Knowledge (XXG)

Metabolic theory of ecology

Source đź“ť

632:. These models are based on the assumption that metabolism is proportional to the rate at which an organism's distribution networks (such as circulatory systems in animals or xylem and phloem in plants) deliver nutrients and energy to body tissues. Larger organisms are necessarily less efficient because more resource is in transport at any one time than in smaller organisms: size of the organism and length of the network imposes an inefficiency due to size. It therefore takes somewhat longer for large organisms to distribute nutrients throughout the body and thus they have a slower mass-specific metabolic rate. An organism that is twice as large cannot metabolize twice the energy—it simply has to run more slowly because more energy and resources are wasted being in transport, rather than being processed. Nonetheless, natural selection appears to have minimized this inefficiency by favoring resource transport networks that maximize rate of delivery of resources to the end points such as cells and organelles. This selection to maximize metabolic rate and energy dissipation results in the allometric exponent that tends to 796:. The average production to biomass ratio of organisms is higher in small organisms than large ones. This relationship is further regulated by temperature, and the rate of production increases with temperature. As production consistently scales with body mass, MTE provides a framework to assess the relative importance of organismal size, temperature, functional traits, soil and climate on variation in rates of production within and across ecosystems. Metabolic theory shows that variation in ecosystem production is characterized by a common scaling relationship, suggesting that global change models can incorporate the mechanisms governing this relationship to improve predictions of future ecosystem function. 593:– 1, depending on the organism's developmental stage, basic body plan and resource density. DEB is an alternative to metabolic scaling theory, developed before the MTE. DEB also provides a basis for population, community and ecosystem level processes to be studied based on energetics of the constituent organisms. In this theory, the biomass of the organism is separated into structure (what is built during growth) and reserve (a pool of polymers generated by assimilation). DEB is based on the first principles dictated by the kinetics and thermodynamics of energy and material fluxes, has a similar number of parameters per process as MTE, and the parameters have been estimated for over 3000 animal species 109:
composition of an organism would be different from the exterior environment. Through metabolism, body size can affect stoichiometry. For example, small organism tend to store most of their phosphorus in rRNA due to their high metabolic rate, whereas large organisms mostly invest this element inside the skeletal structure. Thus, concentration of elements to some extent can limit the rate of biological processes. Inside an ecosystem, the rate of flux and turn over of elements by inhabitants, combined with the influence of abiotic factors, determine the concentration of elements.
780:
heterogeneity, and habitat factors better predicted the observed pattern. Extensions of metabolic theory to diversity that include eco-evolutionary theory show that an elaborated metabolic theory can account for differences in diversity gradients by including feedbacks between ecological interactions (size-dependent competition and predation) and
557:. Past debates on the exact value of the exponent are settled in part because the observed variability in the metabolic scaling exponent is consistent with a 'relaxed' version of metabolic scaling theory where additional selective pressures lead to a constrained set of variation around the predicted optimal 373:
According to this relationship, metabolic rate is a function of an organism's body mass and body temperature. By this equation, large organisms have higher metabolic rates (in watts) than small organisms, and organisms at high body temperatures have higher metabolic rates than those that exist at low
759:
Observed patterns of diversity can be similarly explained by MTE. It has long been observed that there are more small species than large species. In addition, there are more species in the tropics than at higher latitudes. Classically, the latitudinal gradient in species diversity has been explained
574:
surface area of three-dimensional organisms is the key factor driving the relationship between metabolic rate and body size. The surface area in question may be skin, lungs, intestines, or, in the case of unicellular organisms, cell membranes. In general, the surface area (SA) of a three dimensional
755:
Regarding density, MTE predicts carrying capacity of populations to scale as M, and to exponentially decrease with increasing temperature. The fact that larger organisms reach carrying capacity sooner than smaller one is intuitive, however, temperature can also decrease carrying capacity due to the
282:
in the previous equation is mass-independent, it is not explicitly independent of temperature. To explain the relationship between body mass and temperature, building on earlier work showing that the effects of both body mass and temperature could be combined multiplicatively in a single equation,
50:
of organisms is the fundamental biological rate that governs most observed patterns in ecology. MTE is part of a larger set of theory known as metabolic scaling theory that attempts to provide a unified theory for the importance of metabolism in driving pattern and process in biology from the level
512:
w, or whether either of these can even be considered a universal exponent. In addition to debates concerning the exponent, some researchers also disagree about the underlying mechanisms generating the scaling exponent. Various authors have proposed at least eight different types of mechanisms that
779:
to see whether the geographical distribution of species fit within the predictions of MTE (i.e. more species in warmer areas). They found that the observed pattern of diversity could not be explained by temperature alone, and that other spatial factors such as primary productivity, topographic
674:, and ecosystem processes could be explained by the relationship between metabolic rate, body size, and body temperature. While different underlying mechanisms make somewhat different predictions, the following provides an example of some of the implications of the metabolism of individuals. 108:
From the ecological perspective, stoichiometry is concerned with the proportion of elements in both living organisms and their environment. In order to survive and maintain metabolism, an organism must be able to obtain crucial elements and excrete waste products. As a result, the elemental
2932:
Ernest S.K.M.; Enquist B.J.; Brown J.H.; Charnov E.L.; Gillooly J.F.; Savage V.M.; White E.P.; Smith F.A.; Hadly E.A.; Haskell J.P.; Lyons S.K.; Maurer B.A.; Niklas K.J.; Tiffney B. (2003). "Thermodynamic and metabolic effects on the scaling of production and population energy use".
751:
across taxonomic groups. The optimal population growth rate for a species is therefore thought to be determined by the allometric constraints outlined by the MTE, rather than strictly as a life history trait that is selected for based on environmental conditions.
648:
Despite past debates over the value of the exponent, the implications of metabolic scaling theory and the extensions of the theory to ecology (metabolic theory of ecology) the theory might remain true regardless of its precise numerical value.
62:
or by living in warm environments tend towards higher metabolic rates than organisms that operate at colder temperatures. This pattern is consistent from the unicellular level up to the level of the largest animals and plants on the planet.
607:
While some of these alternative models make several testable predictions, others are less comprehensive and of these proposed models only DEB can make as many predictions with a minimal set of assumptions as metabolic scaling theory.
644:
is the primary dimension of the system. A three dimensional system, such as an individual, tends to scale to the 3/4 power, whereas a two dimensional network, such as a river network in a landscape, tends to scale to the 2/3 power.
1389:
Elser, J. J.; Sterner, R. W.; Gorokhova, E.; Fagan, W. F.; Markow, T. A.; Cotner, J. B.; Harrison, J. F.; Hobbie, S. E.; Odell, G. M.; Weider, L. W. (2000-11-23). "Biological stoichiometry from genes to ecosystems".
686:
traits are constrained by metabolism. An organism's metabolic rate determines its rate of food consumption, which in turn determines its rate of growth. This increased growth rate produces trade-offs that accelerate
669:
on metabolic rate, provide the fundamental constraints by which ecological processes are governed. If this holds true from the level of the individual up to ecosystem level processes, then life history attributes,
66:
In MTE, this relationship is considered to be the primary constraint that influences biological processes (via their rates and times) at all levels of organization (from individual up to ecosystem level). MTE is a
756:
fact that in warmer environments, higher metabolic rate of organisms demands a higher rate of supply. Empirical evidence in terrestrial plants, also suggests that density scales as -3/4 power of the body size.
480: 96:. According to MTE, both body size and temperature affect the metabolic rate of an organism. Metabolic rate scales as 3/4 power of body size, and its relationship with temperature is described by the 735:). MTE explains this diversity of reproductive strategies as a consequence of the metabolic constraints of organisms. Small organisms and organisms that exist at high body temperatures tend to be 760:
by factors such as higher productivity or reduced seasonality. In contrast, MTE explains this pattern as being driven by the kinetic constraints imposed by temperature on metabolism. The rate of
368: 58:
across all organisms. Small-bodied organisms tend to have higher mass-specific metabolic rates than larger-bodied organisms. Furthermore, organisms that operate at warm temperatures through
764:
scales with metabolic rate, such that organisms with higher metabolic rates show a higher rate of change at the molecular level. If a higher rate of molecular evolution causes increased
270: 492:
Researchers have debated two main aspects of this theory, the pattern and the mechanism. Past debated have focused on the question whether metabolic rate scales to the power of
547:
exponent is indeed the mean observed exponent within and across taxa, there is intra- and interspecific variability in the exponent that can include shallower exponents such as
189: 2883: 2815: 2752: 2699: 2583: 2355: 2242: 2169: 2093: 2025: 1955: 1784: 1711: 1646: 1588: 1479: 1030: 961: 895: 3732: 2985: 3876: 2832:
Michaletz, S. T., Cheng, D., Kerkhoff, A. J., & Enquist, B. J. (2014). "Convergence of terrestrial plant production across global climate gradients".
