Knowledge (XXG)

Metamaterial antenna

Source 📝

1980:
parameters that are both inherently and simultaneously negative, obviating the need to employ separate means. The proposed media possess other desirable features including very wide bandwidth over which the refractive index remains negative, the ability to guide 2-D TM waves, scalability from RF to millimeter-wave frequencies and low transmission losses, as well as the potential for tunability by inserting varactors and/or switches in the unit cell. The concept has been verified with circuit and full-wave simulations. A prototype focusing device has been tested experimentally. The experimental results demonstrated focusing of an incident cylindrical wave within an octave bandwidth and over an electrically short area; suggestive of near-field focusing.
2337:). At certain frequencies Δ < 0 and Ό < 0 and n < 0. Like the DPS, the NIM has intrinsic impedance that is equal to the outside, and, therefore, is also lossless. The direction of power flow (i.e., the Poynting vector) in the first slab should be the same as that in the second one, because the power of the incident wave enters the first slab (without any reflection at the first interface), traverses the first slab, exits the second interface, enters the second slab and traverses it, and finally leaves the second slab. However, as stated earlier, the direction of power is anti-parallel to the direction of phase velocity. Therefore, the wave vector k 2055:. As a nonmagnetic conducting unit, it comprises an array of units that yield an enhanced negative effective magnetic permeability, when the frequency of the incident electromagnetic field is close to the SRR resonance frequency. The resonant frequency of the SRR depends on its shape and physical design. In addition, resonance can occur at wavelengths much larger than its size. For the further shape optimization of the elements it is expedient to use genetic and other optimization algorithms. In multi-frequency designs one may apply fractal designs such as those of Sierpensky, Koch or other fractals instead of SRRs. 1996:
equipped with lumped elements, which permit them to be compact at frequencies where the SRR cannot be compact. The flexibility gained through the use of either discrete or printed elements enables planar metamaterials to be scalable from the megahertz to the tens of gigahertz range. In addition, by utilizing varactors instead of capacitors, the effective material properties can be dynamically tuned. Furthermore, the proposed media are planar and inherently support two-dimensional (2-D) wave propagation. Therefore, these new metamaterials are well suited for RF/microwave device and circuit applications.
1859:
range. With this in mind, high pass and cutoff, periodically loaded, two-dimensional LC transmission line networks were proposed. The LC networks can be designed to support backward waves, without bulky SRR/wire structure. This was the first such proposal which veered away from bulk media for a negative refractive effect. A notable property of this type of network is that there is no reliance on resonance, Instead the ability to support backward waves defines negative refraction.
2492: 17: 1473: 1458: 424: 2152:. The operation frequency of the antenna was 3.52 GHz, which was determined by considering the geometrical parameters of SRR. An 8.32 mm length of wire was placed above the ground plane, connected to the antenna, which was one quarter of the operation wavelength. The antenna worked with a feed wavelength of 3.28 mm and feed frequency of 7.8 GHz. The SRR's resonant frequency was smaller than the monopole operation frequency. 1971:
E-plane pattern at 15 GHz showed radiation towards the backfire direction in the far-field pattern, clearly indicating the excitation of a backward wave. Since the transverse dimension of the array is electrically short, the structure is backed by a long metallic trough. The trough acts as a waveguide below cut-off and recovers the back radiation, resulting in unidirectional far-field patterns.
2611: 2184:. According to the numerical results, the antenna showed significant improvement in directivity, compared to conventional patch antennae. This was cited in 2007 for an efficient design of directive patch antennas in mobile communications using metamaterials. This design was based on the left-handed material (LHM) transmission line model, with the circuit elements L and C of the LHM 1274:, which then affects the relative permittivity and permeability of the overall microstrip line. It is introduced so that the wave impedance in the metamaterial remains unchanged. The index of refraction in the medium compensates for the dispersion effects associated with the microstrip geometry itself; making the effective refractive index of the pair that of free space. 1954:) was shown to exhibit NRI properties over a broad frequency range. This network will be referred to as a dual TL structure since it is of a high-pass configuration, as opposed to the low-pass representation of a conventional TL structure. Dual TL structures have been used to experimentally demonstrate backward-wave radiation and focusing at microwave frequencies. 2330:) is the same as that of the outside region and responding to a normally incident planar wave. The wave travels through the medium without any reflection because the DPS impedance and the outside impedance are equal. However, the plane wave at the end of DPS slab is out of phase with the plane wave at the beginning of the material. 3355: 2482:
A magnetic dipole was placed on metamaterial (slab) ground plane. The metamaterials have either constituent parameters that are both negative, or negative permittivity or negative permeability. The dispersion and radiation properties of leaky waves supported by these metamaterial slabs, respectively,
1873:
Electromagnetic waves from a point source located inside a conventional DPS can be focused inside an LHM using a planar interface of the two media. These conditions can be modeled by exciting a single node inside the DPS and observing the magnitude and phase of the voltages to ground at all points in
1748:
are often examined. Lumped circuit elements are actually microscopic elements that effectively approximate their larger component counterparts. For example, circuit capacitance and inductance can be created with split rings, which are on the scale of nanometers at optical frequencies. The distributed
2575:
The lens also functions as an input device and consists of a number of periodic unit-cells disposed along the line. The lens consists of multiple lines of the same make up; a plurality of periodic unit-cells. The periodic unit-cells are constructed of a plurality of electrical components; capacitors
2131:
parameters were R = 3.6 mm, r = 2.5 mm, w = 0.2 mm, t = 0.9 mm. R and r are used in annular parameters, w is the spacing between the rings and t = the width of the outer ring. The material had a thickness of 1.6 mm. Permittivity was 3.85 at 4 GHz. The SRR was fabricated
1991:
According to some researchers SRR/wire-configured metamaterials are bulky 3-D constructions that are difficult to adapt for RF/microwave device and circuit applications. These structures can achieve a negative index of refraction only within a narrow bandwidth. When applied to wireless devices at RF
1858:
loaded with capacitive and inductive elements in a high-pass configuration support certain types of backward waves. In addition, planar transmission lines are a natural match for 2-D wave propagation. With lumped circuit elements they retain a compact configuration and can still support the lower RF
1285:
Combining left-handed segments with a conventional (right-handed) transmission line results in advantages over conventional designs. Left-handed transmission lines are essentially a high-pass filter with phase advance. Conversely, right-handed transmission lines are a low-pass filter with phase lag.
379:
system could be produced. By stacking slabs of this configuration, the phase compensation (beam translation effects) would occur throughout the entire system. Furthermore, by changing the index of any of the DPS-DNG pairs, the speed at which the beam enters the front face, and exits the back face of
2417:
The phase compensator described above can be used to conceptualize the possibility of designing a compact 1-D cavity resonator. The above two-layer structure is applied as two perfect reflectors, or in other words, two perfect conducting plates. Conceptually, what is constrained in the resonator is
1885:
A transmission line that has lumped circuit elements that synthesize a left-handed medium is referred to as a "dual transmission line" as compared to "conventional transmission line". The dual transmission line structure can be implemented in practice by loading a host transmission line with lumped
2314:
The real component values for negative permittivity and permeability results in real component values for negative refraction n. In a lossless medium, all that would exist are real values. This concept can be used to map out phase compensation when a conventional lossless material, DPS, is matched
1970:
used one-dimensional LC loaded transmission line network, which supports fast backward-wave propagation to demonstrate characteristics analogous to "reversed Cherenkov radiation". Their proposed backward-wave radiating structure was inspired by negative refractive index LC materials. The simulated
2263:
At the interface between two media, the concept of the continuity of the tangential electric and magnetic field components can be applied. If either the permeability or permittivity of two media has opposite signs then the normal components of the tangential field, on both sides of the interface,
2034:
An antenna creates sufficiently strong electromagnetic fields at large distances. Reciprocally, it is sensitive to the electromagnetic fields impressed upon it externally. The actual coupling between a transmitting and receiving antenna is so small that amplifier circuits are required at both the
1881:
When transverse electromagnetic propagation occurs with a transmission line medium, the analogy for permittivity and permeability is Δ = L, and Ό = C. This analogy was developed with positive values for these parameters. The next logic step was realizing that negative values could be achieved. In
1250:
or microwave signals propagating along them would significantly decrease distortion. Therefore, components for attenuating distortion become less critical, and could lead to simplification of many systems. Metamaterials can eliminate dispersion along the microstrip by correcting for the frequency
2208:
This configuration uses a flat aperture constructed of zero-index metamaterial. This has advantages over ordinary (conventional) curved lenses, which results in a much improved directivity. These investigations have provided capabilities for the miniaturization of microwave source and non-source
2119:
and tunable operational frequency are produced with negative magnetic permeability. When combining a right-handed material (RHM) with a Veselago-left-handed material (LHM) other novel properties are obtained. A single negative material resonator, obtained with an SRR, can produce an electrically
2094:
The reactive power indicates that the DNG shell acts as a natural matching network for the dipole. The DNG material matches the intrinsic reactance of this antenna system to free space, hence the impedance of DNG material matches free space. It provides a natural matching circuit to the antenna.
1877:
Negative refraction and focusing can be accomplished without employing resonances or directly synthesizing the permittivity and permeability. In addition, this media can be practically fabricated by appropriately loading a host transmission line medium. Furthermore, the resulting planar topology
1995:
The proposed structures go beyond the wire/SRR composites in that they do not rely on SRRs to synthesize the material parameters, thus leading to dramatically increased operating bandwidths. Moreover, their unit cells are connected through a transmission-line network and they may, therefore, be
2155:
The monopole-SRR antenna operated efficiently at (λ/10) using the SRR-wire configuration. It demonstrated good coupling efficiency and sufficient radiation efficiency. Its operation was comparable to a conventional antenna at λ/2, which is a conventional antenna size for efficient coupling and
1999:
In the long-wavelength regime, the permittivity and permeability of conventional materials can be artificially synthesized using periodic LC networks arranged in a low-pass configuration. In the dual (high-pass) configuration, these equivalent material parameters assume simultaneously negative
1773:
limit, narrowband and broadband phase-shifting lines, small antennas, low-profile antennas, antenna feed networks, novel power architectures, and high-directivity couplers. Loading a planar metamaterial network of TLs with series capacitors and shunt inductors produces higher performance. This
2030:
is created in the elements by applying a voltage at the antenna terminals, causing the elements to radiate an electromagnetic field. In reception, the reverse occurs: an electromagnetic field from another source induces an alternating current in the elements and a corresponding voltage at the
1979:
Planar media can be implemented with an effective negative refractive index. The underlying concept is based on appropriately loading a printed network of transmission lines periodically with inductors and capacitors. This technique results in effective permittivity and permeability material
2259:
interact as a result of opposing permittivity and / or permeability values that are either ordinary (positive) or extraordinary (negative), notable anomalous behaviors may occur. The pair would be a DNG metamaterial (layer), paired with a DPS, ENG or MNG layer. Wave propagation behavior and
2042:
Dipole antennas, short antennas, parabolic and other reflector antennas, horn antennas, periscope antennas, helical antennas, spiral antennas, surface-wave and leaky wave antennas. Leaky wave antennas include dielectric and dielectric loaded antennas, and the variety of microstrip antennas.
2601:
This structure was designed for use in waveguiding or scattering of waves. It employs two adjacent layers. The first layer is an epsilon-negative (ENG) material or a mu-negative (MNG) material. The second layer is either a double-positive (DPS) material or a double-negative (DNG) material.
171:
This configuration analytically and numerically appears to produce an order of magnitude increase in power. At the same time, the reactance appears to offer a corresponding decrease. Furthermore, the DNG shell becomes a natural impedance matching network for this system.
78:
reflect most of the signal back to the source. A metamaterial antenna behaves as if it were much larger than its actual size, because its novel structure stores and re-radiates energy. Established lithography techniques can be used to print metamaterial elements on a
2264:
will be discontinuous at the boundary. This implies a concentrated resonant phenomenon at the interface. This appears to be similar to the current and voltage distributions at the junction between an inductor and capacitor, at the resonance of an L-C circuit. This "
2583:
The metamaterial incorporates a conducting transmission element, a substrate comprising at least a first ground plane for grounding the transmission element, a plurality of unit-cell circuits composed periodically along the transmission element and at least one
167:
The earliest research in metamaterial antennas was an analytical study of a miniature dipole antenna surrounded with a metamaterial. This material is known variously as a negative index metamaterial (NIM) or double negative metamaterial (DNG) among other names.
147:, thus making better use of available space for space-constrained cases. In these instances, miniature antennas with high gain are significantly relevant because the radiating elements are combined into large antenna arrays. Furthermore, metamaterials' negative 2592:
to at least the first ground plane. It also includes a means for suspending this transmission element a predetermined distance from the substrate in a way such that the transmission element is located at a second predetermined distance from the ground plane.
