: 1134: 1133: 1126: 1105: 1104: 1100: 1082: 1081: 1077: 1033: 1032: 1028: 990: 989: 985: 940:(7396): 90–94. 931: 930: 926: 890: 889: 885: 847: 846: 842: 784: 783: 779: 745: 744: 740: 733: 716: 715: 706: 662: 661: 657: 621: 620: 616: 556: 555: 544: 529: 521:. McGraw-Hill. 512: 511: 504: 466: 465: 456: 418: 417: 408: 393: 380: 379: 372: 367: 355: 326:(including the 316:plate tectonics 290: 272: 236: 225: 210: 205: 169:transition zone 152: 128:magnesiowĂĽstite 118: 115: 114: 113: 109: 106: 105: 104: 102: 93:velocities and 56:transition zone 52:Earth's surface 28: 23: 22: 15: 12: 11: 5: 1363: 1361: 1353: 1352: 1347: 1345:Earth's mantle 1337: 1336: 1330: 1329: 1327: 1326: 1315: 1312: 1311: 1309: 1308: 1303: 1298: 1297: 1296: 1285: 1283: 1279: 1278: 1276: 1275: 1270: 1265: 1260: 1255: 1250: 1244: 1242: 1238: 1237: 1235: 1234: 1233: 1232: 1227: 1217: 1216: 1215: 1205: 1204: 1203: 1198: 1183: 1177: 1175: 1171: 1170: 1165: 1163: 1162: 1155: 1148: 1140: 1132: 1131: 1124: 1098: 1075: 1046:(2): 244–275. 1026: 999:(1): 231–248. 983: 924: 883: 856:(7): 556–559. 840: 777: 738: 731: 704: 655: 634:(2): 765–773. 614: 542: 527: 502: 454: 427:(4): 297–356. 406: 391: 369: 368: 366: 363: 362: 361: 354: 351: 289: 286: 271: 268: 239: 238: 234: 227: 223: 208: 204: 201: 191: 190: 179: 172: 151: 148: 116: 107: 80:ferropericlase 54:; between the 36:Stiffer mantle 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 1362: 1351: 1348: 1346: 1343: 1342: 1340: 1325: 1317: 1316: 1313: 1307: 1304: 1302: 1299: 1295: 1292: 1291: 1290: 1287: 1286: 1284: 1280: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1245: 1243: 1239: 1231: 1228: 1226: 1223: 1222: 1221: 1218: 1213: 1209: 1206: 1202: 1201:Asthenosphere 1199: 1197: 1194: 1193: 1192: 1189: 1188: 1187: 1184: 1182: 1179: 1178: 1176: 1172: 1168: 1161: 1156: 1154: 1149: 1147: 1142: 1141: 1138: 1127: 1121: 1117: 1113: 1109: 1102: 1099: 1094: 1093:Prentice Hall 1089: 1088: 1079: 1076: 1071: 1067: 1062: 1057: 1053: 1049: 1045: 1041: 1037: 1030: 1027: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 987: 984: 979: 975: 971: 967: 963: 959: 955: 951: 947: 943: 939: 935: 928: 925: 919: 914: 910: 906: 902: 898: 894: 887: 884: 879: 875: 871: 867: 863: 859: 855: 851: 844: 841: 836: 832: 828: 824: 820: 816: 812: 808: 804: 800: 796: 792: 788: 781: 778: 773: 769: 765: 761: 757: 753: 749: 742: 739: 734: 732:0-521-01472-7 728: 724: 720: 713: 711: 709: 705: 700: 696: 691: 686: 682: 678: 674: 670: 666: 659: 656: 651: 647: 642: 637: 633: 629: 625: 618: 615: 610: 606: 602: 598: 594: 590: 585: 580: 576: 572: 568: 564: 560: 553: 551: 549: 547: 543: 538: 534: 530: 524: 519: 518: 509: 507: 503: 498: 494: 490: 486: 482: 478: 474: 470: 463: 461: 459: 455: 450: 446: 442: 438: 434: 430: 426: 422: 415: 413: 411: 407: 402: 398: 394: 392:9783319556840 388: 384: 377: 375: 371: 364: 360: 357: 356: 352: 350: 348: 344: 340: 335: 333: 329: 325: 321: 317: 313: 310: 306: 302: 298: 294: 287: 285: 283: 278: 269: 267: 264: 259: 255: 252: 248: 244: 232: 228: 221: 218: 214: 213: 212: 202: 200: 197: 188: 184: 180: 177: 173: 170: 166: 162: 161: 160: 158: 149: 147: 145: 141: 137: 133: 129: 125: 100: 96: 92: 87: 85: 81: 77: 73: 69: 65: 61: 57: 53: 49: 45: 37: 32: 19: 1208:Lower mantle 1207: 1191:Upper mantle 1107: 1101: 1091:. New York: 1086: 1078: 1043: 1039: 1029: 996: 992: 986: 937: 933: 927: 900: 896: 886: 853: 849: 843: 794: 790: 787:Frost, D. J. 780: 758:(1): 19–29. 