3946: 768:
rates, then adaptation and ultimately speciation may occur more quickly in warm environments and in small bodied species, ultimately explaining observed
747:
selected. The relationship between body size and rate of population growth has been demonstrated empirically, and in fact has been shown to scale to
703:
and ultimately death. Selection favors organisms which best propagate given these constraints. As a result, smaller, shorter lived organisms tend to
3483: 3956: 3684: 84:
Metabolic pathways consist of complex networks, which are responsible for the processing of both energy and material. The metabolic rate of a
3961: 1166:
Farquhar, G. D.; von Caemmerer, S.; Berry, J. A. (1980). "A biochemical model of photosynthetic CO2 assimilation in leaves of C 3 species".
3518: 2042:
West, G.B., Brown, J.H., & Enquist, B.J. (1999). "The fourth dimension of life: Fractal geometry and allometric scaling of organisms".
775:
MTE's ability to explain patterns of diversity remains controversial. For example, researchers analyzed patterns of diversity of New World
4149: 1452:
Robinson, W. R., Peters, R. H., & Zimmermann, J. (1983). "The effects of body size and temperature on metabolic rate of organisms".
3566: 3902: 3725: 2978: 570:
Much of past debate have focused on two particular types of mechanisms. One of these assumes energy or resource transport across the
136:
is a mass-independent normalization constant (given in a unit of power divided by a unit of mass. In this case, watts per kilogram):
3238: 2446:
Allen A.P., Brown J.H. & Gillooly J.F. (2002). "Global biodiversity, biochemical kinetics, and the energetic-equivalence rule".
2378: 1436: 1236: 379: 830: 1354:
Sutcliffe Jr., W. H. (1970-03-01). "Relationship Between Growth Rate and Ribonucleic Acid Concentration in Some Invertebrates".
918:
West, G. B., Brown, J. H., & Enquist, B. J. (1997). "A general model for the origin of allometric scaling laws in biology".
3981: 3694: 3561: 3273: 2497:
Enquist, Brian J.; Brown, James H.; West, Geoffrey B. (1998). "Allometric scaling of plant energetics and population density".
1836:
Kooijman, S. A. L. M. (2010). "Dynamic energy budget theory for metabolic organisation". Cambridge University Press, Cambridge.
1493:
Tilman, David; HilleRisLambers, Janneke; Harpole, Stan; Dybzinski, Ray; Fargione, Joe; Clark, Chris; Lehman, Clarence (2004).
4239: 860:
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., & G. B. West (2004). "Toward a metabolic theory of ecology".
4366: 4011: 1660:
Vasseur, F., Exposito-Alonso, M., Ayala-Garay, O.J., Wang, G., Enquist, B.J., Vile, D., Violle, C. & Weigel, D. (2018).
1609:"Body shape shifting during growth permits tests that distinguish between competing geometric theories of metabolic scaling" 1218: 4412: 3966: 3718: 2971: 2262: 296: 3844: 4542: 4537: 815: 2548:
Hutchinson, G., MacArthur, R. (1959). "A theoretical ecological model of size distributions among species of animals".
4201: 2897:
Banse K. & Mosher S. (1980). "Adult body mass and annual production/biomass relationships of field populations".
1426: 4266: 3986: 3190: 3087: 769: 4447: 4059: 3951: 3809: 3794: 3789: 3180: 88:
is defined as the rate of respiration in which energy is obtained by oxidation of a carbon compound. The rate of
4206: 2827: 2825: 4437: 4432: 4402: 3669: 3551: 39: 1974:
Banavar, J. R., Maritan, A., & Rinaldo, A. (1999). "Size and form in efficient transportation networks".
4281: 4144: 4054: 3922: 3804: 3774: 3631: 3596: 3316: 3283: 3258: 1873:"What is the status of metabolic theory one century after PĂĽtter invented the von Bertalanffy growth curve?" 825: 727:
selected (where populations tend to grow exponentially, and are ultimately limited by extrinsic factors) or
232: 4427: 4371: 4306: 4169: 4104: 4039: 3699: 3601: 3389: 3097: 3077: 720: 4331: 4276: 4139: 4124: 3907: 3864: 3854: 3849: 3606: 3586: 3442: 3432: 3374: 3369: 3205: 3057: 2877: 2809: 2746: 2693: 2577: 2349: 2236: 2163: 2087: 2019: 1949: 1841: 1778: 1705: 1640: 1582: 1473: 1024: 955: 889: 580: 743:
selection is a consequence of metabolic rate. Conversely, larger and cooler bodied animals tend to be
142: 4457: 4422: 4417: 4341: 4336: 4291: 4189: 4159: 4154: 4006: 3869: 3859: 3404: 3243: 3032: 2841: 2726: 2653: 2506: 2455: 2321: 2196: 2123: 2051: 1983: 1807: 1738: 1302: 1122: 1061: 988: 47: 2963: 2715:"Spatial patterns of species richness in New World coral snakes and the metabolic theory of ecology" 194:
At increased temperatures, chemical reactions proceed faster. This relationship is described by the
4507: 4482: 4346: 4316: 4261: 4174: 4064: 4049: 3996: 3829: 3764: 3646: 3576: 3107: 2371:
Understanding the process of ages : the roles of mitochondria, free radicals, and antioxidants
761: 692: 683: 671: 3710: 2597:
Rohde, K. (1992). "Latitudinal gradients in species-diversity: the search for the primary cause".
792:
At the ecosystem level, MTE explains the relationship between temperature and production of total
4518: 4467: 4462: 4271: 4234: 3932: 3897: 3754: 3679: 3581: 3513: 3503: 3437: 3384: 3195: 3140: 3102: 3027: 2950: 2914: 2865: 2797: 2622: 2614: 2565: 2530: 2479: 2337: 2290: 2075: 2007: 1336: 1199: 1148: 1087: 1012: 943: 877: 810: 682:
Small animals tend to grow fast, breed early, and die young. According to MTE, these patterns in
514: 223: 97: 3976: 54:
MTE is based on an interpretation of the relationships between body size, body temperature, and
662: 4407: 4376: 4164: 3991: 3799: 3664: 3641: 3498: 3379: 3155: 3067: 3052: 3037: 3017: 2857: 2789: 2681: 2522: 2471: 2425: 2374: 2282: 2224: 2151: 2067: 1999: 1904: 1766: 1693: 1628: 1570: 1516: 1432: 1407: 1371: 1328: 1275: 1267: 1232: 1191: 1183: 1140: 1079: 1004: 935: 793: 781: 732: 716: 625: 203: 595: 4361: 4224: 4216: 4134: 4016: 4001: 3937: 3917: 3834: 3824: 3819: 3784: 3616: 3556: 3427: 3228: 3170: 3082: 3042: 2942: 2906: 2849: 2779: 2734: 2671: 2661: 2606: 2557: 2514: 2463: 2415: 2407: 2329: 2274: 2214: 2204: 2141: 2131: 2059: 1991: 1935: 1894: 1884: 1815: 1756: 1746: 1683: 1673: 1620: 1560: 1550: 1506: 1461: 1399: 1363: 1318: 1310: 1224: 1175: 1130: 1069: 996: 927: 869: 666: 195: 118: 43: 17: 4497: 4356: 4326: 4321: 4311: 4244: 4229: 4109: 4089: 3971: 3839: 3745: 3636: 3546: 3488: 3473: 3072: 2998: 1854: 1106: 1045: 283:
the two equations above can be combined to produce the primary equation of the MTE, where
1258:
Redfield, A. C. (1960). "The biological control of chemical factors in the environment".
2845: 2730: 2657: 2642:"The rate of DNA evolution: Effects of body size and temperature on the molecular clock" 2510: 2459: 2325: 2200: 2183:
Rinaldo, A., Rigon, R., Banavar, J. R., Maritan, A., & Rodriguez-Iturbe, I. (2014).
2127: 2055: 1987: 1811: 1742: 1306: 1126: 1065: 992: 4477: 4301: 4254: 4184: 4179: 4074: 3941: 3814: 3621: 3611: 3591: 3468: 3394: 3359: 3298: 3175: 3130: 3022: 2420: 2395: 2219: 2184: 1761: 1726: 1688: 1661: 658: 621: 89: 2676: 2641: 2146: 2111: 1819: 1608: 1565: 1538: 4531: 4502: 3478: 3452: 3409: 3399: 3354: 3341: 3321: 3213: 3047: 3002: 2946: 2784: 2767: 2534: 2483: 2011: 1403: 1016: 2954: 2801: 2626: 2569: 2079: 1203: 4487: 4472: 4129: 4099: 4044: 3927: 3892: 3769: 3268: 2869: 2341: 2294: 1340: 1323: 1152: 1091: 947: 374:
body temperatures. However, specific metabolic rate (SMR, in watts/kg) is given by
207: 117:
Metabolic rate scales with the mass of an organism of a given species according to
68: 59: 2063: 881: 931: 3779: 3508: 3326: 3288: 3263: 3253: 3218: 3165: 3145: 2738: 2310:"Allometric scaling of production and life-history variation in vascular plants" 2309: 1798:
Kooijman, S. A. L. M. (1986). "Energy budgets can explain body size relations".