1957:
As a negative refractive index medium, a dual TL structure is not simply a phase compensator. It can enhance the amplitude of evanescent waves, as well as correct the phase of propagating waves. Evanescent waves actually grow within the dual TL structure.
2038:
The required antenna for any given application is dependent on the bandwidth employed, and range (power) requirements. In the microwave to millimeter-wave range – wavelengths from a few meters to millimeters – the following antennas are usually employed:
2444:. Therefore, in principle, one can have a thin subwavelength cavity resonator for a given frequency, if at this frequency the second layer acts a metamaterial with negative permittivity and permeability and the ratio correlates to the correct values. 1558:
From the simplified schematics to the right it can be seen that total impedance, conductance, reactance (capacitance and inductance) and the transmission medium (transmission line) can be represented by single components that give the overall value.
1346:
is just above zero. The relevant parameter is often the contrast between the permittivities rather than the overall permittivity value at desired frequencies. This occurs because the equivalent (effective) permittivity has a behavior governed by a
2366:, then the total phase difference between the front and back faces is zero. This demonstrates how the NIM slab at chosen frequencies acts as a phase compensator. It is important to note that this phase compensation process is only on the ratio of 2159:
When the SRR is made part of this configuration, characteristics such as the antenna's radiation pattern are entirely changed in comparison to a conventional monopole antenna. With modifications to the SRR structure the antenna size could reach
225:
Besides antenna miniaturization, the novel configurations have potential applications ranging from radio frequency devices to optical devices. Other combinations, for other devices in metamaterial antenna subsystems are being researched. Either
5208:
With the increasing proliferation of wireless devices inside and out of the home and workplace there are concerns over how interference from the external electromagnetic environment can cause problems for the connectivity of devices in the
2624:
Metamaterials can reduce interference across multiple devices with smaller and simpler shielding. While conventional absorbers can be three inches thick, metamaterials can be in the millimeter range—2 mm (0.078 in) thick.
2572:(MMIC), among other benefits. A transmission line is created with photolithography. A metamaterial lens, consisting of a thin wire array focuses the transmitted or received signals between the line and the emitter / receiver elements. 1289:
The conventional Leaky Wave antenna has had limited commercial success because it lacks complete backfire-to-endfire frequency scanning capability. The CRLH allowed complete backfire-to-endfire frequency scanning, including broadside.
216:
range by using both the forward and backward waves in leaky wave antennas. Various metamaterial antenna systems can be employed to support surveillance sensors, communication links, navigation systems and command and control systems.
1850:
In 2002, rather than using SRR-wire configuration, or other 3-D media, researchers looked at planar configurations that supported backward wave propagation, thus demonstrating negative refractive index and focusing as a consequence.
2564:
transmission lines by suspending them above the ground plane at a predetermined distance. In other words, they are not in contact with a solid substrate. Dielectric signal loss is reduced significantly, reducing signal attenuation.
2460:
LC circuitry configurations. Using FSS in a cavity allows for miniaturization, decrease of the resonant frequency, lowers the cut-off frequency and smooth transition from a fast-wave to a slow-wave in a waveguide configuration.
1941:
allowed the material properties to be dynamically tuned. The proposed media are planar and inherently support two-dimensional (2-D) wave propagation, making them well-suited for RF/microwave device and circuit applications.
1805:< 1), which restores the decaying evanescent waves from the source. This results in a diffraction-limited resolution of λ/6, after some small losses. This compares with λ/2, the normal diffraction limit for conventional 1882:
order to synthesize a left-handed medium (Δ < 0 and Ό < 0) the series reactance and shunt susceptibility should become negative, because the material parameters are directly proportional to these circuit quantities.
1789:, this allows for a more efficient coupling to external radiation and enables a broader frequency band. For example, the superlens can be applied to the TLM architecture. In conventional lenses, imaging is limited by the 1928:
elements, which permit them to be compact at frequencies where an SRR cannot be compact. The flexibility gained through the use of either discrete or printed elements enables planar metamaterials to be scalable from the
2276:
The geometry consists of two parallel plates as perfect conductors (PEC), an idealized structure, filled by two stacked planar slabs of homogeneous and isotropic materials with their respective constitutive parameters
2031:
antenna's terminals. Some receiving antennas (such as parabolic and horn types) incorporate shaped reflective surfaces to collect EM waves from free space and direct or focus them onto the actual conductive elements.
140:, with efficient power and acceptable bandwidth. Antennas employing metamaterials offer the possibility of overcoming restrictive efficiency-bandwidth limitations for conventionally constructed, miniature antennas. 333:
Although some SRR inefficiencies were identified, they continued to be employed as of 2009 for research. SRRs have been involved in wide-ranging metamaterial research, including research on metamaterial antennas.
5104:
Baccarelli, Paolo; Burghignoli, P.; Frezza, F.; Galli, A.; Lampariello, P.; Lovat, G.; Paulotto, S. (2005-01-17). "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source".
2405:
can be any value, as long as this ratio satisfies the above condition. Finally, even though this two-layer structure is present, the wave traversing this structure would not experience the phase difference.
2770:
Slyusar V. I. 60 Years of Electrically Small Antennas Theory.//Proceedings of the 6-th International Conference on Antenna Theory and Techniques, 17–21 September 2007, Sevastopol, Ukraine. - Pp. 116 - 118.
2301:. Choosing which combination of parameters to employ involves pairing DPS and DNG or ENG and MNG materials. As mentioned previously, this is one pair of oppositely-signed constitutive parameters, combined. 2447:
The cavity can conceptually be thin while still resonant, as long as the ratio of thicknesses is satisfied. This can, in principle, provide possibility for subwavelength, thin, compact cavity resonators.
1862:
The principles behind focusing are derived from Veselago and Pendry. Combining a conventional, flat, (planar) DPS slab, M-1, with a left-handed medium, M-2, a propagating electromagnetic wave with a
133:, for instance, an antenna would need to be half a meter long. In contrast, experimental metamaterial antennas are as small as one-fiftieth of a wavelength, and could have further decreases in size. 2537:
applications. In general phased array systems work by coherently reassembling signals over the entire array by using circuit elements to compensate for relative phase differences and time delays.
1410:= 0.1 eV. Perhaps the most important result of the interaction of metal and the plasma frequency is that permittivity is negative below the plasma frequency, all the way to the minute value of 2345:. Furthermore, whatever phase difference is developed by traversing the first slab can be decreased and even cancelled by traversing the second slab. If the ratio of the two thicknesses is 3771:
Ziolkowski, Richard W. and; Ching-Ying Cheng (2004-01-07). "Tailoring double negative metamaterial responses to achieve anomalous propagation effects along microstrip transmission lines".
372:
through the second slab the phase difference is significantly decreased and even compensated for. Therefore, as the wave exits the second slab the total phase difference is equal to zero.
1830:
A metamaterial-loaded transmission line has significant advantages over conventional or standard delay transmission lines. It is more compact in size, it can achieve positive or negative
4754: 1842:, leading to shorter group delays. It can work in lower frequency because of high series distributed-capacitors and has smaller plane dimensions than its equivalent coplanar structure. 4197: 981: 2079:
antennas can be notably increased. This could be accomplished by surrounding an antenna with a shell of double negative (DNG) material. When the electric dipole is embedded in a
1395:, independent of the wave vector of the EM excitation (radiation) field. Furthermore, a minute-fractionally small amount of plasmon energy is absorbed into the system denoted as 1866:
k1 in M-1, results in a refracted wave with a wave vector k2 in M-2. Since, M-2 supports backward wave propagation k2 is refracted to the opposite side of the normal, while the
3773: 3717: 2751: 954: 3035: 1870:
of M-2 is anti-parallel with k2. Under such conditions, power is refracted through an effectively negative angle, which implies an effectively negative index of refraction.
3305:
Slyusar V.I. Metamaterials on antenna solutions.// 7th International Conference on Antenna Theory and Techniques ICATT’09, Lviv, Ukraine, October 6–9, 2009. - Pp. 19 - 24
1886:
series capacitors (C) and shunt inductors (L). In this periodic structure, the loading is strong such that the lumped elements dominate the propagation characteristics.
1355:. Methods that have been developed theoretically using dielectric photonic crystals applied in the microwave domain to realize a directive emitter using metallic grids. 966: 5224:
Ziolkowski, R. W.; Lin, Chia-Ching; Nielsen, Jean A.; Tanielian, Minas H.; Holloway, Christopher L. (August–September 2009). "Design and Experimental Verification of".
4253: 4484:
Hsu, Yi-Jang; Huang, Yen-Chun; Lih, Jiann-Shing; Chern, Jyh-Long (2004). "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials".
1725: 349:
due to their negative index of refraction. This is accomplished by combining a slab of conventional lossless DPS material with a slab of lossless DNG metamaterial.
2192:
to determine the L and C values of the LHM equivalent circuit model for desirable characteristics of directive patch antennas. Design examples derived from actual
5226: 4038: 3043: 3011: 2553:
are reduced in size. This equates to a reduction in radiated energy loss, and a relatively wider useful bandwidth. The system is an efficient, dynamically ranged
21: 1535:
technology and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the
3384: 2853: 2240:
equipment. The desired affect is accomplished by varying the pattern of activated metamaterial elements as needed. The technology is a practical application of
1699: 1673: 1647: 1621: 1595: 1242:
of the signals' wave components, as they propagate in the DNG medium. Hence, stacked DNG metamaterials could be useful for modifying signal propagation along a
4776: 4691:
WU, Q.; Pan, P.; Meng, F.-Y.; Li, L.-W.; Wu, J. (2007-01-31). "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials".
102: 2268:" is essentially independent of the total thickness of the paired layers, because it occurs along the discontinuity between two such conjugate materials. 3176:
Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, August 30th-September 4th, 2009
1898:, as with wireless devices, requires the resonators to be scaled to larger dimensions. This worked against making the devices more compact. In contrast, 1217: 986: 1819:
Metamaterials were first used for antenna technology around 2005. This type of antenna used the established capability of SNGs to couple with external
1277:
Part of the design strategy is that the effective permittivity and permeability of such a metamaterial should be negative – requiring a DNG material.
996: 2660: 1440:
are focused into a narrow cone. Dimensions are small in comparison to the wavelength and thus the slab behaves as a homogeneous material with a low
1266:
creating a dispersion-compensating segment of transmission line. This could be accomplished by introducing a metamaterial with a specific localized
4735: 2569: 1552: 4601:
Wang, Rui; Yuan, Bo; Wang, Gaofeng; Yi, Fan (2007). "Efficient Design of Directive Patch Antennas in Mobile Communications Using Metamaterials".
3910: 337:
A more recent view is that by using SRRs as building blocks, the electromagnetic response and associated flexibility is practical and desirable.
4762: 4358:"Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial" 3587:"Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial" 86:
These novel antennas aid applications such as portable interaction with satellites, wide angle beam steering, emergency communications devices,
5317: 821: 213: 4577: 4423: 4276: 3989: 3552: 3339: 3183: 2973: 2087:
without the interaction of the DNG material. In addition, the dipole-DNG shell combination increases the real power radiated by more than an
836: 458: 4228: 1983:
RF/microwave devices can be implemented based on these proposed media for applications in wireless communications, surveillance and radars.
2469:
As an LHM application four different cavities operating in the microwave regime were fabricated and experimentally observed and described.
1425: 3003: 2035:
transmitting and receiving stations. Antennas are usually created by modifying ordinary circuitry into transmission line configurations.
1812:
By combining right-handed (RHM) with left-handed materials (LHM) as a composite material (CRLH) construction, both a backward to forward
5279: 4815: 3171: 3646: 1391:
is a composite material. The effect of plasmons on any metal sample is to create properties in the metal such that it can behave as a
4949:"Guided Modes in a Waveguide Filled With a Pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) Layers" 1740:
Often, because of the goal that moves physical metamaterial inclusions (or cells) to smaller sizes, discussion and implementation of
716: 3117: 2091:
over a free space antenna. A notable decrease in the reactance of the dipole antenna corresponds to the increase in radiated power.
1493: 448: 3199: 1302:, found in metamaterial antenna systems, is used as an efficient coupler to external radiation, focusing radiation along or from a 1246:. At the same time, dispersion leads to distortion. However, if the dispersion could be compensated for along the microstrip line, 2156:
radiation. Therefore, the monopole-SRR antenna becomes an acceptable electrically small antenna at the SRR's resonance frequency.
3172:"Metamaterial-inspired electrically small radiators: it is time to draw preliminary conclusions and depict the future challenges" 4030: 631: 3820: 4290: 1210: 976: 453: 193: 59:
into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often
1874:
the LHM. A focusing effect should manifest itself as a “spot” distribution of voltage at a predictable location in the LHM.
4144: 1765:
Some noted metamaterial antennas employ negative-refractive-index transmission-line metamaterials (NRI-TLM). These include
4800: 1992:
frequencies the split ring-resonators have to be scaled to larger dimensions, which, in turn forces a larger device size.