755: 751: 741: 718: 672: 668: 658: 631: 627: 617: 566: 562: 516: 472: 468: 424: 420: 382: 336: 292: 291: 273: 250: 240: 217:upper mantle 206: 192: 159:velocities: 157:seismic wave 153: 136:lower mantle 135: 132:upper mantle 91:seismic wave 88: 84:mantle plume 47: 44:lower mantle 43: 41: 35: 903:: 158–168. 324:lithosphere 203:Composition 165:ringwoodite 99:ringwoodite 76:bridgmanite 1339:Categories 1230:Inner core 1225:Outer core 1212:Mesosphere 528:0070529329 365:References 339:mesoplates 301:atmosphere 297:mesosphere 293:Mesosphere 220:peridotite 196:convection 187:outer core 60:outer core 48:mesosphere 1021:0084-6597 962:0028-0836 878:1752-0894 819:0036-8075 699:0094-8276 650:0956-540X 593:0036-8075 497:0031-9201 449:0031-9201 401:988167555 343:heuristic 320:spherical 176:adiabatic 103:Îł-(Mg,Fe) 72:pyrolitic 1324:Category 1070:21661449 970:22552097 835:19243930 827:19965719 609:12208090 601:12677070 537:16375050 353:See also 347:hotspots 322:layers: 282:rheology 247:geotherm 243:pyrolite 58:and the 1048:Bibcode 1001:Bibcode 978:4387193 942:Bibcode 905:Bibcode 858:Bibcode 799:Bibcode 791:Science 760:Bibcode 677:Bibcode 571:Bibcode 563:Science 477:Bibcode 429:Bibcode 349:exist. 312:geology 288:History 251:in situ 183:D-layer 95:density 1289:Conrad 1186:Mantle 1174:Shells 1122:  1068:  1019:  976:  968:  960:  934:Nature 876:  833:  825:  817:  729:  697:  675:(10). 648:  607:  599:  591:  535:  525:  495:  447:  399:  389:  62:. The 1210:(aka 1181:Crust 1066:S2CID 974:S2CID 831:S2CID 605:S2CID 328:crust 1220:Core 1120:ISBN 1017:ISSN 966:PMID 958:ISSN 874:ISSN 823:PMID 815:ISSN 727:ISBN 695:ISSN 646:ISSN 597:PMID 589:ISSN 533:OCLC 523:ISBN 493:ISSN 445:ISSN 397:OCLC 387:ISBN 332:core 307:, a 258:PREM 134:and 126:and 42:The 1112:doi 1056:doi 1009:doi 950:doi 938:485 913:doi 901:440 866:doi 807:doi 795:327 768:doi 685:doi 636:doi 632:210 579:doi 567:300 485:doi 473:183 437:doi 334:). 112:SiO 1341:: 1118:. 1064:. 1054:. 1044:51 1042:. 1038:. 1015:. 1007:. 997:42 995:. 972:. 964:. 956:. 948:. 936:. 911:. 899:. 895:. 872:. 864:. 852:. 829:. 821:. 813:. 805:. 793:. 766:. 756:32 754:. 750:. 721:. 707:^ 693:. 683:. 673:36 671:. 667:. 644:. 630:. 626:. 603:. 595:. 587:. 577:. 565:. 561:. 545:^ 531:. 505:^ 491:. 483:. 471:. 457:^ 443:. 435:. 425:25 423:. 409:^ 395:. 373:^ 140:D″ 78:, 1214:) 1159:e 1152:t 1145:v 1128:. 1114:: 1095:. 1072:. 1058:: 1050:: 1023:. 1011:: 1003:: 980:. 952:: 944:: 921:. 915:: 907:: 880:. 868:: 860:: 854:8 837:. 809:: 801:: 774:. 770:: 762:: 735:. 701:. 687:: 679:: 652:. 638:: 611:. 581:: 573:: 539:. 499:. 487:: 479:: 451:. 439:: 431:: 403:. 235:3 224:3 209:3 189:. 117:4 108:2 101:( 68:K 20:)

Index

Mesosphere (mantle)

Earth's surface
transition zone
outer core
preliminary reference Earth model
K
pyrolitic
bridgmanite
ferropericlase
mantle plume
seismic wave
density
ringwoodite
Mg-Si perovskite
magnesiowĂĽstite
upper mantle
lower mantle
D″
mantle–core boundary
seismic wave
ringwoodite
transition zone
adiabatic
D-layer
outer core
convection
upper mantle
peridotite
chondritic meteorite

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