1662:"Adaptive diversification of growth allometry in the plant Arabidopsis thaliana" 776: 696: 85: 2714: 4492: 4069: 4034: 3674: 3626: 3571: 3541: 3447: 3364: 3308: 3185: 3135: 2185:"Evolution and selection of river networks: Statics, dynamics, and complexity" 765: 700: 688: 628:
are distributed via some optimized network to all resource consuming cells or
55: 2526: 2396:"Life history correlates of maximum population growth rates in marine fishes" 1520: 1411: 1375: 1332: 1271: 1228: 1187: 290:
is a normalization constant that is independent of body size or temperature:
4397: 4351: 4079: 3523: 3493: 3293: 3248: 3223: 3160: 3150: 3125: 3117: 3062: 2666: 2467: 2209: 1940: 1923: 1751: 1678: 805: 704: 629: 93: 2861: 2793: 2685: 2475: 2429: 2411: 2286: 2228: 2155: 2136: 2071: 2003: 1924:"Dynamic Energy Budget Theory: An efficient and general theory for ecology" 1908: 1770: 1727:"A general model for allometric covariation in botanical form and function" 1697: 1632: 1574: 1555: 1279: 1195: 1144: 1495:"Does Metabolic Theory Apply to Community Ecology? It's a Matter of Scale" 1083: 1008: 939: 4452: 4381: 3912: 3419: 3331: 3278: 3233: 2853: 2308:
Enquist, B. J., West, G. B., Charnov, E. L., & Brown, J. H. (1999).
2261:
Savage V.M.; Gillooly J.F.; Brown J.H.; West G.B.; Charnov E.L. (2004).
1899: 1135: 1110: 1074: 1049: 976: 4442: 4249: 4119: 4114: 3741: 3689: 3349: 2994: 2918: 2618: 1179: 820: 1889: 1872: 1624: 1314: 731:
selected (where population size is limited by density-dependence and
2910: 2610: 1511: 1494: 1465: 1367: 873: 125:
is whole organism metabolic rate (in watts or other unit of power),
2640:
Gillooly, J.F., Allen, A.P., West, G.B., & Brown, J.H. (2005).
2561: 2278: 2110:
Banavar, J. R., Damuth, J., Maritan, A., & Rinaldo, A. (2002).
2518: 2333: 1995: 1000: 211: 3714: 2967: 977:"Allometric scaling of plant energetics and population density" 484:
Hence SMR for large organisms are lower than small organisms.
1217:
Thompson, D'Arcy Wentworth (1992). Bonner, John Tyler (ed.).
1105:
Enquist, B. J.; Economo, E. P.; Huxman, T. E.; Allen, A. P.;
475:{\displaystyle SMR=(B/M)=b_{o}M^{-1/4}e^{-{\frac {E}{k\,T}}}} 27:
Theory concerning metabolism and observed patterns in ecology
2263:"Effects of body size and temperature on population growth" 657:
The metabolic theory of ecology's main implication is that
71:
theory that aims to be universal in scope and application.
2766:
Stegen, J. C., Enquist, B. J., & Ferriere, R. (2009).
695:
as a by-product of energy production. These in turn cause
624:
are based on resource transport network models, where the
1607:
Hirst, A. G., Glazier, D. S., & Atkinson, D. (2014).
1044:
Enquist, B.J.; Economo, E.P.; Huxman, T.E.; Allen, A.P.;
715:
MTE has profound implications for the interpretation of
975:
Enquist, B.J., Brown, J. H., & West, G. B. (1998).
488:
Past debate over mechanisms and the allometric exponent
723:. Classically, species are thought of as being either 92:
on the other hand, indicates the metabolic rate of an
2394:
Denney N.H., Jennings S. & Reynolds J.D. (2002).
1725:
Price, C.A. Enquist, B.J. & Savage, V.M. (2007).
382: 299: 235: 145: 363:{\displaystyle B=b_{o}M^{3/4}e^{-{\frac {E}{k\,T}}}} 4390: 4290: 4215: 4088: 4025: 3885: 3753: 3655: 3534: 3461: 3418: 3340: 3307: 3204: 3116: 3010: 2713:Terribile, L.C., & Diniz-Filho, J.A.F. (2009). 2105: 2103: 1969: 1967: 1965: 1425:Sterner, Robert W.; Elser, James J. (2002-11-17). 474: 362: 264: 183: 38:) is the ecological component of the more general 1356:Journal of the Fisheries Research Board of Canada 1111:"Scaling metabolism from organisms to ecosystems" 1050:"Scaling metabolism from organisms to ecosystems" 2768:"Advancing the metabolic theory of biodiversity" 1922:Kearney, M.R., Domingos, T., Nisbet, R. (2014). 1602: 1600: 1598: 2189:Proceedings of the National Academy of Sciences 2116:Proceedings of the National Academy of Sciences 1831: 1829: 1866: 1864: 1539:"Metabolic scaling: consensus or controversy?" 739:selected, which fits with the prediction that 3726: 2979: 2369:Enrique Cadenas; Lester Packer, eds. (1999). 2112:"Supply-demand balance and metabolic scaling" 579:, where c is a proportionality constant. The 8: 2882:: CS1 maint: multiple names: authors list ( 2814:: CS1 maint: multiple names: authors list ( 2751:: CS1 maint: multiple names: authors list ( 2698:: CS1 maint: multiple names: authors list ( 2582:: CS1 maint: multiple names: authors list ( 2400:Proceedings of the Royal Society of London B 2354:: CS1 maint: multiple names: authors list ( 2241:: CS1 maint: multiple names: authors list ( 2168:: CS1 maint: multiple names: authors list ( 2092:: CS1 maint: multiple names: authors list ( 2024:: CS1 maint: multiple names: authors list ( 1954:: CS1 maint: multiple names: authors list ( 1783:: CS1 maint: multiple names: authors list ( 1710:: CS1 maint: multiple names: authors list ( 1645:: CS1 maint: multiple names: authors list ( 1587:: CS1 maint: multiple names: authors list ( 1532: 1530: 1478:: CS1 maint: multiple names: authors list ( 1029:: CS1 maint: multiple names: authors list ( 960:: CS1 maint: multiple names: authors list ( 894:: CS1 maint: multiple names: authors list ( 2256: 2254: 2252: 691:. For example, metabolic processes produce 583:model predicts exponents that vary between 3947:Latitudinal gradients in species diversity 3733: 3719: 3711: 2986: 2972: 2964: 2783: 2675: 2665: 2419: 2218: 2208: 2145: 2135: 2037: 2035: 1939: 1898: 1888: 1760: 1750: 1687: 1677: 1564: 1554: 1543:Theoretical Biology and Medical Modelling 1510: 1322: 1134: 1073: 855: 853: 851: 849: 847: 845: 463: 454: 450: 436: 429: 419: 401: 381: 351: 342: 338: 324: 320: 310: 298: 253: 244: 240: 234: 180: 170: 166: 156: 144: 3845:Predator–prey (Lotka–Volterra) equations 3484:Tritrophic interactions in plant defense 913: 911: 909: 907: 905: 218:is absolute temperature in kelvins, and 3877:Random generalized Lotka–Volterra model 841: 51:of cells all the way to the biosphere. 3685:Herbivore adaptations to plant defense 2875: 2807: 2744: 2691: 2575: 2347: 2234: 2161: 2085: 2017: 1947: 1850: 1839: 1776: 1703: 1638: 1580: 1537:Agutter, P.S., Wheatley, D.N. (2004). 