1775: 991: 696: 5192: 2665: 2640: 2064: 856: 846: 831: 596: 463: 227: 4645: 896: 586: 5001: 4948: 4888: 4836: 3837: 3712: 3143: 2577: 1501: 1149: 1024: 921: 4413: 3238: 3212: 1374:. The lattice constant or lattice parameter refers to the constant distance between unit cells in a crystal lattice. 816: 4784: 2015: 649: 48: 4889:"An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With Negative Permittivity and Permeability" 3392: 2545:
Patented in 2004, one phased array antenna system is useful in automotive radar applications. By using NIMs as a
2533:
Phased array systems and antennas for use in such systems are well known in areas such as telecommunications and
1910: 1750: 1745: 1203: 1164: 691: 681: 621: 616: 556: 310:
In 2002, a different class of negative refractive index (NRI) metamaterials was introduced that employs periodic
152: 3448:
Shelby, R. A.; Smith, D. R.; Schultz, S. (2001). "Experimental Verification of a Negative Index of Refraction".
2791: 2602:
Alternatively, the second layer can be an ENG material when the first layer is an MNG material or the reverse.
1827:
allowed for a wavelength larger than the antenna. At microwave frequencies this allowed for a smaller antenna.
1567: 1134: 1014: 701: 2232:
and motors are replaced by arrays of metamaterials in a planar configuration. Also, with this new technology
3654: 3525: 2848: 2670: 1139: 1109: 541: 531: 526: 357: 246:, waveguides, scatters and antennas (radiators). Metamaterial antennas were commercially available by 2009. 1351:
in the microwave domain. This low optical index material then is a good candidate for extremely convergent
5322: 5243: 5175:; AlĂč, Andrea "Waveguides and scattering devices incorporating epsilon-negative and/or mu-negative slabs" 4456: 4315: 4010: 3873: 3465: 3261: 2746: 2675: 2635: 2019: 1650: 961: 731: 506: 129:. Standard antennas need to be at least half the size of the signal wavelength to operate efficiently. At 98: 5285: 4091: 1878:
permits LHM structures to be readily integrated with conventional planar microwave circuits and devices.
1574:
as closely as possible, because it is usually desirable that the load absorbs as much power as possible.
330:
interfaced with a positive index, parallel-plate waveguide. This was experimentally verified soon after.
3239:"Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas" 3031: 2710: 2705: 2690: 2685: 2655: 2241: 2197: 2124: 2080: 1918: 1598: 1532: 1437: 1271: 1059: 746: 736: 686: 676: 423: 273: 201: 80: 1417:
These facts ultimately result in the arrayed wire structure as being effectively a homogeneous medium.
5291: 3950: 1924:
Moreover, their unit cells are connected through a transmission-line network and may be equipped with
5235: 5114: 5060: 5013: 4960: 4900: 4848: 4700: 4657: 4610: 4532: 4493: 4448: 4369: 4330: 4212: 4159: 4106: 3926: 3782: 3726: 3663: 3603: 3457: 3253: 3052: 2917: 2862: 2807: 2695: 2615: 2104: 2023: 1754: 1741: 1497: 1462: 1421: 1184: 1084: 1049: 801: 666: 566: 551: 486: 311: 292: 288: 242:
slabs are employed in the subsystems. Antenna subsystems that are currently being researched include
5248: 4461: 4092:"Experimental verification of backward-wave radiation from a negative refractive index metamaterial" 3470: 3356:"NETGEAR Ships 'The Ultimate Networking Machine' for Gamers, Media Enthusiasts and Small Businesses" 3266: 2491: 1806: 591: 4519:
Aydin, Koray; Bulu, Irfan; Guven, Kaan; Kafesaki, Maria; Soukoulis, Costas M; Ozbay, Ekmel (2005).
2902: 2715: 2589: 2027: 1544: 1489: 1485: 1263: 1231: 1144: 1124: 1119: 926: 911: 796: 766: 661: 353: 323: 319: 64: 4560:
Fangming Zhu; Qingchun Lin; Jun Hu (2005). "A Directive Patch Antenna with a Metamaterial Cover".
2247:
Research and applications of metamaterial based antennas. Related components are also researched.
272:"), and that a periodic array of copper split ring resonators could produce an effective negative 5261: 5130: 5029: 4976: 4916: 4837:"Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency" 4716: 4673: 4626: 4583: 4282: 4055: 3798: 3742: 3558: 3491: 3068: 2943: 2720: 2554: 2256: 2185: 2177: 2112: 2088: 1906: 1794: 1540: 1019: 759: 561: 521: 4521:"Investigation of magnetic resonances for different split-ring resonator parameters and designs" 4439:
Pendry, J.B.; et al. (1999). "Magnetism from conductors and enhanced nonlinear phenomena".
2326:
has Δ < 0 and Ό < 0. Assume that the intrinsic impedance of the DPS dielectric material (d
387:
Furthermore, this phase compensation can lead to a set of applications, which are miniaturized,
364:
is radiated on this configuration. As this wave propagates through the first slab of material a
16: 3529: 3414: 3210:
Proceedings of the Virtual Institute for Artificial Electromagnetic Materials and Metamaterials
3015: 1428:
of an electromagnetic radiation source located inside the material in order to collect all the
5086: 4573: 4419: 4387: 4272: 3985: 3975: 3942: 3647:"Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves" 3621: 3548: 3483: 3335: 3179: 2823: 2585: 2220:(M-SAT) is an invention that uses metamaterials to direct and maintain a consistent broadband 1855: 1790: 1786: 1728: 1548: 1481: 1465: 1382: 1299: 1235: 1079: 396: 381: 315: 137: 2260:
properties may occur that would otherwise not happen if only DNG layers are paired together.
1710: 5253: 5122: 5078: 5068: 5021: 4968: 4908: 4856: 4812: 4708: 4665: 4618: 4565: 4540: 4501: 4466: 4377: 4338: 4264: 4220: 4167: 4114: 4047: 3981: 3934: 3918: 3790: 3734: 3671: 3611: 3540: 3475: 3271: 3189: 3060: 2982: 2933: 2925: 2870: 2815: 2799: 2680: 2141: 2072: 1798: 1441: 1371: 1348: 1343: 1339: 1331: 1311: 1179: 1094: 1054: 1044: 931: 886: 869: 786: 721: 491: 415: 392: 369: 296: 148: 1472: 1457: 4819: 3824: 3679: 3586: 3216: 3203: 2221: 2108: 2068: 2009: 1895: 1867: 1363: 1359: 1306:
transmission line into transmitting and receiving components. Hence, it can be used as an
1247: 1114: 1039: 1034: 901: 776: 741: 636: 601: 501: 205: 185: 144: 125:
of an antenna. The newest metamaterial antennas radiate as much as 95 percent of an input
122: 68: 52: 40: 4316:"Planar negative refractive index media using periodically L-C loaded transmission lines" 4145:"Planar Negative Refractive Index Media Using Periodically L–C Loaded Transmission Lines" 3331: 3124: 1154: 5292:
Microwave transmission-line networks for backward-wave media and reduction of scattering
5239: 5118: 5064: 5017: 4964: 4904: 4852: 4704: 4661: 4614: 4536: 4497: 4452: 4373: 4334: 4216: 4163: 4110: 3930: 3786: 3730: 3667: 3607: 3461: 3257: 3196: 3118:"Analysis and Design of a Cylindrical EBG based directive antenna, Halim Boutayeb et al" 3056: 2921: 2866: 2811: 5301: 3594: 2546: 1925: 1835: 1702: 1684: 1658: 1632: 1606: 1580: 1433: 1074: 1069: 891: 781: 706: 656: 606: 579: 536: 511: 481: 474: 4261:
IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)
5311: 5172: 4944: 4940: 4720: 4630: 4286: 4063: 3708: 3425: 2233: 2173: 2145: 1766: 1517: 1509: 1234:
as a transmission medium, it could be useful as a dispersion compensation device for
1189: 1174: 1159: 1099: 811: 726: 711: 626: 611: 516: 388: 365: 346: 44: 5134: 5033: 4920: 4587: 4545: 4520: 4059: 3802: 3746: 3562: 3306: 2051:
The SRR was introduced by Pendry in 1999, and is one of the most common elements of
380:
the entire stack-system changes. In this manner, a volumetric, low loss, time delay
208:
efficiency and axial ratio performance of low-profile antennas located close to the
5265: 5159: 4677: 3838:"Emerging Metamaterials Antennas and their advantages over conventional approaches" 3816: 3495: 3072: 2947: 2650: 2237: 2052: 1914: 1899: 1367: 1307: 1267: 1255: 1169: 1064: 1029: 971: 906: 791: 671: 546: 265: 239: 235: 231: 209: 197: 181: 126: 29: 5304:
Manual of Regulations and Procedures for Federal Radio Frequency Management. 2011.
4980: 2819: 2083:
DNG medium, the antenna acts inductively rather than capacitively, as it would in
1286:
This configuration is designated composite right/left-handed (CRLH) metamaterial.
826: 3325: 2851:(2003-10-14). "Periodically LTL With Effective NRI and Negative Group Velocity". 1834:
while occupying the same short physical length and it exhibits a linear, flatter
67:. Antenna designs incorporating metamaterials can step-up the antenna's radiated 5286:
The electrodynamics of substances with simultaneously negative values of Δ and Ό
4777:"Kymeta spins out from Intellectual Ventures after closing $ 12 million funding" 3938: 3906: 3034:; Jin, Peng; Nielsen, J. A.; Tanielian, M. H.; Holloway, Christopher L. (2009). 2610: 2209:
devices, circuits, antennas and the improvement of electromagnetic performance.
2181: 2128: 2116: 1863: 1831: 1770: 1676: 1239: 1089: 941: 771: 433: 376: 326:(DPS) material with negative index material (DNG). It employed a small, planar, 60: 4813:
AFRL-Demonstrated Metamaterials Technology Transforms Antenna Radiation Pattern
4198:"Growing evanescent waves in negative-refractive-index transmission-line media" 3544: 32:, greatly boosting the radiated signal. The square is 30 millimeters on a side. 5257: 5177: 4789:
Company to commercialize IV's metamaterials-based satellite antenna technology
4712: 4622: 4569: 3064: 2772: 2561: 2495: 2164:). Coupling 2, 3, and 4 SRRs side by side slightly shifts radiation patterns. 2084: 1624: 1528: 1521: 1392: 1303: 1259: 1243: 806: 361: 75: 25: 5126: 5025: 4972: 4912: 4342: 4268: 4171: 4051: 3794: 3738: 3092: 2000:
values, and may therefore be used to synthesize a negative refractive index.
1946:
Growing evanescent waves in negative-refractive-index transmission-line media
1476:
Schematic representation of the elementary components of a transmission line.
1258:-loaded transmission line that can be introduced with the original length of 360:-matched to the outside region (e.g., free space). The desired monochromatic 264:
array of intersecting, thin wires could be used to create negative values of
4860: 4669: 3537:
2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278)
3479: 3275: 2967:
Wu, B.-I.; W. Wang; J. Pacheco; X. Chen; T. Grzegorczyk; J. A. Kong (2005).
2874: 2700: 2518:) spiral inductor delay lines to 401. 404 are also connected to ground vias 2225: 2193: 2149: 1934: 1930: 1839: 1820: 1782: 1513: 1352: 1129: 1104: 916: 841: 438: 327: 304: 300: 261: 243: 189: 156: 130: 110: 5090: 4646:"Subwavelength, Compact, Resonant Patch Antennas Loaded With Metamaterials" 4391: 3946: 3877: 3848: 3625: 3487: 3147: 3135: 2929: 2827: 2790:
Enoch, Stefan; Tayeb, G; Sabouroux, P; Guérin, N; Vincent, P (2002-11-04).
5282:
Demonstrated metamaterials technology transforms antenna radiation pattern
3847:. Electromagnetic Theory Symposium 2007 (EMTS 2007): 01–03. Archived from 3209: 3027:
Some content is derived from Public Domain material on the NIST web site.
1562:
With transmission line media it is important to match the load impedance Z
5073: 5049:"Experimental observation of cavity formation in composite metamaterials" 5048: 4382: 4357: 4254:"A backward-wave antenna based on negative refractive index L-C networks" 3616: 2987: 2968: 2550: 2506:
represents unit-cell circuits composed periodically along the microstrip.
1938: 1824: 881: 876: 496: 2255:
When the interface between a pair of materials that function as optical
2115:
over a comparable free space antenna. Electrically small antennas, high
24:
is smaller than a standard antenna with comparable properties. Its high
5082: 4031:"Characteristics of the Composite Right/Left-Handed Transmission Lines" 2938: 2903:"Radiation properties of a split ring resonator and monopole composite" 2618: 2189: 2148:, ground plane and radiating components. The ground plane material was 1378: 851: 5296: 5154: 5152: 5150: 5148: 5146: 5144: 4644:
Alu, Andrea; Bilotti, Filiberto; Engheta, Nader; Vegni, Lucio (2007).