1471: 1022: 953: 887: 770:patterns of diversity across body size 537:. The majority view is that while the 265:{\displaystyle e^{-{\frac {E}{k\,T}}}} 2441: 2439: 575:object scales with its volume (V) as 7: 3700:Predator avoidance in schooling fish 4150:Intermediate disturbance hypothesis 100:over the range of 0 to 40 Â°C. 3903:Ecological effects of biodiversity 25: 3239:Generalist and specialist species 707:earlier in their life histories. 611:In contrast, the arguments for a 3962:Occupancy–abundance relationship 2947:10.1046/j.1461-0248.2003.00526.x 2785:10.1111/j.1461-0248.2009.01358.x 1404:10.1111/j.1461-0248.2000.00185.x 1293:"Elements of Physical Biology". 831:Occupancy-abundance relationship 184:{\displaystyle B=B_{o}M^{3/4}\,} 3982:Relative abundance distribution 3695:Plant defense against herbivory 3562:Competitive exclusion principle 3274:Mesopredator release hypothesis 3567:Consumer–resource interactions 1800:Journal of Theoretical Biology 1431:. Princeton University Press. 711:Population and community level 409: 395: 129:is organism mass (in kg), and 1: 4413:Biological data visualization 4240:Environmental niche modelling 3967:Population viability analysis 2064:10.1126/science.284.5420.1677 1820:10.1016/s0022-5193(86)80107-2 784:(speciation and extinction) 98:Van't Hoff-Arrhenius equation 3898:Density-dependent inhibition 932:10.1126/science.276.5309.122 816:Dynamic energy budget theory 697:damage at the cellular level 4367:Liebig's law of the minimum 4202:Resource selection function 3093:Metabolic theory of ecology 2739:10.1016/j.actao.2008.09.006 2373:. New York: Marcel Dekker. 1454:Canadian Journal of Zoology 75:Fundamental concepts in MTE 32:metabolic theory of ecology 18:Metabolic Theory of Ecology 4559: 4267:Niche apportionment models 3987:Relative species abundance 3191:Primary nutritional groups 3088:List of feeding behaviours 1109:; Gillooly, J. F. (2003). 653:Implications of the theory 4516: 4448:Ecosystem based fisheries 4060:Interspecific competition 3952:Minimum viable population 3810:Maximum sustainable yield 3795:Intraspecific competition 3790:Effective population size 3670:Anti-predator adaptations 3181:Photosynthetic efficiency 1048:; Gillooly, J.F. (1997). 4438:Ecological stoichiometry 4403:Alternative stable state 2646:Proc Natl Acad Sci U S A 1428:Ecological Stoichiometry 1229:10.1017/cbo9781107325852 40:Metabolic Scaling Theory 4282:Ontogenetic niche shift 4145:Ideal free distribution 4055:Ecological facilitation 3805:Malthusian growth model 3775:Consumer-resource model 3632:Paradox of the plankton 3597:Energy systems language 3317:Chemoorganoheterotrophy 3284:Optimal foraging theory 3259:Heterotrophic nutrition 2667:10.1073/pnas.0407735101 2468:10.1126/science.1072380 2210:10.1073/pnas.1322700111 1752:10.1073/pnas.0702242104 1679:10.1073/pnas.1709141115 1324:2027/mdp.39015078668525 826:Evolutionary physiology 661:, and the influence of 4428:Ecological forecasting 4372:Marginal value theorem 4170:Landscape epidemiology 4105:Cross-boundary subsidy 4040:Biological interaction 3390:Microbial intelligence 3078:Green world hypothesis 2412:10.1098/rspb.2002.2138 2137:10.1073/pnas.162216899 1871:Kearney, M.R. (2022). 1849:Cite journal requires 1556:10.1186/1742-4682-1-13 476: 364: 266: 185: 113:Theoretical background 4433:Ecological humanities 4332:Ecological energetics 4277:Niche differentiation 4140:Habitat fragmentation 3908:Ecological extinction 3855:Small population size 3607:Feed conversion ratio 3587:Ecological succession 3519:San Francisco Estuary 3433:Ecological efficiency 3375:Microbial cooperation 1941:10.1093/biosci/biv013 1737:(32): 313204–132091. 581:Dynamic Energy Budget 477: 365: 267: 186: 46:. It posits that the 4458:Evolutionary ecology 4423:Ecological footprint 4418:Ecological economics 4342:Ecological threshold 4337:Ecological indicator 4207:Source–sink dynamics 4160:Land change modeling 4155:Insular biogeography 4007:Species distribution 3746:Modelling ecosystems 3405:Microbial metabolism 3244:Intraguild predation 3033:Biogeochemical cycle 2999:Modelling ecosystems 380: 297: 233: 143: 4543:Theoretical ecology 4538:Ecological theories 4508:Theoretical ecology 4483:Natural environment 4347:Ecosystem diversity 4317:Ecological collapse 4307:Bateman's principle 4262:Limiting similarity 4175:Landscape limnology 3997:Species homogeneity 3835:Population modeling 3830:Population dynamics 3647:Trophic state index 2854:10.1038/nature13470 2846:2014Natur.512...39M 2731:2009AcO....35..163T 2658:2005PNAS..102..140G 2511:1998Natur.395..163E 2460:2002Sci...297.1545A 2326:1999Natur.401..907E 2267:American Naturalist 2201:2014PNAS..111.2417R 2128:2002PNAS...9910506B 2122:(16): 10506–10509. 2056:1999Sci...284.1677W 1988:1999Natur.399..130B 1812:1986JThBi.121..269K 1743:2007PNAS..10413204P 1307:1925Natur.116R.461. 1301:(2917): 461. 1925. 1136:10.1038/nature01671 1127:2003Natur.423..639E 1075:10.1038/nature01671 1066:2003Natur.423..639E 993:1998Natur.395..163E 788:Ecosystem processes 762:molecular evolution 721:community diversity 672:population dynamics 517:exponent of either 4519:Outline of ecology 4468:Industrial ecology 4463:Functional ecology 4327:Ecological deficit 4272:Niche construction 4235:Ecosystem engineer 4012:Species–area curve 3933:Introduced species 3748:: Other components 3680:Deimatic behaviour 3582:Ecological network 3514:North Pacific Gyre 3499:hydrothermal vents 3438:Ecological pyramid 3385:Microbial food web 3196:Primary production 3141:Foundation species 1877:Biological Reviews 1223:. Cambridge Core. 1220:On Growth and Form 1180:10.1007/BF00386231 811:Constructal theory 782:evolutionary rates 626:limiting resources 515:allometric scaling 472: 360: 262: 224:Boltzmann constant 181: 4525: 4524: 4408:Balance of nature 4165:Landscape ecology 4050:Community ecology 3992:Species diversity 3928:Indicator species 3923:Gradient analysis 3800:Logistic function 3708: 3707: 3665:Animal coloration 3642:Trophic mutualism 3380:Microbial ecology 3171:Photoheterotrophs 3156:Myco-heterotrophy 3068:Ecosystem ecology 3053:Carrying capacity 3018:Abiotic component 2778:(10): 1001–1015. 2505:(6698): 163–165. 2406:(1506): 2229–37. 2320:(6756): 907–911. 1982:(6732): 130–132. 1890:10.1111/brv.12668 1672:(13): 3416–3421. 1625:10.1111/ele.12334 1619:(10): 1274–1281. 1121:(6940): 639–642. 1060:(6940): 639–642. 987:(6698): 163–165. 733:carrying capacity 717:population growth 699:, which promotes 468: 356: 258: 204:activation energy 16:(Redirected from 4550: 4225:Ecological niche 4197:selection theory 4017:Umbrella species 4002:Species richness 3938:Invasive species 3918:Flagship species 3825:Population cycle 3820:Overexploitation 3785:Ecological yield 3735: 3728: 3721: 3712: 3617:Mesotrophic soil 3557:Climax community 3489:Marine food webs 3428:Biomagnification 3229:Chemoorganotroph 3083:Keystone species 3043:Biotic component 2988: 2981: 2974: 2965: 2959: 2958: 2929: 2923: 2922: 2894: 2888: 2887: 2881: 2873: 2829: 2820: 2819: 2813: 2805: 2787: 2763: 2757: 2756: 2750: 2742: 2710: 2704: 2703: 2697: 2689: 2679: 2669: 2637: 2631: 2630: 2594: 2588: 2587: 2581: 2573: 2556:(869): 117–125. 2545: 2539: 2538: 2494: 2488: 2487: 2454:(5586): 1545–8. 2443: 2434: 2433: 2423: 2391: 2385: 2384: 2366: 2360: 2359: 2353: 2345: 2305: 2299: 2298: 2258: 2247: 2246: 2240: 2232: 2222: 2212: 2195:(7): 2417–2424. 2180: 2174: 2173: 2167: 2159: 2149: 2139: 2107: 2098: 2097: 2091: 2083: 2050:(5420): 1677–9. 2039: 2030: 2029: 2023: 2015: 1971: 1960: 1959: 1953: 1945: 1943: 1919: 1913: 1912: 1902: 1892: 1868: 1859: 1858: 1852: 1847: 1845: 1837: 1833: 1824: 1823: 1795: 1789: 1788: 1782: 1774: 1764: 1754: 1722: 1716: 1715: 1709: 1701: 1691: 1681: 1657: 1651: 1650: 1644: 1636: 1604: 1593: 1592: 1586: 1578: 1568: 1558: 1534: 1525: 1524: 1514: 1505:(7): 1797–1799. 1490: 1484: 1483: 1477: 1469: 1449: 1443: 1442: 1422: 1416: 1415: 1386: 1380: 1379: 1351: 1345: 1344: 1326: 1315:10.1038/116461b0 1290: 1284: 1283: 1260:Science Progress 1255: 1249: 1248: 1246: 1245: 1214: 1208: 1207: 1163: 1157: 1156: 1138: 1102: 1096: 1095: 1077: 1041: 1035: 1034: 1028: 1020: 972: 966: 965: 959: 951: 915: 900: 899: 893: 885: 857: 620: 619: 615: 606: 604: 602: 592: 591: 587: 566: 565: 561: 556: 555: 551: 546: 545: 541: 536: 535: 531: 526: 525: 521: 511: 510: 506: 501: 500: 496: 481: 479: 478: 473: 471: 470: 469: 467: 455: 445: 444: 440: 424: 423: 405: 369: 367: 366: 361: 359: 358: 357: 355: 343: 333: 332: 328: 315: 314: 271: 269: 268: 263: 261: 260: 259: 257: 245: 226:in eV/K or J/K: 196:Boltzmann factor 190: 188: 187: 182: 179: 178: 174: 161: 160: 21: 4558: 4557: 4553: 4552: 4551: 4549: 4548: 4547: 4528: 4527: 4526: 4521: 4512: 4498:Systems ecology 4386: 4357:Extinction debt 4322:Ecological debt 4312:Bioluminescence 4293: 4286: 4255:marine habitats 4230:Ecological trap 4211: 4091: 4084: 4027: 4021: 3977:Rapoport's rule 3972:Priority effect 3913:Endemic species 3881: 3840:Population size 3756: 3749: 3739: 3709: 3704: 3657: 3651: 3637:Trophic cascade 3547:Bioaccumulation 3530: 3457: 3414: 3336: 3303: 3200: 3112: 3073:Ecosystem model 3006: 2992: 2962: 2935:Ecology Letters 2931: 2930: 2926: 2911:10.2307/2937256 2896: 2895: 2891: 2874: 2831: 2830: 2823: 2806: 2772:Ecology Letters 2765: 2764: 2760: 2743: 2719:Acta Oecologica 2712: 2711: 2707: 2690: 2639: 2638: 2634: 2611:10.2307/3545569 2596: 2595: 2591: 2574: 2547: 2546: 2542: 2496: 2495: 2491: 2445: 2444: 2437: 2393: 2392: 2388: 2381: 2368: 2367: 2363: 2346: 2307: 2306: 2302: 2260: 2259: 2250: 2233: 2182: 2181: 2177: 2160: 2109: 2108: 2101: 2084: 2041: 2040: 2033: 2016: 1973: 1972: 1963: 1946: 1921: 1920: 1916: 1870: 1869: 1862: 1848: 1838: 1835: 1834: 1827: 1797: 1796: 1792: 1775: 1724: 1723: 1719: 1702: 1659: 1658: 1654: 1637: 1613:Ecology Letters 1606: 1605: 1596: 1579: 1536: 1535: 1528: 1512:10.1890/03-0725 1492: 1491: 1487: 1470: 1466:10.1139/z83-037 1451: 1450: 1446: 1439: 1424: 1423: 1419: 1392:Ecology Letters 1388: 1387: 1383: 1368:10.1139/f70-065 1353: 1352: 1348: 1292: 1291: 1287: 1257: 1256: 1252: 1243: 1241: 1239: 1216: 1215: 1211: 1165: 1164: 1160: 1104: 1103: 1099: 1043: 1042: 1038: 1021: 974: 973: 969: 952: 917: 916: 903: 886: 874:10.1890/03-9000 859: 858: 843: 839: 802: 790: 713: 680: 655: 617: 613: 612: 600: 598: 594: 589: 585: 584: 563: 559: 558: 553: 549: 548: 543: 539: 538: 533: 529: 528: 523: 519: 518: 508: 504: 503: 498: 494: 493: 490: 459: 446: 425: 415: 378: 377: 347: 334: 316: 306: 295: 294: 289: 281: 249: 236: 231: 230: 162: 152: 141: 140: 135: 115: 106: 82: 77: 69:macroecological 28: 23: 22: 15: 12: 11: 5: 4556: 4554: 4546: 4545: 4540: 4530: 4529: 4523: 4522: 4517: 4514: 4513: 4511: 4510: 4505: 4500: 4495: 4490: 4485: 4480: 4478:Microecosystem 4475: 4470: 4465: 4460: 4455: 4450: 4445: 4440: 4435: 4430: 4425: 4420: 4415: 4410: 4405: 4400: 4394: 4392: 4388: 4387: 4385: 4384: 4379: 4377:Thorson's rule 4374: 4369: 4364: 4359: 4354: 4349: 4344: 4339: 4334: 4329: 4324: 4319: 4314: 4309: 4304: 4302:Assembly rules 4298: 4296: 4288: 4287: 4285: 4284: 4279: 4274: 4269: 4264: 4259: 4258: 4257: 4247: 4242: 4237: 4232: 4227: 4221: 4219: 4213: 4212: 4210: 4209: 4204: 4199: 4187: 4185:Patch dynamics 4182: 4180:Metapopulation 4177: 4172: 4167: 4162: 4157: 4152: 4147: 4142: 4137: 4132: 4127: 4122: 4117: 4112: 4107: 4102: 4096: 4094: 4086: 4085: 4083: 4082: 4077: 4075:Storage effect 4072: 4067: 4062: 4057: 4052: 4047: 4042: 4037: 4031: 4029: 4023: 4022: 4020: 4019: 4014: 4009: 4004: 3999: 3994: 3989: 3984: 3979: 3974: 3969: 3964: 3959: 3957:Neutral theory 3954: 3949: 3944: 3942:Native species 3935: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3895: 3889: 3887: 3883: 3882: 3880: 3879: 3874: 3873: 3872: 3867: 3857: 3852: 3847: 3842: 3837: 3832: 3827: 3822: 3817: 3815:Overpopulation 3812: 3807: 3802: 3797: 3792: 3787: 3782: 3777: 3772: 3767: 3761: 3759: 3751: 3750: 3740: 3738: 3737: 3730: 3723: 3715: 3706: 3705: 3703: 3702: 3697: 3692: 3687: 3682: 3677: 3672: 3667: 3661: 3659: 3653: 3652: 3650: 3649: 3644: 3639: 3634: 3629: 3624: 3622:Nutrient cycle 3619: 3614: 3612:Feeding frenzy 3609: 3604: 3599: 3594: 3592:Energy quality 3589: 3584: 3579: 3574: 3569: 3564: 3559: 3554: 3552:Cascade effect 3549: 3544: 3538: 3536: 3532: 3531: 3529: 3528: 3527: 3526: 3521: 3516: 3511: 3506: 3501: 3496: 3486: 3481: 3476: 3471: 3465: 3463: 3459: 3458: 3456: 3455: 3450: 3445: 3440: 3435: 3430: 3424: 3422: 3416: 3415: 3413: 3412: 3407: 3402: 3397: 3395:Microbial loop 3392: 3387: 3382: 3377: 3372: 3367: 3362: 3360:Lithoautotroph 3357: 3352: 3346: 3344: 3342:Microorganisms 3338: 3337: 3335: 3334: 3329: 3324: 3319: 3313: 3311: 3305: 3304: 3302: 3301: 3299:Prey switching 3296: 3291: 3286: 3281: 3276: 3271: 3266: 3261: 3256: 3251: 3246: 3241: 3236: 3231: 3226: 3221: 3216: 3210: 3208: 3202: 3201: 3199: 3198: 3193: 3188: 3183: 3178: 3176:Photosynthesis 3173: 3168: 3163: 3158: 3153: 3148: 3143: 3138: 3133: 3131:Chemosynthesis 3128: 3122: 3120: 3114: 3113: 3111: 3110: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3023:Abiotic stress 3020: 3014: 3012: 3008: 3007: 2993: 2991: 2990: 2983: 2976: 2968: 2961: 2960: 2924: 2905:(3): 355–379. 