4505: 4470: 4224: 4118: 3675: 2969:"A Study of Using Metamaterials as Antenna Substrate to Enhance Gain" 2645: 2527: 2409:
Following this, the next step is the subwavelength cavity resonator.
2229: 2137: 2076: 1902:
configurations could be scaled to both microwave and RF frequencies.
1429: 936: 443: 254: 121:
Antenna designs incorporating metamaterials can step-up the radiated
87: 56: 4143:
Eleftheriades, George V.; Iyer, A.K.; Kremer, P.C. (December 2002).
3585:
Iyer, Ashwin K.; Kremer, Peter; Eleftheriades, George (2003-04-07).
2244:
theory. The antenna is approximately the size of a laptop computer.
4755:"Intellectual Ventures Invents Beam-Steering Metamaterials Antenna" 3436:
LG Chocolate BL40 is first cellphone to use a metamaterials antenna
2200:
were performed, which illustrates the efficiency of this approach.
2127:
rings with relative opposite gaps in the inner and outer ring. Its
2120:
small antenna when operating at microwave frequencies, as follows:
55:. Their purpose, as with any electromagnetic antenna, is to launch 2609: 2534: 2133: 1813: 1471: 1456: 1323: 91: 15: 143:
Metamaterials permit smaller antenna elements that cover a wider
28:
is derived from the "Z element" inside the square that acts as a
1505: 1335: 1327: 356:, while the DNG has a negative refractive index. Both slabs are 2413:
Compact subwavelength 1-D cavity resonators using metamaterials
5047:
Caglayan, Humeyra; Bulu, I; Loncar, M; Ozbay, E (2008-07-21).
4736:"Bill Gates Invests In Intellectual Ventures' Spin-Out Kymeta" 3530:"Negative refractive index metamaterials supporting 2-D waves" 3359:(...eight ultra-sensitive, internal, metamaterial antennas...) 2456:
Frequency selective surface (FSS) based metamaterials utilize
106: 3911:"Extremely Low Frequency Plasmons in Metallic Mesostructures" 2322:
has Δ > 0 and Ό > 0. Conversely, the NIM of thickness d
4314:
Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. (2002-12-16).
3036:"Experimental Verification of Z Antennas at UHF Frequencies" 1921:
resulted in a substantial increase in operating bandwidths.
1846:
Negative refractive index metamaterials supporting 2-D waves
1531:
is a type of transmission line that can be fabricated using
3580: 3578: 3004:"Engineered Metamaterials Enable Remarkably Small Antennas" 1962:
Backward wave antenna using an NRI loaded transmission line
4407: 4405: 4403: 4401: 2022:. Physically, an antenna is an arrangement of one or more 74:
Conventional antennas that are very small compared to the
4356:
Iyer, Ashwin; Peter Kremer; George Eleftheriades (2003).
3519: 3517: 3515: 3513: 3511: 3509: 3507: 3505: 3237:
Ziolkowski, Richard Wly; Allison D. Kipple (2003-10-14).
2568:
This system was designed to boost the performance of the
368:
emerges between the exit and entrance faces. As the wave
136:
Metamaterials are a basis for further miniaturization of
5193:"Metamaterials to revolutionize wireless infrastructure" 2123:
The configuration of an SRR assessed was two concentric
1749:
LC model is related to the lumped LC model, however the
1342:
can be positive and less than one. This means that the
5002:"A Metamaterial Surface for Compact Cavity Resonators" 4603:
International Journal of Infrared and Millimeter Waves
4252:
Grbic, Anthony; George V. Eleftheriades (2002-08-07).
4196:
Grbic, Anthony; George V. Eleftheriades (2003-03-24).
4090:
Grbic, Anthony; George V. Eleftheriades (2002-11-15).
3319: 3317: 3315: 3313: 2896: 2894: 2892: 2890: 2888: 2886: 2884: 2560:
In addition, signal amplitude is increased across the
184:
surrounding antennas offer improved isolation between
3713:"A Positive Future for Double-Negative Metamaterials" 2478:
Leaky mode propagation with metamaterial ground plane
1713: 1687: 1661: 1635: 1609: 1583: 1314:, as well as correct the phase of propagating waves. 291:(SRR), with thin wire conducting posts and produce a 5107:
IEEE Transactions on Microwave Theory and Techniques
4953:
IEEE Transactions on Microwave Theory and Techniques
4441:
IEEE Transactions on Microwave Theory and Techniques
4323:
IEEE Transactions on Microwave Theory and Techniques
4152:
IEEE Transactions on Microwave Theory and Techniques
3774:
IEEE Transactions on Microwave Theory and Techniques
3718:
IEEE Transactions on Microwave Theory and Techniques
3232: 3230: 3228: 3226: 2785: 2783: 2781: 2779: 1890:
Left-handed behavior in LC loaded transmission lines
1761:
Metamaterial-loaded transmission-line configurations
4882: 4880: 4878: 4876: 4874: 4872: 4870: 4418:. New Delhi: New Age International. pp. 1, 2. 4029:Sanada, Atsushi; Caloz, C.; Itoh, T. (2004-02-26). 3703: 3701: 3699: 3327:
Metamaterials: physics and engineering explorations
3324:Engheta, Nader; Richard W. Ziolkowski (June 2006). 3086: 3084: 2752:
Metamaterials: Physics and Engineering Explorations
2514:
are T-junctions between capacitors, which connect (
1975:
Planar NIMs with periodic loaded transmission lines
4562:2005 Asia-Pacific Microwave Conference Proceedings 2502:) for a phased array metamaterial antenna system. 1909:enabled a new class of metamaterials to produce a 1719: 1693: 1667: 1641: 1615: 1589: 1366:structure can be analyzed as an array of aerials ( 4309: 4307: 4305: 4303: 3766: 3764: 3762: 3385:"RAYSPAN Ships 20 Millionth Metamaterial Antenna" 2228:whether the platform is in motion or stationary. 4191: 4189: 4187: 4085: 4083: 2901:Kamil, Boratay Alici; Ekmel Özbay (2007-03-22). 212:. Metamaterials have also been used to increase 97:Some applications for metamaterial antennas are 3144:"Invisibility Becomes More than Just a Fantasy" 3093:"Metamaterial-Based Electrically Small Antenna" 3091:Bukva, Erica (August 20 – September 19, 2007). 1913:. Relying on LC networks to emulate electrical 1854:It has long been known that transmission lines 1436:. By using a slab of a metamaterial, diverging 1310:. In addition, it can enhance the amplitude of 5227:IEEE Antennas and Wireless Propagation Letters 5006:IEEE Antennas and Wireless Propagation Letters 5000:Caiazzo, Marco; Maci, S.; Engheta, N. (2004). 4893:IEEE Antennas and Wireless Propagation Letters 4039:IEEE Microwave and Wireless Components Letters 3301: 3299: 3297: 3295: 3293: 3291: 3044:IEEE Antennas and Wireless Propagation Letters 3012:National Institute of Standards and Technology 2333:The plane wave then enters the lossless NIM (d 1950:The periodic 2-D LC loaded transmission-line ( 1937:range. In addition, replacing capacitors with 230:slabs are used exclusively or combinations of 22:National Institute of Standards and Technology 4841:IEEE Transactions on Antennas and Propagation 4830: 4828: 4822:. U.S. Air Force research.Accessed 2011-03-12 4803:. University of Arizona. Accessed 2011-03-12. 4650:IEEE Transactions on Antennas and Propagation 3901: 3899: 3897: 3246:IEEE Transactions on Antennas and Propagation 3136:"'Metafilms' Can Shrink Radio, Radar Devices" 2854:IEEE Transactions on Antennas and Propagation 2597:ENG and MNG waveguides and scattering devices 2318:In phase compensation, the DPS of thickness d 1211: 341:Phase compensation due to negative refraction 8: 4024: 4022: 4020: 4018: 1492:from one place to another for directing the 1420:This metamaterial allows for control of the 1238:. The dispersion produces a variance of the 3977:Electrons in solids: an introductory survey 1753:is more accurate but more complex than the 287:were the first to successfully combine the 283:In May 2000, a group of researchers, Smith 5160:"Phased array metamaterial antenna system" 3645:Chen, Hou-Tong; et al. (2008-09-04). 2140:substrate. The SRR was excited by using a 2099:Single negative SRR and monopole composite 1251:dependence of the effective permittivity. 1218: 1204: 422: 406: 113:, space vehicle navigation and airplanes. 5247: 5072: 4544: 4460: 4381: 4138: 4136: 4134: 3615: 3469: 3265: 2986: 2937: 2293:. Each slab has thickness = d, slab 1 = d 2144:. The monopole antenna was composed of a 1712: 1686: 1660: 1634: 1608: 1582: 1488:or structure that forms all or part of a 1338:. This material's permittivity above the 1322:In this instance an SRR uses layers of a 403:Transmission line dispersion compensation 395:, and waveguides with applications below 47:to increase performance of miniaturized ( 3099:. Navy Office of Small Business Programs 2661:Metamaterials surface antenna technology 2576:and inductors as components of multiple 2490: 2452:Miniature cavity resonator utilizing FSS 2218:Metamaterials surface antenna technology 2213:Metamaterials surface antenna technology 1778:while the refractive index is negative. 5191:Matthew, Finnegan (December 10, 2010). 3817:Backfire to Endfire Leaky wave antenna. 2792:"A Metamaterial for Directive Emission" 2763: 2570:Monolithic microwave integrated circuit 967:Electromagnetism and special relativity 414: 3874:"URSI Commission B EMT-Symposium 2007" 3711:; Richard W. Ziolkowski (April 2005). 1793:. With superlenses the details of the 1254:The strategy is to design a length of 384:could be realized for a given system. 375:With this system a phase-compensated, 2974:Progress in Electromagnetics Research 2465:Composite metamaterial based cavities 2272:Parallel-plate waveguiding structures 2251:Subwavelength cavities and waveguides 1504:. Types of transmission line include 1432:in a small angular domain around the 987:Maxwell equations in curved spacetime 295:that had negative values of Δ, ÎŒ and 7: 3845:URSI Commission B "Fields and Waves" 3415:"Metamaterials Arrive in Cellphones" 2305:Thin subwavelength cavity resonators 2132:with an etching technique onto a 30 94:to search for geophysical features. 