2889: 2821: 2758: 2725:(2): 163–173. 2705: 2632: 2605:(3): 514–527. 2589: 2562:10.1086/282063 2540: 2489: 2435: 2386: 2379: 2361: 2300: 2279:10.1086/381872 2273:(3): 429–441. 2248: 2175: 2099: 2031: 1961: 1914: 1883:(2): 557–575. 1860: 1851:|journal= 1825: 1806:(3): 269–282. 1790: 1717: 1652: 1594: 1526: 1485: 1460:(2): 281–288. 1444: 1437: 1417: 1398:(6): 540–550. 1381: 1362:(3): 606–609. 1346: 1285: 1250: 1237: 1209: 1158: 1097: 1036: 967: 926:(7): 122–126. 901: 868:(7): 1771–89. 840: 838: 835: 834: 833: 828: 823: 818: 813: 808: 801: 798: 789: 786: 772:and latitude. 712: 709: 679: 678:Organism level 676: 659:metabolic rate 654: 651: 622:scaling factor 489: 486: 466: 462: 458: 453: 449: 443: 439: 435: 432: 428: 422: 418: 414: 411: 408: 404: 400: 397: 394: 391: 388: 385: 371: 370: 354: 350: 346: 341: 337: 331: 327: 323: 319: 313: 309: 305: 302: 287: 279: 273: 272: 256: 252: 248: 243: 239: 192: 191: 177: 173: 169: 165: 159: 155: 151: 148: 133: 114: 111: 105: 102: 90:photosynthesis 81: 78: 76: 73: 56:metabolic rate 48:metabolic rate 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4555: 4544: 4541: 4539: 4536: 4535: 4533: 4520: 4515: 4509: 4506: 4504: 4503:Urban ecology 4501: 4499: 4496: 4494: 4491: 4489: 4486: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4464: 4461: 4459: 4456: 4454: 4451: 4449: 4446: 4444: 4441: 4439: 4436: 4434: 4431: 4429: 4426: 4424: 4421: 4419: 4416: 4414: 4411: 4409: 4406: 4404: 4401: 4399: 4396: 4395: 4393: 4389: 4383: 4380: 4378: 4375: 4373: 4370: 4368: 4365: 4363: 4362:Kleiber's law 4360: 4358: 4355: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4299: 4297: 4295: 4289: 4283: 4280: 4278: 4275: 4273: 4270: 4268: 4265: 4263: 4260: 4256: 4253: 4252: 4251: 4248: 4246: 4243: 4241: 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4222: 4220: 4218: 4214: 4208: 4205: 4203: 4200: 4198: 4196: 4192: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4166: 4163: 4161: 4158: 4156: 4153: 4151: 4148: 4146: 4143: 4141: 4138: 4136: 4135:Foster's rule 4133: 4131: 4128: 4126: 4123: 4121: 4118: 4116: 4113: 4111: 4108: 4106: 4103: 4101: 4098: 4097: 4095: 4093: 4087: 4081: 4078: 4076: 4073: 4071: 4068: 4066: 4063: 4061: 4058: 4056: 4053: 4051: 4048: 4046: 4043: 4041: 4038: 4036: 4033: 4032: 4030: 4024: 4018: 4015: 4013: 4010: 4008: 4005: 4003: 4000: 3998: 3995: 3993: 3990: 3988: 3985: 3983: 3980: 3978: 3975: 3973: 3970: 3968: 3965: 3963: 3960: 3958: 3955: 3953: 3950: 3948: 3945: 3943: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3891: 3890: 3888: 3884: 3878: 3875: 3871: 3868: 3866: 3863: 3862: 3861: 3858: 3856: 3853: 3851: 3848: 3846: 3843: 3841: 3838: 3836: 3833: 3831: 3828: 3826: 3823: 3821: 3818: 3816: 3813: 3811: 3808: 3806: 3803: 3801: 3798: 3796: 3793: 3791: 3788: 3786: 3783: 3781: 3778: 3776: 3773: 3771: 3768: 3766: 3763: 3762: 3760: 3758: 3752: 3747: 3743: 3736: 3731: 3729: 3724: 3722: 3717: 3716: 3713: 3701: 3698: 3696: 3693: 3691: 3688: 3686: 3683: 3681: 3678: 3676: 3673: 3671: 3668: 3666: 3663: 3662: 3660: 3654: 3648: 3645: 3643: 3640: 3638: 3635: 3633: 3630: 3628: 3625: 3623: 3620: 3618: 3615: 3613: 3610: 3608: 3605: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3580: 3578: 3575: 3573: 3570: 3568: 3565: 3563: 3560: 3558: 3555: 3553: 3550: 3548: 3545: 3543: 3540: 3539: 3537: 3533: 3525: 3522: 3520: 3517: 3515: 3512: 3510: 3507: 3505: 3502: 3500: 3497: 3495: 3492: 3491: 3490: 3487: 3485: 3482: 3480: 3477: 3475: 3472: 3470: 3467: 3466: 3464: 3460: 3454: 3453:Trophic level 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3425: 3423: 3421: 3417: 3411: 3410:Phage ecology 3408: 3406: 3403: 3401: 3400:Microbial mat 3398: 3396: 3393: 3391: 3388: 3386: 3383: 3381: 3378: 3376: 3373: 3371: 3368: 3366: 3363: 3361: 3358: 3356: 3355:Bacteriophage 3353: 3351: 3348: 3347: 3345: 3343: 3339: 3333: 3330: 3328: 3325: 3323: 3322:Decomposition 3320: 3318: 3315: 3314: 3312: 3310: 3306: 3300: 3297: 3295: 3292: 3290: 3287: 3285: 3282: 3280: 3277: 3275: 3272: 3270: 3269:Mesopredators 3267: 3265: 3262: 3260: 3257: 3255: 3252: 3250: 3247: 3245: 3242: 3240: 3237: 3235: 3232: 3230: 3227: 3225: 3222: 3220: 3217: 3215: 3214:Apex predator 3212: 3211: 3209: 3207: 3203: 3197: 3194: 3192: 3189: 3187: 3184: 3182: 3179: 3177: 3174: 3172: 3169: 3167: 3164: 3162: 3159: 3157: 3154: 3152: 3149: 3147: 3144: 3142: 3139: 3137: 3134: 3132: 3129: 3127: 3124: 3123: 3121: 3119: 3115: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3048:Biotic stress 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3015: 3013: 3009: 3004: 3000: 2996: 2989: 2984: 2982: 2977: 2975: 2970: 2969: 2966: 2956: 2952: 2948: 2944: 2941:(11): 990–5. 2940: 2936: 2928: 2925: 2920: 2916: 2912: 2908: 2904: 2900: 2893: 2890: 2885: 2879: 2871: 2867: 2863: 2859: 2855: 2851: 2847: 2843: 2840:(39): 39–44. 