3876:. URSI Commission B. Archived from 2549:to focus microwaves, the antenna's 1801:are supported in the metamaterial ( 1370:). As a lattice structure it has a 3872:URSI Commission B website (2007). 3170:Bilotti, Filiberto; Vegni, Lucio. 1653:of the dielectric per unit length, 14: 4263:. Vol. 4. pp. 340–343. 2341:is in the opposite direction of k 1555:can be formed from a microstrip. 4801:Metamaterial-Engineered Antennas 4753:Katie M. Palmer (January 2012). 3909:; AJ Holden; WJ Stewart (1996). 3413:Das, Saswato R. (October 2009). 2847:Omar F., Siddiqui; Mo Mojahedi; 2588:for electrically connecting the 2016:classical electromagnetic theory 352:DPS has a conventional positive 63:, structures to produce unusual 4734:Eric Savitz (August 21, 2012). 3008:Description of research results 3002:Ost, Laura (January 26, 2010). 1539:. Microwave components such as 1453:Conventional transmission lines 1381:created the view that metal at 1262:line to make the paired system 260:were able to show that a three- 4783:. Aug 21, 2012. Archived from 4412:Chatterjee, Rajeswari (1996). 2047:Radiation properties with SRRs 2026:, usually called elements. An 194:multiple-input multiple-output 180:Metamaterials employed in the 1: 5318:Radio frequency antenna types 5181:publication date May 15, 2007 4835:Alu, A.; Engheta, N. (2003). 3836:Caloz, C. (26–28 July 2007). 3539:. Vol. 2. p. 1067. 2820:10.1103/PhysRevLett.89.213902 2379:rather than the thickness of 2065:double negative metamaterials 2059:Double negative metamaterials 1797:images are not lost. Growing 1774:results in a large operating 992:Relativistic electromagnetism 20:This Z antenna tested at the 2666:Negative index metamaterials 2641:Chirality (electromagnetism) 2578:distributed-element circuits 2188:model. This study developed 1244:microstrip transmission line 228:double negative metamaterial 5297:Radiating power through air 5280:U.S. Air Force Research Lab 4415:Antenna theory and practice 3939:10.1103/PhysRevLett.76.4773 3383:Hurst, Brian (2009-09-28). 2315:with a lossless NIM (DNG). 2180:was proposed that enhanced 2063:Through the application of 2014:Antenna theory is based on 1502:electric power transmission 202:high-impedance groundplanes 5339: 4564:. Vol. 3. p. 1. 4486:Journal of Applied Physics 4099:Journal of Applied Physics 3545:10.1109/MWSYM.2002.1011823 2007: 717:LiĂ©nard–Wiechert potential 322:. This configuration used 5258:10.1109/LAWP.2009.2029708 4713:10.1007/s00339-006-3820-9 4623:10.1007/s10762-007-9249-1 4570:10.1109/APMC.2005.1606717 4546:10.1088/1367-2630/7/1/168 3974:Bube, Richard H. (1992). 3418:(Online magazine article) 3178:. METAMORPHOSE VI AISBL. 3065:10.1109/LAWP.2009.2038180 2473:Metamaterial ground plane 2236:are not required as with 1987:Larger transmission lines 1911:negative refractive index 1751:distributed-element model 1377:The earlier discovery of 1332:three directions of space 1270:and a specific localized 982:Mathematical descriptions 692:Electromagnetic radiation 682:Electromagnetic induction 622:Magnetic vector potential 617:Magnetic scalar potential 176:Ground plane applications 153:electromagnetic radiation 92:ground-penetrating radars 5127:10.1109/TMTT.2004.839346 5026:10.1109/LAWP.2004.836576 4973:10.1109/TMTT.2003.821274 4913:10.1109/LAWP.2002.802576 4343:10.1109/TMTT.2002.805197 4269:10.1109/APS.2002.1016992 4172:10.1109/TMTT.2002.805197 4052:10.1109/LMWC.2003.822563 3795:10.1109/TMTT.2003.819193 3739:10.1109/TMTT.2005.845188 1816:capability is obtained. 1568:characteristic impedance 1468:for a transmission line. 1448:Transmission line models 1360:arrayed wires in a cubic 1236:time-domain applications 328:negative-refractive-lens 159:versus being dispersed. 4887:Engheta, Nader (2002). 4861:10.1109/TAP.2003.817553 4670:10.1109/TAP.2006.888401 4205:Applied Physics Letters 3823:April 12, 2010, at the 3655:Applied Physics Letters 3526:George V. Eleftheriades 3480:10.1126/science.1058847 3276:10.1109/TAP.2003.817561 2910:Physica Status Solidi B 2875:10.1109/TAP.2003.817556 2849:George V. Eleftheriades 2671:Nonlinear metamaterials 1746:distributed LC networks 1736:Lumped circuit elements 1720:{\displaystyle \omega } 532:Electrostatic induction 527:Electrostatic discharge 299:for frequencies in the 4525:New Journal of Physics 4011:Federal Standard 1037C 3032:Ziolkowski, Richard W. 2981:: 295–328 (34 pages). 2930:10.1002/pssb.200674505 2747:Metamaterials Handbook 2676:Photonic metamaterials 2636:Acoustic metamaterials 2621: 2526:Multiple systems have 2523: 2204:Flat lens horn antenna 1769:that can overcome the 1721: 1695: 1669: 1643: 1617: 1591: 1477: 1469: 962:Electromagnetic tensor 236:epsilon-negative (ENG) 99:wireless communication 33: 5178:U.S. patent 7,218,190 3984:. pp. 155, 156. 2711:Transformation optics 2706:Tunable metamaterials 2691:Seismic metamaterials 2686:Quantum metamaterials 2656:Metamaterial cloaking 2613: 2606:Reducing interference 2494: 2242:metamaterial cloaking 2198:mobile communications 1919:magnetic permeability 1722: 1696: 1670: 1644: 1618: 1592: 1533:printed circuit board 1498:electromagnetic waves 1475: 1460: 1438:electromagnetic waves 1272:magnetic permeability 955:Covariant formulation 747:Synchrotron radiation 687:Electromagnetic pulse 677:Electromagnetic field 274:magnetic permeability 232:double positive (DPS) 81:printed circuit board 37:Metamaterial antennas 19: 5074:10.1364/OE.16.011132 4765:on December 3, 2011. 4383:10.1364/OE.11.000696 3662:(9): 091117 (2008). 3617:10.1364/OE.11.000696 3422:Metamterial antennas 2988:10.2528/PIER04070701 2696:Split-ring resonator 2616:keyless entry system 2590:transmission element 2541:Phased array antenna 2224:beam locked on to a 2105:SRR-DNG metamaterial 1755:lumped-element model 1711: 1685: 1659: 1633: 1607: 1581: 1522:electric power lines 1512:, dielectric slabs, 1330:– with wires in the 997:Stress–energy tensor 922:Reluctance (complex) 667:Displacement current 293:left-handed material 289:split-ring resonator 221:Novel configurations 210:ground plane surface 103:space communications 5288:Victor G. Veselago. 5240:2009IAWPL...8..989Z 5119:2005ITMTT..53...32B 5065:2008OExpr..1611132C 5018:2004IAWPL...3..261C 4965:2004ITMTT..52..199A 4905:2002IAWPL...1...10E 4853:2003ITAP...51.2558A 4705:2007ApPhA..87..151W 4662:2007ITAP...55...13A 4615:2007IJIMW..28..639W 4537:2005NJPh....7..168A 4498:2004JAP....96.1979H 4453:1999ITMTT..47.2075P 4374:2003OExpr..11..696I 4335:2002ITMTT..50.2702E 4217:2003ApPhL..82.1815G 4164:2002ITMTT..50.2702E 4111:2002JAP....92.5930G 3931:1996PhRvL..76.4773P 3883:on November 4, 2008 3854:on October 13, 2008 3787:2003ITMTT..51.2306C 3731:2005ITMTT..53.1535E 3668:2008ApPhL..93i1117C 3608:2003OExpr..11..696I 3462:2001Sci...292...77S 3395:on November 1, 2009 3258:2003ITAP...51.2626Z 3197:Metamaterials '2009 3192:on August 25, 2011. 3057:2009IAWPL...8.1329Z 2922:2007PSSBR.244.1192A 2867:2003ITAP...51.2619S 2812:2002PhRvL..89u3902E 2716:Acoustic dispersion 2510:series capacitors. 2483:were investigated. 2266:interface resonance 2103:The addition of an 2028:alternating current 2020:Maxwell's equations 1496:of energy, such as 1318:Directing radiation 912:Magnetomotive force 797:Electromotive force 767:Alternating current 702:Jefimenko equations 662:Cyclotron radiation 354:index of refraction 234:with DNG slabs, or 65:physical properties 5218:General references 5199:. JAM IT Media Ltd 4818:2011-06-05 at the 4781:The Sacramento Bee 3709:Engheta, Nader and 3363:The New York Times 3334:. pp. 43–85. 3215:2010-12-31 at the 3202:2011-06-26 at the 3018:on January 4, 2011 2721:Coplanar waveguide 2622: 2555:phased array radar 2524: 2310:Phase compensation 2257:transmission media 2186:equivalent circuit 2178:metamaterial cover 2113:order of magnitude 2089:order of magnitude 1907:transmission lines 1742:lumped LC circuits 1717: 1691: 1665: 1639: 1613: 1587: 1478: 1470: 1461:Variations on the 1358:In this instance, 760:Electrical network 597:Gauss magnetic law 562:Static electricity 522:Electric potential 397:diffraction limits 347:phase compensation 138:microwave antennas 49:electrically small 34: 4579:978-0-7803-9433-9 4506:10.1063/1.1767290 4471:10.1109/22.798002 4425:978-0-470-20957-8 4329:(12): 2702–2712. 4278:978-0-7803-7330-3 4225:10.1063/1.1561167 4119:10.1063/1.1513194 3991:978-0-12-138553-8 3980:. San Diego, CA: 3925:(25): 4773–4776. 3815:UCLA Technology. 3676:10.1063/1.2978071 3554:978-0-7803-7239-9 3524:Iyer, Ashwin K.; 3341:978-0-471-76102-0 3185:978-0-9551179-6-1 2861:(10): 2619–2625. 1935:tens of gigahertz 1791:diffraction limit 1787:diffraction limit 1785:can overcome the 1729:angular frequency 1694:{\displaystyle j} 1668:{\displaystyle C} 1642:{\displaystyle G} 1616:{\displaystyle L} 1590:{\displaystyle R} 1482:transmission line 1466:electronic symbol 1383:plasmon frequency 1300:metamaterial lens 1232:dispersive nature 1230:Because of DNG's 1228: 1227: 927:Reluctance (real) 897:Gyrator–capacitor 842:Resonant cavities 732:Maxwell equations 393:cavity resonators 382:transmission line 316:transmission line 244:cavity resonators 240:mu-negative (MNG) 204:can also improve 5330: 5269: 5251: 5212: 5211: 5205: 5204: 5188: 5182: 5180: 5170: 5164: 5163: 5156: 5139: 5138: 5101: 5095: 5094: 5076: 5059:(15): 11132–40. 5044: 5038: 5037: 4997: 4991: 4990: 4988: 4987: 4947:(January 2004). 