2839: 2835: 2828: 2826: 2822: 2817: 2811: 2803: 2799: 2795: 2791: 2786: 2781: 2777: 2773: 2769: 2762: 2759: 2754: 2748: 2740: 2736: 2732: 2728: 2724: 2720: 2716: 2709: 2706: 2701: 2695: 2687: 2683: 2678: 2673: 2668: 2663: 2659: 2655: 2651: 2647: 2643: 2636: 2633: 2628: 2624: 2620: 2616: 2612: 2608: 2604: 2600: 2593: 2590: 2585: 2579: 2571: 2567: 2563: 2559: 2555: 2551: 2544: 2541: 2536: 2532: 2528: 2524: 2520: 2519:10.1038/25977 2516: 2512: 2508: 2504: 2500: 2493: 2490: 2485: 2481: 2477: 2473: 2469: 2465: 2461: 2457: 2453: 2449: 2442: 2440: 2436: 2431: 2427: 2422: 2417: 2413: 2409: 2405: 2401: 2397: 2390: 2387: 2382: 2380:0-8247-1723-6 2376: 2372: 2365: 2362: 2357: 2351: 2343: 2339: 2335: 2334:10.1038/44819 2331: 2327: 2323: 2319: 2315: 2311: 2304: 2301: 2296: 2292: 2288: 2284: 2280: 2276: 2272: 2268: 2264: 2257: 2255: 2253: 2249: 2244: 2238: 2230: 2226: 2221: 2216: 2211: 2206: 2202: 2198: 2194: 2190: 2186: 2179: 2176: 2171: 2165: 2157: 2153: 2148: 2143: 2138: 2133: 2129: 2125: 2121: 2117: 2113: 2106: 2104: 2100: 2095: 2089: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2053: 2049: 2045: 2038: 2036: 2032: 2027: 2021: 2013: 2009: 2005: 2001: 1997: 1996:10.1038/20144 1993: 1989: 1985: 1981: 1977: 1970: 1968: 1966: 1962: 1957: 1951: 1942: 1937: 1933: 1929: 1925: 1918: 1915: 1910: 1906: 1901: 1896: 1891: 1886: 1882: 1878: 1874: 1867: 1865: 1861: 1856: 1843: 1832: 1830: 1826: 1821: 1817: 1813: 1809: 1805: 1801: 1794: 1791: 1786: 1780: 1772: 1768: 1763: 1758: 1753: 1748: 1744: 1740: 1736: 1732: 1728: 1721: 1718: 1713: 1707: 1699: 1695: 1690: 1685: 1680: 1675: 1671: 1667: 1663: 1656: 1653: 1648: 1642: 1634: 1630: 1626: 1622: 1618: 1614: 1610: 1603: 1601: 1599: 1595: 1590: 1584: 1576: 1572: 1567: 1562: 1557: 1552: 1548: 1544: 1540: 1533: 1531: 1527: 1522: 1518: 1513: 1508: 1504: 1500: 1496: 1489: 1486: 1481: 1475: 1467: 1463: 1459: 1455: 1448: 1445: 1440: 1438:9780691074917 1434: 1430: 1429: 1421: 1418: 1413: 1409: 1405: 1401: 1397: 1393: 1385: 1382: 1377: 1373: 1369: 1365: 1361: 1357: 1350: 1347: 1342: 1338: 1334: 1330: 1325: 1320: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1286: 1281: 1277: 1273: 1269: 1265: 1261: 1254: 1251: 1240: 1238:9780521437769 1234: 1230: 1226: 1222: 1221: 1213: 1210: 1205: 1201: 1197: 1193: 1189: 1185: 1181: 1177: 1173: 1169: 1162: 1159: 1154: 1150: 1146: 1142: 1137: 1132: 1128: 1124: 1120: 1116: 1112: 1108: 1107:Ignace, D. D. 1101: 1098: 1093: 1089: 1085: 1081: 1076: 1071: 1067: 1063: 1059: 1055: 1051: 1047: 1040: 1037: 1032: 1026: 1018: 1014: 1010: 1006: 1002: 1001:10.1038/25977 998: 994: 990: 986: 982: 978: 971: 968: 963: 957: 949: 945: 941: 937: 933: 929: 925: 921: 914: 912: 910: 908: 906: 902: 897: 891: 883: 879: 875: 871: 867: 863: 856: 854: 852: 850: 848: 846: 842: 836: 832: 829: 827: 824: 822: 819: 817: 814: 812: 809: 807: 804: 803: 799: 797: 795: 787: 785: 783: 778: 773: 771: 767: 763: 757: 753: 750: 746: 742: 738: 734: 730: 726: 722: 718: 710: 708: 706: 702: 698: 694: 693:free radicals 690: 685: 677: 675: 673: 668: 664: 660: 652: 650: 646: 643: 639: 635: 631: 627: 623: 609: 597: 582: 578: 573: 568: 516: 487: 485: 482: 464: 460: 456: 451: 447: 441: 437: 433: 430: 426: 420: 416: 412: 406: 402: 398: 392: 389: 386: 383: 375: 352: 348: 344: 339: 335: 329: 325: 321: 317: 311: 307: 303: 300: 293: 292: 291: 286: 278: 254: 250: 246: 241: 237: 229: 228: 227: 225: 221: 217: 213: 209: 208:electronvolts 205: 201: 197: 175: 171: 167: 163: 157: 153: 149: 146: 139: 138: 137: 132: 128: 124: 120: 119:Kleiber's law 112: 110: 104:Stoichiometry 103: 101: 99: 95: 91: 87: 79: 74: 72: 70: 64: 61: 57: 52: 49: 45: 44:Kleiber's law 41: 37: 33: 19: 4488:Regime shift 4473:Macroecology 4194: 4190: 4130:Edge effects 4100:Biogeography 4045:Commensalism 3893:Biodiversity 3770:Allee effect 3509:kelp forests 3462:Example webs 3327:Detritivores 3166:Organotrophs 3146:Kinetotrophs 3098:Productivity 3092: 2938: 2934: 2927: 2902: 2899:Ecol. Monogr 2898: 2892: 2878:cite journal 2837: 2833: 2810:cite journal 2775: 2771: 2761: 2747:cite journal 2722: 2718: 2708: 2694:cite journal 2652:(1): 140–5. 2649: 2645: 2635: 2602: 2598: 2592: 2578:cite journal 2553: 2549: 2543: 2502: 2498: 2492: 2451: 2447: 2403: 2399: 2389: 2370: 2364: 2350:cite journal 2317: 2313: 2303: 2270: 2266: 2237:cite journal 2192: 2188: 2178: 2164:cite journal 2119: 2115: 2088:cite journal 2047: 2043: 2020:cite journal 1979: 1975: 1950:cite journal 1931: 1927: 1917: 1900:11343/275140 1880: 1876: 1842:cite journal 1803: 1799: 1793: 1779:cite journal 1734: 1730: 1720: 1706:cite journal 1669: 1665: 1655: 1641:cite journal 1616: 1612: 1583:cite journal 1546: 1542: 1502: 1498: 1488: 1474:cite journal 1457: 1453: 1447: 1427: 1420: 1395: 1391: 1384: 1359: 1355: 1349: 1298: 1294: 1288: 1263: 1259: 1253: 1242:. Retrieved 1219: 1212: 1174:(1): 78–90. 1171: 1167: 1161: 1118: 1114: 1100: 1057: 1053: 1046:Ignace, D.D. 1039: 1025:cite journal 984: 980: 970: 956:cite journal 923: 919: 890:cite journal 865: 861: 791: 777:coral snakes 774: 758: 754: 748: 744: 740: 736: 728: 724: 714: 684:life history 681: 656: 647: 641: 637: 633: 610: 599:. Retrieved 596:"Add my Pet" 576: 571: 569: 491: 483: 376: 372: 284: 276: 274: 219: 215: 199: 193: 130: 126: 122: 116: 107: 83: 65: 53: 35: 31: 29: 4125:Disturbance 4028:interaction 3850:Recruitment 3780:Depensation 3572:Copiotrophs 3443:Energy flow 3365:Lithotrophy 3309:Decomposers 3289:Planktivore 3264:Insectivore 3254:Heterotroph 3219:Bacterivore 3186:Phototrophs 3136:Chemotrophs 3108:Restoration 3058:Competition 1266:: 150–170. 667:temperature 513:predict an 86:heterotroph 4532:Categories 4493:Sexecology 4070:Parasitism 4035:Antibiosis 3870:Resistance 3865:Resilience 3755:Population 3675:Camouflage 3627:Oligotroph 3542:Ascendency 3504:intertidal 3494:cold seeps 3448:Food chain 3249:Herbivores 3224:Carnivores 3151:Mixotrophs 3126:Autotrophs 3005:components 1934:(4): 341. 1928:BioScience 1244:2019-11-09 837:References 766:speciation 701:senescence 689:senescence 630:organelles 567:exponent. 80:Metabolism 60:endothermy 4398:Allometry 4352:Emergence 4080:Symbiosis 4065:Mutualism 3860:Stability 3765:Abundance 3577:Dominance 3535:Processes 3524:tide pool 3420:Food webs 3294:Predation 3279:Omnivores 3206:Consumers 3161:Mycotroph 3118:Producers 3063:Ecosystem 3028:Behaviour 2535:204996904 2527:1476-4687 2484:131587862 2012:204993057 1521:0012-9658 1412:1461-0248 1376:0015-296X 1333:0028-0836 1272:0036-8504 1188:0032-0935 1017:204996904 806:Allometry 705:reproduce 663:body size 640:), where 601:23 August 452:− 431:− 340:− 242:− 94:autotroph 4453:Endolith 4382:Xerosere 4294:networks 4110:Ecocline 3656:Defense, 3332:Detritus 3234:Foraging 3103:Resource 2955:21068287 2862:25043056 2802:15388080 2794:19747180 2686:15618408 2627:40145348 2570:84614449 2476:12202828 2430:12427316 2287:15026978 2229:24550264 2156:12149461 2080:29451718 2072:10356399 2004:10335841 1909:33205617 1771:17664421 1698:29540570 1633:25060740 1575:15546492 1549:: 1–13. 