4937: 4931: 4930: 4928: 4927: 4884: 4865: 4864: 4832: 4823: 4810: 4804: 4798: 4792: 4791: 4773: 4767: 4766: 4761:. Archived from 4750: 4744: 4743: 4731: 4725: 4724: 4688: 4682: 4681: 4641: 4635: 4634: 4598: 4592: 4591: 4557: 4551: 4550: 4548: 4516: 4510: 4509: 4481: 4475: 4474: 4464: 4436: 4430: 4429: 4409: 4396: 4395: 4385: 4353: 4347: 4346: 4320: 4311: 4298: 4297: 4296:on July 6, 2011. 4295: 4289:. Archived from 4258: 4249: 4243: 4242: 4240: 4239: 4234:on July 20, 2011 4233: 4227:. Archived from 4202: 4193: 4182: 4181: 4179: 4178: 4149: 4140: 4129: 4128: 4126: 4125: 4096: 4087: 4078: 4077: 4075: 4074: 4068: 4062:. Archived from 4035: 4026: 4013: 4008: 4002: 4001: 3999: 3998: 3982:Elsevier Science 3971: 3965: 3964: 3962: 3961: 3955: 3949:. Archived from 3919:Phys. Rev. Lett. 3915: 3903: 3892: 3891: 3889: 3888: 3882: 3869: 3863: 3862: 3860: 3859: 3853: 3842: 3833: 3827: 3813: 3807: 3806: 3768: 3757: 3756: 3754: 3753: 3705: 3694: 3693: 3691: 3690: 3684: 3678:. Archived from 3651: 3642: 3636: 3635: 3633: 3632: 3619: 3591: 3582: 3573: 3572: 3570: 3569: 3534: 3521: 3500: 3499: 3473: 3445: 3439: 3438: 3433: 3432: 3419: 3410: 3404: 3403: 3401: 3400: 3391:. Archived from 3380: 3374: 3373: 3371: 3370: 3360: 3352: 3346: 3345: 3332:Wiley & Sons 3321: 3308: 3303: 3286: 3285: 3283: 3282: 3269: 3243: 3234: 3221: 3193: 3188:. Archived from 3167: 3161: 3158: 3156: 3155: 3146:. Archived from 3139: 3131: 3130:on July 6, 2011. 3129: 3123:. Archived from 3122: 3114: 3108: 3107: 3105: 3104: 3097:Navy SBIR / STTR 3088: 3079: 3076: 3040: 3026: 3024: 3023: 3014:. Archived from 2999: 2993: 2992: 2990: 2964: 2958: 2957: 2955: 2954: 2941: 2916:(4): 1192–1196. 2907: 2898: 2879: 2878: 2844: 2838: 2837: 2835: 2834: 2800:Phys. Rev. Lett. 2796: 2787: 2774: 2768: 2681:Photonic crystal 2487:Patented systems 2297:, and slab 2 = d 2142:monopole antenna 2111:by more than an 2018:as described by 1799:evanescent waves 1726: 1724: 1723: 1718: 1700: 1698: 1697: 1692: 1679:per unit length, 1674: 1672: 1671: 1666: 1648: 1646: 1645: 1640: 1627:per unit length, 1622: 1620: 1619: 1614: 1601:per unit length, 1596: 1594: 1593: 1588: 1524:and waveguides. 1484:is the material 1442:plasma frequency 1399:. For aluminium 1372:lattice constant 1349:plasma frequency 1344:refractive index 1340:plasma frequency 1312:evanescent waves 1220: 1213: 1206: 887:Electric machine 870:Magnetic circuit 832:Parallel circuit 822:Network analysis 787:Electric current 722:London equations 567:Triboelectricity 557:Potential energy 426: 416:Electromagnetism 407: 366:phase difference 345:DNG can provide 312:reactive loading 297:refractive index 200:. Metamaterial, 149:refractive index 117:Antennas designs 5338: 5337: 5333: 5332: 5331: 5329: 5328: 5327: 5308: 5307: 5276: 5249:10.1.1.205.4814 5223: 5220: 5215: 5202: 5200: 5190: 5189: 5185: 5176: 5171: 5167: 5158: 5157: 5142: 5103: 5102: 5098: 5046: 5045: 5041: 4999: 4998: 4994: 4985: 4983: 4941:AlĂč, Andrea and 4939: 4938: 4934: 4925: 4923: 4886: 4885: 4868: 4834: 4833: 4826: 4820:Wayback Machine 4811: 4807: 4799: 4795: 4787:on 2012-09-01. 4775: 4774: 4770: 4752: 4751: 4747: 4733: 4732: 4728: 4690: 4689: 4685: 4643: 4642: 4638: 4600: 4599: 4595: 4580: 4559: 4558: 4554: 4518: 4517: 4513: 4483: 4482: 4478: 4462:10.1.1.564.7060 4438: 4437: 4433: 4426: 4411: 4410: 4399: 4355: 4354: 4350: 4318: 4313: 4312: 4301: 4293: 4279: 4256: 4251: 4250: 4246: 4237: 4235: 4231: 4200: 4195: 4194: 4185: 4176: 4174: 4147: 4142: 4141: 4132: 4123: 4121: 4094: 4089: 4088: 4081: 4072: 4070: 4066: 4033: 4028: 4027: 4016: 4009: 4005: 3996: 3994: 3992: 3973: 3972: 3968: 3959: 3957: 3953: 3913: 3905: 3904: 3895: 3886: 3884: 3880: 3871: 3870: 3866: 3857: 3855: 3851: 3840: 3835: 3834: 3830: 3825:Wayback Machine 3814: 3810: 3781:(12): 203–206. 3770: 3769: 3760: 3751: 3749: 3707: 3706: 3697: 3688: 3686: 3682: 3649: 3644: 3643: 3639: 3630: 3628: 3589: 3584: 3583: 3576: 3567: 3565: 3555: 3532: 3523: 3522: 3503: 3471:10.1.1.119.1617 3456:(5514): 77–79. 3447: 3446: 3442: 3430: 3428: 3417: 3412: 3411: 3407: 3398: 3396: 3382: 3381: 3377: 3368: 3366: 3358: 3354: 3353: 3349: 3342: 3323: 3322: 3311: 3304: 3289: 3280: 3278: 3267:10.1.1.205.5571 3241: 3236: 3235: 3224: 3217:Wayback Machine 3204:Wayback Machine 3186: 3169: 3168: 3164: 3153: 3151: 3142: 3134: 3127: 3120: 3116: 3115: 3111: 3102: 3100: 3090: 3089: 3082: 3038: 3030: 3021: 3019: 3001: 3000: 2996: 2966: 2965: 2961: 2952: 2950: 2905: 2900: 2899: 2882: 2846: 2845: 2841: 2832: 2830: 2794: 2789: 2788: 2777: 2769: 2765: 2761: 2756: 2631: 2608: 2599: 2543: 2489: 2480: 2475: 2467: 2454: 2441: 2437: 2428: 2424: 2415: 2402: 2398: 2389: 2385: 2376: 2372: 2363: 2359: 2355: 2351: 2344: 2340: 2336: 2329: 2325: 2321: 2312: 2307: 2300: 2296: 2292: 2288: 2284: 2280: 2274: 2253: 2222:radio frequency 2215: 2206: 2170: 2101: 2061: 2049: 2012: 2010:Antenna (radio) 2006: 1989: 1977: 1964: 1948: 1892: 1868:Poynting vector 1848: 1763: 1738: 1709: 1708: 1683: 1682: 1657: 1656: 1631: 1630: 1605: 1604: 1579: 1578: 1573: 1565: 1455: 1450: 1404: 1389: 1364:crystal lattice 1320: 1296: 1283: 1224: 1195: 1194: 1010: 1002: 1001: 957: 947: 946: 902:Induction motor 872: 862: 861: 777:Current density 762: 752: 751: 742:Poynting vector 652: 650:Electrodynamics 642: 641: 637:Right-hand rule 602:Magnetic dipole 592:Biot–Savart law 582: 572: 571: 507:Electric dipole 502:Electric charge 477: 405: 343: 252: 223: 186:radio frequency 178: 165: 145:frequency range 119: 53:antenna systems 39:are a class of 12: 11: 5: 5336: 5334: 5326: 5325: 5320: 5310: 5309: 5306: 5305: 5299: 5294: 5289: 5283: 5275: 5274:External links 5272: 5271: 5270: 5219: 5216: 5214: 5213: 5183: 5173:Engheta, Nader 5165: 5140: 5096: 5053:Optics Express 5039: 4992: 4932: 4866: 4824: 4805: 4793: 4768: 4745: 4726: 4699:(2): 151–156. 4683: 4636: 4593: 4578: 4552: 4511: 4476: 4431: 4424: 4397: 4368:(7): 696–708. 4362:Optics Express 4348: 4299: 4277: 4244: 4183: 4130: 4079: 4014: 4003: 3990: 3966: 3893: 3864: 3828: 3808: 3758: 3695: 3637: 3602:(7): 696–708. 3595:Optics Express 3574: 3553: 3528:(2002-06-07). 3501: 3440: 3405: 3375: 3347: 3340: 3309: 3287: 3222: 3220: 3219: 3207: 3184: 3162: 3160: 3159: 3140: 3109: 3080: 3078: 3077: 2994: 2959: 2880: 2839: 2806:(21): 213902. 2775: 2762: 2760: 2757: 2755: 2754: 2749: 2743: 2742: 2741: 2740: 2739: 2738: 2737: 2736: 2724: 2723: 2718: 2713: 2708: 2703: 2698: 2693: 2688: 2683: 2678: 2673: 2668: 2663: 2658: 2653: 2648: 2643: 2638: 2632: 2630: 2627: 2607: 2604: 2598: 2595: 2547:biconcave lens 2542: 2539: 2488: 2485: 2479: 2476: 2474: 2471: 2466: 2463: 2453: 2450: 2439: 2435: 2426: 2422: 2414: 2411: 2400: 2396: 2387: 2383: 2374: 2370: 2361: 2357: 2353: 2349: 2342: 2338: 2334: 2327: 2323: 2319: 2311: 2308: 2306: 2303: 2298: 2294: 2290: 2286: 2282: 2278: 2273: 2270: 2252: 2249: 2234:phase shifters 2214: 2211: 2205: 2202: 2169: 2168:Patch antennas 2166: 2109:radiated power 2107:increased the 2100: 2097: 2069:power radiated 2060: 2057: 2048: 2045: 2008:Main article: 2005: 2004:Configurations 2002: 1988: 1985: 1976: 1973: 1963: 1960: 1947: 1944: 1926:lumped circuit 1896:RF frequencies 1894:Using SRRs at 1891: 1888: 1847: 1844: 1836:phase response 1762: 1759: 1737: 1734: 1733: 1732: 1716: 1706: 1703:imaginary unit 1690: 1680: 1664: 1654: 1638: 1628: 1612: 1602: 1586: 1571: 1563: 1553:power dividers 1518:optical fibers 1510:coaxial cables 1454: 1451: 1449: 1446: 1402: 1387: 1334:and slices of 1319: 1316: 1295: 1294:Microwave lens 1292: 1282: 1279: 1264:dispersionless 1226: 1225: 1223: 1222: 1215: 1208: 1200: 1197: 1196: 1193: 1192: 1187: 1182: 1177: 1172: 1167: 1162: 1157: 1152: 1147: 1142: 1137: 1132: 1127: 1122: 1117: 1112: 1107: 1102: 1097: 1092: 1087: 1082: 1077: 1072: 1067: 1062: 1057: 1052: 1047: 1042: 1037: 1032: 1027: 1022: 1017: 1011: 1008: 1007: 1004: 1003: 1000: 999: 994: 989: 984: 979: 977:Four-potential 974: 969: 964: 958: 953: 952: 949: 948: 945: 944: 939: 934: 929: 924: 919: 914: 909: 904: 899: 894: 892:Electric motor 889: 884: 879: 873: 868: 867: 864: 863: 860: 859: 854: 849: 847:Series circuit 844: 839: 834: 829: 824: 819: 817:Kirchhoff laws 814: 809: 804: 799: 794: 789: 784: 782:Direct current 779: 774: 769: 763: 758: 757: 754: 753: 750: 749: 744: 739: 737:Maxwell tensor 734: 729: 724: 719: 714: 709: 707:Larmor formula 704: 699: 694: 689: 684: 679: 674: 669: 664: 659: 657:Bremsstrahlung 653: 648: 647: 644: 643: 640: 639: 634: 629: 624: 619: 614: 609: 607:Magnetic field 604: 599: 594: 589: 583: 580:Magnetostatics 578: 577: 574: 573: 570: 569: 564: 559: 554: 549: 544: 539: 534: 529: 524: 519: 514: 512:Electric field 509: 504: 499: 494: 489: 484: 482:Charge density 478: 475:Electrostatics 473: 472: 469: 468: 467: 466: 461: 456: 451: 446: 441: 436: 428: 427: 419: 418: 412: 411: 410:Articles about 404: 401: 342: 339: 324:positive index 251: 248: 222: 219: 198:antenna arrays 177: 174: 164: 161: 118: 115: 13: 10: 9: 6: 4: 3: 2: 5335: 5324: 5323:Metamaterials 5321: 5319: 5316: 5315: 5313: 5303: 5300: 5298: 5295: 5293: 5290: 5287: 5284: 5281: 5278: 5277: 5273: 5267: 5263: 5259: 5255: 5250: 5245: 5241: 5237: 5233: 5229: 5228: 5222: 5221: 5217: 5210: 5198: 5194: 5187: 5184: 5179: 5174: 5169: 5166: 5161: 5155: 5153: 5151: 5149: 5147: 5145: 5141: 5136: 5132: 5128: 5124: 5120: 5116: 5112: 5108: 5100: 5097: 5092: 5088: 5084: 5080: 5075: 5070: 5066: 5062: 5058: 5054: 5050: 5043: 5040: 5035: 5031: 5027: 5023: 5019: 5015: 5011: 5007: 5003: 4996: 4993: 4982: 4978: 4974: 4970: 4966: 4962: 4958: 4954: 4950: 4946: 4945:Nader Engheta 4942: 4936: 4933: 4922: 4918: 4914: 4910: 4906: 4902: 4898: 4894: 4890: 4883: 4881: 4879: 4877: 4875: 4873: 4871: 4867: 4862: 4858: 4854: 4850: 4846: 4842: 4838: 4831: 4829: 4825: 4821: 4817: 4814: 4809: 4806: 4802: 4797: 4794: 4790: 4786: 4782: 4778: 4772: 4769: 4764: 4760: 4759:IEEE Spectrum 4756: 4749: 4746: 4741: 4737: 4730: 4727: 4722: 4718: 4714: 4710: 4706: 4702: 4698: 4694: 4693:Appl. Phys. A 4687: 4684: 4679: 4675: 4671: 4667: 4663: 4659: 4655: 4651: 4647: 4640: 4637: 4632: 4628: 4624: 4620: 4616: 4612: 4608: 4604: 4597: 4594: 4589: 4585: 4581: 4575: 4571: 4567: 4563: 4556: 4553: 4547: 4542: 4538: 4534: 4530: 4526: 4522: 4515: 4512: 4507: 4503: 4499: 4495: 4491: 4487: 4480: 4477: 4472: 4468: 4463: 4458: 4454: 4450: 4446: 4442: 4435: 4432: 4427: 4421: 4417: 4416: 4408: 4406: 4404: 4402: 4398: 4393: 4389: 4384: 4379: 4375: 4371: 4367: 4363: 4359: 4352: 4349: 4344: 4340: 4336: 4332: 4328: 4324: 4317: 4310: 4308: 4306: 4304: 4300: 4292: 4288: 4284: 4280: 4274: 4270: 4266: 4262: 4255: 4248: 4245: 4230: 4226: 4222: 4218: 4214: 4210: 4206: 4199: 4192: 4190: 4188: 4184: 4173: 4169: 4165: 4161: 4157: 4153: 4146: 4139: 4137: 4135: 4131: 4120: 4116: 4112: 4108: 4104: 4100: 4093: 4086: 4084: 4080: 4069:on 2007-07-22 4065: 4061: 4057: 4053: 4049: 4045: 4041: 4040: 4032: 4025: 4023: 4021: 4019: 4015: 4012: 4007: 4004: 3993: 3987: 3983: 3979: 3978: 3970: 3967: 3956:on 2011-07-17 3952: 3948: 3944: 3940: 3936: 3932: 3928: 3924: 3921: 3920: 3912: 3908: 3902: 3900: 3898: 3894: 3879: 3875: 3868: 3865: 3850: 3846: 3839: 3832: 3829: 3826: 3822: 3818: 3812: 3809: 3804: 3800: 3796: 3792: 3788: 3784: 3780: 3776: 3775: 3767: 3765: 3763: 3759: 3748: 3744: 3740: 3736: 3732: 3728: 3724: 3720: 3719: 3714: 3710: 3704: 3702: 3700: 3696: 3685:on 2011-06-05 3681: 3677: 3673: 3669: 3665: 3661: 3657: 3656: 3648: 3641: 3638: 3627: 3623: 3618: 3613: 3609: 3605: 3601: 3597: 3596: 3588: 3581: 3579: 3575: 3564: 3560: 3556: 3550: 3546: 3542: 3538: 3531: 3527: 3520: 3518: 3516: 3514: 3512: 3510: 3508: 3506: 3502: 3497: 3493: 3489: 3485: 3481: 3477: 3472: 3467: 3463: 3459: 3455: 3451: 3444: 3441: 3437: 3427: 3426:IEEE Spectrum 3423: 3416: 3409: 3406: 3394: 3390: 3386: 3379: 3376: 3364: 3357: 3351: 3348: 3343: 3337: 3333: 3329: 3328: 3320: 3318: 3316: 3314: 3310: 3307: 3302: 3300: 3298: 3296: 3294: 3292: 3288: 3277: 3273: 3268: 3263: 3259: 3255: 3251: 3247: 3240: 3233: 3231: 3229: 3227: 3223: 3218: 3214: 3211: 3208: 3205: 3201: 3198: 3195: 3194: 3191: 3187: 3181: 3177: 3173: 3166: 3163: 3150:on 2009-05-13 3149: 3145: 3141: 3137: 3133: 3132: 3126: 3119: 3113: 3110: 3098: 3094: 3087: 3085: 3081: 3074: 3070: 3066: 3062: 3058: 3054: 3050: 3046: 3045: 3037: 3033: 3029: 3028: 3017: 3013: 3009: 3005: 2998: 2995: 2989: 2984: 2980: 2976: 2975: 2970: 2963: 2960: 2949: 2945: 2940: 2935: 2931: 2927: 2923: 2919: 2915: 2911: 2904: 2897: 2895: 2893: 2891: 2889: 2887: 2885: 2881: 2876: 2872: 2868: 2864: 2860: 2856: 2855: 2850: 2843: 2840: 2829: 2825: 2821: 2817: 2813: 2809: 2805: 2802: 2801: 2793: 2786: 2784: 2782: 2780: 2776: 2773: 2767: 2764: 2758: 2753: 2750: 2748: 2745: 2744: 2735: 2732: 2731: 2730: 2729: 2728: 2727: 2726: 2725: 2722: 2719: 2717: 2714: 2712: 2709: 2707: 2704: 2702: 2699: 2697: 2694: 2692: 2689: 2687: 2684: 2682: 2679: 2677: 2674: 2672: 2669: 2667: 2664: 2662: 2659: 2657: 2654: 2652: 2649: 2647: 2644: 2642: 2639: 2637: 2634: 2633: 2628: 2626: 2620: 2617: 2612: 2605: 2603: 2596: 2594: 2591: 2587: 2581: 2579: 2573: 2571: 2566: 2563: 2558: 2556: 2552: 2548: 2540: 2538: 2536: 2531: 2529: 2521: 2517: 2513: 2509: 2505: 2501: 2497: 2493: 2486: 2484: 2477: 2472: 2470: 2464: 2462: 2459: 2451: 2449: 2445: 2443: 2442: 2430: 2429: 2412: 2410: 2407: 2404: 2403: 2392:. Therefore, 2391: 2390: 2378: 2377: 2365: 2364: 2331: 2316: 2309: 2304: 2302: 2271: 2269: 2267: 2261: 2258: 2250: 2248: 2245: 2243: 2239: 2235: 2231: 2227: 2223: 2219: 2212: 2210: 2203: 2201: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2174:patch antenna 2167: 2165: 2163: 2157: 2153: 2151: 2147: 2146:coaxial cable 2143: 2139: 2135: 2130: 2126: 2121: 2118: 2114: 2110: 2106: 2098: 2096: 2092: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2058: 2056: 2054: 2053:metamaterials 2046: 2044: 2040: 2036: 2032: 2029: 2025: 2021: 2017: 2011: 2003: 2001: 1997: 1993: 1986: 1984: 1981: 1974: 1972: 1969: 1961: 1959: 1955: 1953: 1945: 1943: 1940: 1936: 1932: 1927: 1922: 1920: 1916: 1912: 1908: 1903: 1901: 1897: 1889: 1887: 1883: 1879: 1875: 1871: 1869: 1865: 1860: 1857: 1852: 1845: 1843: 1841: 1837: 1833: 1828: 1826: 1822: 1817: 1815: 1810: 1808: 1804: 1800: 1796: 1792: 1788: 1784: 1779: 1777: 1772: 1768: 1760: 1758: 1756: 1752: 1747: 1743: 1735: 1730: 1714: 1707: 1704: 1688: 1681: 1678: 1662: 1655: 1652: 1636: 1629: 1626: 1610: 1603: 1600: 1584: 1577: 1576: 1575: 1569: 1560: 1556: 1554: 1550: 1546: 1542: 1538: 1534: 1530: 1525: 1523: 1519: 1515: 1511: 1507: 1503: 1499: 1495: 1491: 1487: 1483: 1474: 1467: 1464: 1459: 1452: 1447: 1445: 1443: 1439: 1435: 1431: 1427: 1423: 1418: 1415: 1413: 1409: 1406:= 15 eV, and 1405: 1398: 1394: 1390: 1384: 1380: 1375: 1373: 1369: 1368:antenna array 1365: 1361: 1356: 1354: 1350: 1345: 1341: 1337: 1333: 1329: 1326:mesh of thin 1325: 1317: 1315: 1313: 1309: 1305: 1301: 1293: 1291: 1287: 1280: 1278: 1275: 1273: 1269: 1265: 1261: 1257: 1252: 1249: 1245: 1241: 1237: 1233: 1221: 1216: 1214: 1209: 1207: 1202: 1201: 1199: 1198: 1191: 1188: 1186: 1183: 1181: 1178: 1176: 1173: 1171: 1168: 1166: 1163: 1161: 1158: 1156: 1153: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1101: 1098: 1096: 1093: 1091: 1088: 1086: 1083: 1081: 1078: 1076: 1073: 1071: 1068: 1066: 1063: 1061: 1058: 1056: 1053: 1051: 1048: 1046: 1043: 1041: 1038: 1036: 1033: 1031: 1028: 1026: 1023: 1021: 1018: 1016: 1013: 1012: 1006: 1005: 998: 995: 993: 990: 988: 985: 983: 980: 978: 975: 973: 970: 968: 965: 963: 960: 959: 956: 951: 950: 943: 940: 938: 935: 933: 930: 928: 925: 923: 920: 918: 915: 913: 910: 908: 905: 903: 900: 898: 895: 893: 890: 888: 885: 883: 880: 878: 875: 874: 871: 866: 865: 858: 855: 853: 850: 848: 845: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 812:Joule heating 810: 808: 805: 803: 800: 798: 795: 793: 790: 788: 785: 783: 780: 778: 775: 773: 770: 768: 765: 764: 761: 756: 755: 748: 745: 743: 740: 738: 735: 733: 730: 728: 727:Lorentz force 725: 723: 720: 718: 715: 713: 710: 708: 705: 703: 700: 698: 695: 693: 690: 688: 685: 683: 680: 678: 675: 673: 670: 668: 665: 663: 660: 658: 655: 654: 651: 646: 645: 638: 635: 633: 630: 628: 627:Magnetization 625: 623: 620: 618: 615: 613: 612:Magnetic flux 610: 608: 605: 603: 600: 598: 595: 593: 590: 588: 585: 584: 581: 576: 575: 568: 565: 563: 560: 558: 555: 553: 550: 548: 545: 543: 540: 538: 535: 533: 530: 528: 525: 523: 520: 518: 517:Electric flux 515: 513: 510: 508: 505: 503: 500: 498: 495: 493: 490: 488: 485: 483: 480: 479: 476: 471: 470: 465: 462: 460: 457: 455: 454:Computational 452: 450: 447: 445: 442: 440: 437: 435: 432: 431: 430: 429: 425: 421: 420: 417: 413: 409: 408: 402: 400: 398: 394: 390: 389:subwavelength 385: 383: 378: 373: 371: 367: 363: 359: 355: 350: 348: 340: 338: 335: 331: 329: 325: 321: 317: 313: 308: 306: 302: 298: 294: 290: 286: 281: 279: 275: 271: 267: 263: 259: 256: 249: 247: 245: 241: 237: 233: 229: 220: 218: 215: 214:beam scanning 211: 207: 203: 199: 195: 192:channels of ( 191: 187: 183: 182:ground planes 175: 173: 169: 163:The DNG shell 162: 160: 158: 154: 150: 146: 141: 139: 134: 132: 128: 124: 116: 114: 112: 108: 104: 100: 95: 93: 90:and portable 89: 88:micro-sensors 84: 82: 77: 72: 70: 66: 62: 58: 54: 50: 46: 45:metamaterials 42: 38: 31: 27: 23: 18: 5231: 5225: 5207: 5201:. Retrieved 5196: 5186: 5168: 5110: 5106: 5099: 5056: 5052: 5042: 5009: 5005: 4995: 4984:. Retrieved 4956: 4952: 4935: 4924:. Retrieved 4899:(1): 10–13. 4896: 4892: 4847:(10): 2558. 4844: 4840: 4808: 4796: 4788: 4785:the original 4780: 4771: 4763:the original 4758: 4748: 4739: 4729: 4696: 4692: 4686: 4653: 4649: 4639: 4606: 4602: 4596: 4561: 4555: 4528: 4524: 4514: 4489: 4485: 4479: 4447:(11): 2075. 4444: 4440: 4434: 4414: 4365: 4361: 4351: 4326: 4322: 4291:the original 4260: 4247: 4236:. Retrieved 4229:the original 4211:(12): 1815. 4208: 4204: 4175:. Retrieved 4158:(12): 2702. 4155: 4151: 4122:. Retrieved 4105:(10): 5930. 4102: 4098: 4071:. Retrieved 4064:the original 4046:(2): 68–70. 4043: 4037: 4006: 3995:. Retrieved 3976: 3969: 3958:. Retrieved 3951:the original 3922: 3917: 3885:. Retrieved 3878:the original 3867: 3856:. Retrieved 3849:the original 3844: 3831: 3811: 3778: 3772: 3750:. Retrieved 3722: 3716: 3687:. Retrieved 3680:the original 3659: 3653: 3640: 3629:. Retrieved 3599: 3593: 3566:. Retrieved 3536: 3453: 3449: 3443: 3435: 3429:. Retrieved 3421: 3408: 3397:. Retrieved 3393:the original 3388: 3378: 3367:. Retrieved 3365:. 2009-10-20 3362: 3350: 3326: 3279:. Retrieved 3252:(10): 2626. 