1280:24545739 1204:20518047 1196:24306196 1145:12789338 800:See also 572:external 198:, where 4443:Ecopath 4250:Habitat 4120:Ecotype 4115:Ecotone 4092:ecology 4090:Spatial 4026:Species 3886:Species 3757:ecology 3742:Ecology 3690:Mimicry 3658:counter 3602:f-ratio 3350:Archaea 3038:Biomass 3011:General 3003:Trophic 2995:Ecology 2919:2937256 2870:4463144 2842:Bibcode 2727:Bibcode 2654:Bibcode 2619:3545569 2550:Am. Nat 2507:Bibcode 2456:Bibcode 2448:Science 2421:1691154 2342:4397261 2322:Bibcode 2295:4693534 2220:3932906 2197:Bibcode 2124:Bibcode 2052:Bibcode 2044:Science 1984:Bibcode 1808:Bibcode 1762:1941814 1739:Bibcode 1689:5879651 1499:Ecology 1341:4103581 1303:Bibcode 1153:4426210 1123:Bibcode 1092:4426210 1084:9082983 1062:Bibcode 1009:9082983 989:Bibcode 948:3140271 940:9082983 920:Science 862:Ecology 821:Ecology 794:biomass 616:⁄ 588:⁄ 577:SA = cV 562:⁄ 552:⁄ 542:⁄ 532:⁄ 522:⁄ 507:⁄ 497:⁄ 222:is the 3474:Rivers 3370:Marine 2953:  2917:  2868:  2860:  2834:Nature 2800:  2792:  2684:  2677:544068 2674:  2625:  2617:  2568:  2533:  2525:  2499:Nature 2482:  2474:  2428:  2418:  2377:  2340:  2314:Nature 2293:  2285:  2227:  2217:  2154:  2147:124956 2144:  2078:  2070:  2010:  2002:  1976:Nature 1907:  1769:  1759:  1696:  1686:  1631:  1573:  1566:539293 1563:  1519:  1435:  1410:  1374:  1339:  1331:  1295:Nature 1278:  1270:  1235:  1202:  1194:  1186:  1168:Planta 1151:  1143:  1115:Nature 1090:  1082:  1054:Nature 1015:  1007:  981:Nature 946:  938:  882:691916 880:  275:While 212:joules 121:where 4391:Other 4292:Other 4245:Guild 4217:Niche 3469:Lakes 2951:S2CID 2915:JSTOR 2866:S2CID 2798:S2CID 2623:S2CID 2615:JSTOR 2599:Oikos 2566:S2CID 2531:S2CID 2480:S2CID 2338:S2CID 2291:S2CID 2076:S2CID 2008:S2CID 1337:S2CID 1200:S2CID 1149:S2CID 1088:S2CID 1013:S2CID 944:S2CID 878:S2CID 3479:Soil 2884:link 2858:PMID 2816:link 2790:PMID 2753:link 2700:link 2682:PMID 2584:link 2523:ISSN 2472:PMID 2426:PMID 2375:ISBN 2356:link 2283:PMID 2243:link 2225:PMID 2170:link 2152:PMID 2094:link 2068:PMID 2026:link 2000:PMID 1956:link 1905:PMID 1855:help 1785:link 1767:PMID 1731:PNAS 1712:link 1694:PMID 1666:PNAS 1647:link 1629:PMID 1589:link 1571:PMID 1517:ISSN 1480:link 1433:ISBN 1408:ISSN 1372:ISSN 1329:ISSN 1276:PMID 1268:ISSN 1233:ISBN 1192:PMID 1184:ISSN 1141:PMID 1080:PMID 1031:link 1005:PMID 962:link 936:PMID 896:link 719:and 665:and 603:2022 42:and 30:The 2943:doi 2907:doi 2850:doi 2838:512 2780:doi 2735:doi 2672:PMC 2662:doi 2650:102 2607:doi 2558:doi 2515:doi 2503:395 2464:doi 2452:297 2416:PMC 2408:doi 2404:269 2330:doi 2318:401 2275:doi 2271:163 2215:PMC 2205:doi 2193:111 2142:PMC 2132:doi 2060:doi 2048:284 1992:doi 1980:399 1936:doi 1895:hdl 1885:doi 1816:doi 1804:121 1757:PMC 1747:doi 1735:104 1684:PMC 1674:doi 1670:115 1621:doi 1561:PMC 1551:doi 1507:doi 1462:doi 1400:doi 1364:doi 1319:hdl 1311:doi 1299:116 1225:doi 1176:doi 1172:149 1131:doi 1119:423 1070:doi 1058:423 997:doi 985:395 928:doi 924:276 870:doi 638:D+1 527:or 502:or 210:or 206:in 202:is 36:MTE 4534:: 3940:/ 3744:: 3001:: 2997:: 2949:. 2937:. 2913:. 2903:50 2901:. 2880:}} 2876:{{ 2864:. 2856:. 2848:. 2836:. 2824:^ 2812:}} 2808:{{ 2796:. 2788:. 2776:12 2774:. 2770:. 2749:}} 2745:{{ 2733:. 2723:35 2721:. 2717:. 2696:}} 2692:{{ 2680:. 2670:. 2660:. 2648:. 2644:. 2621:. 2613:. 2603:65 2601:. 2580:}} 2576:{{ 2564:. 2554:93 2552:. 2529:. 2521:. 2513:. 2501:. 2478:. 2470:. 2462:. 2450:. 2438:^ 2424:. 2414:. 2402:. 2398:. 2352:}} 2348:{{ 2336:. 2328:. 2316:. 2312:. 2289:. 2281:. 2269:. 2265:. 2251:^ 2239:}} 2235:{{ 2223:. 2213:. 2203:. 2191:. 2187:. 2166:}} 2162:{{ 2150:. 2140:. 2130:. 2120:99 2118:. 2114:. 2102:^ 2090:}} 2086:{{ 2074:. 2066:. 2058:. 2046:. 2034:^ 2022:}} 2018:{{ 2006:. 1998:. 1990:. 1978:. 1964:^ 1952:}} 1948:{{ 1932:65 1930:. 1926:. 1903:. 1893:. 1881:96 1879:. 1875:. 1863:^ 1846:: 1844:}} 1840:{{ 1828:^ 1814:. 1802:. 1781:}} 1777:{{ 1765:. 1755:. 1745:. 1733:. 1729:. 1708:}} 1704:{{ 1692:. 1682:. 1668:. 1664:. 1643:}} 1639:{{ 1627:. 1617:17 1615:. 1611:. 1597:^ 1585:}} 1581:{{ 1569:. 1559:. 1545:. 1541:. 1529:^ 1515:. 1503:85 1501:. 1497:. 1476:}} 1472:{{ 1458:61 1456:. 1406:. 1394:. 1370:. 1360:27 1358:. 1335:. 1327:. 1317:. 1309:. 1297:. 1274:. 1264:11 1262:. 1231:. 1198:. 1190:. 1182:. 1170:. 1147:. 1139:. 1129:. 1117:. 1113:. 1086:. 1078:. 1068:. 1056:. 1052:. 1027:}} 1023:{{ 1011:. 1003:. 995:. 983:. 979:. 958:}} 954:{{ 942:. 934:. 922:. 904:^ 892:}} 888:{{ 876:. 866:85 864:. 844:^ 636:/( 214:, 4195:K 4193:/ 4191:r 3734:e 3727:t 3720:v 2987:e 2980:t 2973:v 2957:. 2945:: 2939:6 2921:. 2909:: 2886:) 2872:. 2852:: 2844:: 2818:) 2804:. 2782:: 2755:) 2741:. 2737:: 2729:: 2702:) 2688:. 2664:: 2656:: 2629:. 2609:: 2586:) 2572:. 2560:: 2537:. 2517:: 2509:: 2486:. 2466:: 2458:: 2432:. 2410:: 2383:. 2358:) 2344:. 2332:: 2324:: 2297:. 2277:: 2245:) 2231:. 2207:: 2199:: 2172:) 2158:. 2134:: 2126:: 2096:) 2082:. 2062:: 2054:: 2028:) 2014:. 1994:: 1986:: 1958:) 1944:. 1938:: 1911:. 1897:: 1887:: 1857:) 1853:( 1822:. 1818:: 1810:: 1787:) 1773:. 1749:: 1741:: 1714:) 1700:. 1676:: 1649:) 1635:. 1623:: 1591:) 1577:. 1553:: 1547:1 1523:. 1509:: 1482:) 1468:. 1464:: 1441:. 1414:. 1402:: 1396:3 1378:. 1366:: 1343:. 1321:: 1313:: 1305:: 1282:. 1247:. 1227:: 1206:. 1178:: 1155:. 1133:: 1125:: 1094:. 1072:: 1064:: 1033:) 1019:. 999:: 991:: 964:) 950:. 930:: 898:) 884:. 872:: 749:M 745:K 741:r 737:r 729:K 725:r 642:D 634:D 618:4 614:3 605:. 590:3 586:2 564:4 560:3 554:3 550:2 544:4 540:3 534:4 530:3 524:3 520:2 509:3 505:2 499:4 495:3 465:T 461:k 457:E 448:e 442:4 438:/ 434:1 427:M 421:o 417:b 413:= 410:) 407:M 403:/ 399:B 396:( 393:= 390:R 387:M 384:S 353:T 349:k 345:E 336:e 330:4 326:/ 322:3 318:M 312:o 308:b 304:= 301:B 288:o 285:b 280:o 277:B 255:T 251:k 247:E 238:e 220:k 216:T 200:E 176:4 172:/ 168:3 164:M 158:o 154:B 150:= 147:B 134:o 131:B 127:M 123:B 34:( 20:)

Index

Metabolic Theory of Ecology
Metabolic Scaling Theory
Kleiber's law
metabolic rate
metabolic rate
endothermy
macroecological
heterotroph
photosynthesis
autotroph
Van't Hoff-Arrhenius equation
Kleiber's law
Boltzmann factor
activation energy
electronvolts
joules
Boltzmann constant
allometric scaling
Dynamic Energy Budget
"Add my Pet"
scaling factor
limiting resources
organelles
metabolic rate
body size
temperature
population dynamics
life history
senescence
free radicals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