3249: 3245: 3190:the original 3175: 3165: 3152:. Retrieved 3148:the original 3125:the original 3112: 3101:. Retrieved 3096: 3048: 3042: 3020:. Retrieved 3016:the original 3007: 2997: 2978: 2972: 2962: 2951:. Retrieved 2913: 2909: 2858: 2852: 2842: 2831:. Retrieved 2803: 2798: 2766: 2733: 2651:Metamaterial 2623: 2600: 2582: 2574: 2567: 2559: 2544: 2532: 2525: 2519: 2515: 2511: 2507: 2503: 2499: 2481: 2468: 2457: 2455: 2446: 2433: 2432: 2420: 2419: 2416: 2408: 2394: 2393: 2381: 2380: 2368: 2367: 2347: 2346: 2332: 2317: 2313: 2275: 2265: 2262: 2254: 2246: 2238:phased array 2217: 2216: 2207: 2171: 2161: 2158: 2154: 2122: 2102: 2093: 2073:electrically 2062: 2050: 2041: 2037: 2033: 2013: 1998: 1994: 1990: 1982: 1978: 1967: 1965: 1956: 1951: 1949: 1923: 1915:permittivity 1904: 1893: 1884: 1880: 1876: 1872: 1861: 1856:periodically 1853: 1849: 1829: 1818: 1811: 1802: 1780: 1764: 1739: 1561: 1557: 1536: 1526: 1494:transmission 1479: 1419: 1416: 1411: 1407: 1400: 1396: 1385: 1376: 1357: 1321: 1308:input device 1297: 1288: 1284: 1276: 1268:permittivity 1256:metamaterial 1253: 1229: 972:Four-current 907:Linear motor 792:Electrolysis 672:Eddy current 632:Permeability 552:Polarization 547:Permittivity 386: 374: 351: 344: 336: 332: 318:as the host 309: 284: 282: 277: 269: 266:permittivity 257: 253: 224: 179: 170: 166: 142: 135: 127:radio signal 120: 96: 85: 73: 36: 35: 30:metamaterial 5234:: 989–993. 5083:11693/13532 5012:(14): 261. 4492:(4): 1979. 3907:Pendry, J.B 3725:(4): 1535. 2939:11693/49278 2182:directivity 2129:geometrical 2117:directivity 2081:homogeneous 2067:(DNG), the 1864:wave vector 1832:phase shift 1823:. Resonant 1783:superlenses 1771:diffraction 1677:capacitance 1651:conductance 1353:microlenses 1240:group speed 942:Transformer 772:Capacitance 697:Faraday law 492:Coulomb law 434:Electricity 377:waveguiding 262:dimensional 238:slabs with 61:microscopic 5312:Categories 5203:2010-12-30 4986:2010-01-03 4959:(1): 199. 4926:2009-10-08 4609:(8): 639. 4531:(1): 168. 4238:2009-11-30 4177:2009-11-26 4124:2009-11-30 4073:2009-12-28 3997:2009-09-27 3960:2009-09-27 3887:2010-04-24 3858:2010-04-24 3752:2009-12-27 3689:2009-11-12 3631:2009-11-08 3568:2009-11-08 3431:2011-03-09 3399:2009-10-20 3369:2009-10-20 3281:2009-11-30 3206:– Sessions 3154:2011-02-06 3103:2010-03-19 3022:2010-12-22 2953:2009-09-17 2833:2009-09-16 2759:References 2562:microstrip 2496:Microstrip 2458:equivalent 2172:In 2005 a 2085:free space 2024:conductors 1905:LC-loaded 1900:LC network 1795:near field 1625:inductance 1599:resistance 1529:microstrip 1514:striplines 1393:dielectric 1304:microstrip 1281:Innovation 1260:microstrip 1009:Scientists 857:Waveguides 837:Resistance 807:Inductance 587:AmpĂšre law 370:propagates 362:plane wave 111:satellites 76:wavelength 43:which use 26:efficiency 5244:CiteSeerX 5113:(1): 32. 4721:122690235 4656:(1): 13. 4631:108959389 4457:CiteSeerX 4287:118881068 3466:CiteSeerX 3262:CiteSeerX 2701:Superlens 2551:sidelobes 2226:satellite 2196:bands in 2194:frequency 2150:aluminium 1939:varactors 1931:megahertz 1840:frequency 1821:radiation 1776:bandwidth 1715:ω 1537:substrate 1463:schematic 1422:direction 1165:Steinmetz 1095:Kirchhoff 1080:Jefimenko 1075:Hopkinson 1060:Helmholtz 1055:Heaviside 917:Permeance 802:Impedance 542:Insulator 537:Gauss law 487:Conductor 464:Phenomena 459:Textbooks 439:Magnetism 358:impedance 314:of a 2-D 305:microwave 301:gigahertz 206:radiation 196:) (MIMO) 190:microwave 157:flat lens 5135:14055916 5091:18648427 5034:25842956 4921:12554352 4816:Archived 4588:27288814 4392:19461781 4060:22121283 3947:10061377 3821:Archived 3803:32207634 3747:15293380 3626:19461781 3563:31129309 3488:11292865 3213:Archived 3200:Archived 3051:: 1329. 2828:12443413 2629:See also 2557:system. 2190:formulae 1825:coupling 1814:scanning 1781:Because 1545:couplers 1541:antennas 1426:emission 1379:plasmons 1324:metallic 1190:Wiechert 1145:Poynting 1035:Einstein 882:DC motor 877:AC motor 712:Lenz law 497:Electret 151:focuses 41:antennas 5266:7804333 5236:Bibcode 5209:future. 5197:TechEye 5115:Bibcode 5061:Bibcode 5014:Bibcode 4961:Bibcode 4901:Bibcode 4849:Bibcode 4701:Bibcode 4678:6091311 4658:Bibcode 4611:Bibcode 4533:Bibcode 4494:Bibcode 4449:Bibcode 4370:Bibcode 4331:Bibcode 4213:Bibcode 4160:Bibcode 4107:Bibcode 3927:Bibcode 3783:Bibcode 3727:Bibcode 3664:Bibcode 3604:Bibcode 3496:9321456 3458:Bibcode 3450:Science 3389:Reuters 3254:Bibcode 3073:5558201 3053:Bibcode 2948:5348103 2918:Bibcode 2863:Bibcode 2808:Bibcode 2619:key fob 2528:patents 2230:Gimbals 2176:with a 2125:annular 1933:to the 1727:is the 1701:is the 1675:is the 1649:is the 1623:is the 1597:is the 1566:to the 1549:filters 1175:Thomson 1150:Ritchie 1140:Poisson 1125:Neumann 1120:Maxwell 1115:Lorentz 1110:LiĂ©nard 1040:Faraday 1025:Coulomb 852:Voltage 827:Ohm law 449:History 307:range. 250:History 131:300 MHz 5264:  5246:  5133:  5089:  5032:  4981:234001 4979:  4919:  4740:Forbes 4719:  4676:  4629:  4586:  4576:  4459:  4422:  4390:  4285:  4275:  4058:  3988:  3945:  3819:2003. 3801:  3745:  3624:  3561:  3551:  3494:  3486:  3468:  3338:  3264:  3182:  3071:  2946:  2826:  2646:Kymeta 2498:line ( 2431:, not 2138:copper 2136:thick 2077:dipole 2075:small 1968:et al. 1966:Grbic 1807:lenses 1767:lenses 1486:medium 1434:normal 1430:energy 1160:Singer 1155:Savart 1135:Ørsted 1100:Larmor 1090:Kelvin 1045:Fizeau 1015:AmpĂšre 937:Stator 444:Optics 320:medium 285:et al. 258:et al. 255:Pendry 57:energy 5262:S2CID 5131:S2CID 5030:S2CID 4977:S2CID 4917:S2CID 4717:S2CID 4674:S2CID 4627:S2CID 4584:S2CID 4319:(PDF) 4294:(PDF) 4283:S2CID 4257:(PDF) 4232:(PDF) 4201:(PDF) 4148:(PDF) 4095:(PDF) 4067:(PDF) 4056:S2CID 4034:(PDF) 3954:(PDF) 3914:(PDF) 3881:(PDF) 3852:(PDF) 3841:(PDF) 3799:S2CID 3743:S2CID 3683:(PDF) 3650:(PDF) 3590:(PDF) 3559:S2CID 3533:(PDF) 3492:S2CID 3242:(PDF) 3128:(PDF) 3121:(PDF) 3069:S2CID 3039:(PDF) 2944:S2CID 2906:(PDF) 2795:(PDF) 2734:Books 2535:radar 1838:with 1705:, and 1506:wires 1328:wires 1185:Weber 1180:Volta 1170:Tesla 1085:Joule 1070:Hertz 1065:Henry 1050:Gauss 932:Rotor 188:, or 155:by a 123:power 69:power 5302:NTIA 5087:PMID 4574:ISBN 4420:ISBN 4388:PMID 4273:ISBN 3986:ISBN 3943:PMID 3622:PMID 3549:ISBN 3484:PMID 3336:ISBN 3180:ISBN 2824:PMID 2162:λ/40 1917:and 1551:and 1490:path 1336:foam 1298:The 1105:Lenz 1030:Davy 1020:Biot 280:"). 5254:doi 5123:doi 5079:hdl 5069:doi 5022:doi 4969:doi 4909:doi 4857:doi 4709:doi 4666:doi 4619:doi 4566:doi 4541:doi 4502:doi 4467:doi 4378:doi 4339:doi 4265:doi 4221:doi 4168:doi 4115:doi 4048:doi 3935:doi 3791:doi 3735:doi 3672:doi 3612:doi 3541:doi 3476:doi 3454:292 3272:doi 3061:doi 2983:doi 2934:hdl 2926:doi 2914:244 2871:doi 2816:doi 2586:via 2520:405 2516:404 2512:403 2508:402 2504:401 2500:400 2438:+ d 2425:/ d 2399:+ d 2386:+ d 2373:/ d 2360:/ n 2356:= n 2352:/ d 2289:, u 2285:, u 2281:, Δ 2071:by 1744:or 1500:or 1424:of 1130:Ohm 303:or 276:( " 107:GPS 5314:: 5260:. 5252:. 5242:. 5230:. 5206:. 5195:. 5143:^ 5129:. 5121:. 5111:53 5109:. 5085:. 5077:. 5067:. 5057:16 5055:. 5051:. 5028:. 5020:. 5008:. 5004:. 4975:. 4967:. 4957:52 4955:. 4951:. 4943:; 4915:. 4907:. 4895:. 4891:. 4869:^ 4855:. 4845:51 4843:. 4839:. 4827:^ 4779:. 4757:. 4738:. 4715:. 4707:. 4697:87 4695:. 4672:. 4664:. 4654:55 4652:. 4648:. 4625:. 4617:. 4607:28 4605:. 4582:. 4572:. 4539:. 4527:. 4523:. 4500:. 4490:96 4488:. 4465:. 4455:. 4445:47 4443:. 4400:^ 4386:. 4376:. 4366:11 4364:. 4360:. 4337:. 4327:50 4325:. 4321:. 4302:^ 4281:. 4271:. 4259:. 4219:. 4209:82 4207:. 4203:. 4186:^ 4166:. 4156:50 4154:. 4150:. 4133:^ 4113:. 4103:92 4101:. 4097:. 4082:^ 4054:. 4044:14 4042:. 4036:. 4017:^ 3941:. 3933:. 3923:76 3916:. 3896:^ 3843:. 3797:. 3789:. 3779:51 3777:. 3761:^ 3741:. 3733:. 3723:53 3721:. 3715:. 3698:^ 3670:. 3660:93 3658:. 3652:. 3620:. 3610:. 3600:11 3598:. 3592:. 3577:^ 3557:. 3547:. 3535:. 3504:^ 3490:. 3482:. 3474:. 3464:. 3452:. 3434:. 3424:. 3420:. 3387:. 3361:. 3330:. 3312:^ 3290:^ 3270:. 3260:. 3250:51 3248:. 3244:. 3225:^ 3174:. 3095:. 3083:^ 3067:. 3059:. 3047:. 3041:. 3010:. 3006:. 2979:51 2977:. 2971:. 2942:. 2932:. 2924:. 2912:. 2908:. 2883:^ 2869:. 2859:51 2857:. 2822:. 2814:. 2804:89 2797:. 2778:^ 2614:A 2580:. 2530:. 2134:ÎŒm 1952:TL 1809:. 1757:. 1547:, 1543:, 1527:A 1520:, 1516:, 1508:, 1480:A 1444:. 1414:. 1362:, 1248:RF 399:. 391:, 268:(" 109:, 105:, 101:, 83:. 71:. 51:) 5268:. 5256:: 5238:: 5232:8 5162:. 5137:. 5125:: 5117:: 5093:. 5081:: 5071:: 5063:: 5036:. 5024:: 5016:: 5010:3 4989:. 4971:: 4963:: 4929:. 4911:: 4903:: 4897:1 4863:. 4859:: 4851:: 4742:. 4723:. 4711:: 4703:: 4680:. 4668:: 4660:: 4633:. 4621:: 4613:: 4590:. 4568:: 4549:. 4543:: 4535:: 4529:7 4508:. 4504:: 4496:: 4473:. 4469:: 4451:: 4428:. 4394:. 4380:: 4372:: 4345:. 4341:: 4333:: 4267:: 4241:. 4223:: 4215:: 4180:. 4170:: 4162:: 4127:. 4117:: 4109:: 4076:. 4050:: 4000:. 3963:. 3937:: 3929:: 3890:. 3861:. 3805:. 3793:: 3785:: 3755:. 3737:: 3729:: 3692:. 3674:: 3666:: 3634:. 3614:: 3606:: 3571:. 3543:: 3498:. 3478:: 3460:: 3402:. 3372:. 3344:. 3284:. 3274:: 3256:: 3157:. 3138:. 3106:. 3075:. 3063:: 3055:: 3049:8 3025:. 2991:. 2985:: 2956:. 2936:: 2928:: 2920:: 2877:. 2873:: 2865:: 2836:. 2818:: 2810:: 2522:. 2440:2 2436:1 2434:d 2427:2 2423:1 2421:d 2401:1 2397:1 2395:d 2388:1 2384:1 2382:d 2375:2 2371:1 2369:d 2362:1 2358:2 2354:2 2350:1 2348:d 2343:1 2339:2 2335:2 2328:1 2324:2 2320:1 2299:2 2295:1 2291:2 2287:1 2283:2 2279:1 2277:Δ 2160:( 1803:n 1731:. 1689:j 1663:C 1637:G 1611:L 1585:R 1572:0 1570:Z 1564:L 1412:Îł 1408:Îł 1403:p 1401:f 1397:Îł 1388:p 1386:f 1219:e 1212:t 1205:v 278:ÎŒ 270:Δ

Index


National Institute of Standards and Technology
efficiency
metamaterial
antennas
metamaterials
electrically small
antenna systems
energy
microscopic
physical properties
power
wavelength
printed circuit board
micro-sensors
ground-penetrating radars
wireless communication
space communications
GPS
satellites
power
radio signal
300 MHz
microwave antennas
frequency range
refractive index
electromagnetic radiation
flat lens
ground planes
radio frequency

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