Knowledge (XXG)

Metamaterial antenna

Source 📝

1991:
parameters that are both inherently and simultaneously negative, obviating the need to employ separate means. The proposed media possess other desirable features including very wide bandwidth over which the refractive index remains negative, the ability to guide 2-D TM waves, scalability from RF to millimeter-wave frequencies and low transmission losses, as well as the potential for tunability by inserting varactors and/or switches in the unit cell. The concept has been verified with circuit and full-wave simulations. A prototype focusing device has been tested experimentally. The experimental results demonstrated focusing of an incident cylindrical wave within an octave bandwidth and over an electrically short area; suggestive of near-field focusing.
2348:). At certain frequencies Δ < 0 and Ό < 0 and n < 0. Like the DPS, the NIM has intrinsic impedance that is equal to the outside, and, therefore, is also lossless. The direction of power flow (i.e., the Poynting vector) in the first slab should be the same as that in the second one, because the power of the incident wave enters the first slab (without any reflection at the first interface), traverses the first slab, exits the second interface, enters the second slab and traverses it, and finally leaves the second slab. However, as stated earlier, the direction of power is anti-parallel to the direction of phase velocity. Therefore, the wave vector k 2066:. As a nonmagnetic conducting unit, it comprises an array of units that yield an enhanced negative effective magnetic permeability, when the frequency of the incident electromagnetic field is close to the SRR resonance frequency. The resonant frequency of the SRR depends on its shape and physical design. In addition, resonance can occur at wavelengths much larger than its size. For the further shape optimization of the elements it is expedient to use genetic and other optimization algorithms. In multi-frequency designs one may apply fractal designs such as those of Sierpensky, Koch or other fractals instead of SRRs. 2007:
equipped with lumped elements, which permit them to be compact at frequencies where the SRR cannot be compact. The flexibility gained through the use of either discrete or printed elements enables planar metamaterials to be scalable from the megahertz to the tens of gigahertz range. In addition, by utilizing varactors instead of capacitors, the effective material properties can be dynamically tuned. Furthermore, the proposed media are planar and inherently support two-dimensional (2-D) wave propagation. Therefore, these new metamaterials are well suited for RF/microwave device and circuit applications.
1870:
range. With this in mind, high pass and cutoff, periodically loaded, two-dimensional LC transmission line networks were proposed. The LC networks can be designed to support backward waves, without bulky SRR/wire structure. This was the first such proposal which veered away from bulk media for a negative refractive effect. A notable property of this type of network is that there is no reliance on resonance, Instead the ability to support backward waves defines negative refraction.
2503: 28: 1484: 1469: 435: 2163:. The operation frequency of the antenna was 3.52 GHz, which was determined by considering the geometrical parameters of SRR. An 8.32 mm length of wire was placed above the ground plane, connected to the antenna, which was one quarter of the operation wavelength. The antenna worked with a feed wavelength of 3.28 mm and feed frequency of 7.8 GHz. The SRR's resonant frequency was smaller than the monopole operation frequency. 1982:
E-plane pattern at 15 GHz showed radiation towards the backfire direction in the far-field pattern, clearly indicating the excitation of a backward wave. Since the transverse dimension of the array is electrically short, the structure is backed by a long metallic trough. The trough acts as a waveguide below cut-off and recovers the back radiation, resulting in unidirectional far-field patterns.
2622: 2195:. According to the numerical results, the antenna showed significant improvement in directivity, compared to conventional patch antennae. This was cited in 2007 for an efficient design of directive patch antennas in mobile communications using metamaterials. This design was based on the left-handed material (LHM) transmission line model, with the circuit elements L and C of the LHM 1285:, which then affects the relative permittivity and permeability of the overall microstrip line. It is introduced so that the wave impedance in the metamaterial remains unchanged. The index of refraction in the medium compensates for the dispersion effects associated with the microstrip geometry itself; making the effective refractive index of the pair that of free space. 1965:) was shown to exhibit NRI properties over a broad frequency range. This network will be referred to as a dual TL structure since it is of a high-pass configuration, as opposed to the low-pass representation of a conventional TL structure. Dual TL structures have been used to experimentally demonstrate backward-wave radiation and focusing at microwave frequencies. 2341:) is the same as that of the outside region and responding to a normally incident planar wave. The wave travels through the medium without any reflection because the DPS impedance and the outside impedance are equal. However, the plane wave at the end of DPS slab is out of phase with the plane wave at the beginning of the material. 3366: 2493:
A magnetic dipole was placed on metamaterial (slab) ground plane. The metamaterials have either constituent parameters that are both negative, or negative permittivity or negative permeability. The dispersion and radiation properties of leaky waves supported by these metamaterial slabs, respectively,
1884:
Electromagnetic waves from a point source located inside a conventional DPS can be focused inside an LHM using a planar interface of the two media. These conditions can be modeled by exciting a single node inside the DPS and observing the magnitude and phase of the voltages to ground at all points in
1759:
are often examined. Lumped circuit elements are actually microscopic elements that effectively approximate their larger component counterparts. For example, circuit capacitance and inductance can be created with split rings, which are on the scale of nanometers at optical frequencies. The distributed
2586:
The lens also functions as an input device and consists of a number of periodic unit-cells disposed along the line. The lens consists of multiple lines of the same make up; a plurality of periodic unit-cells. The periodic unit-cells are constructed of a plurality of electrical components; capacitors
2142:
parameters were R = 3.6 mm, r = 2.5 mm, w = 0.2 mm, t = 0.9 mm. R and r are used in annular parameters, w is the spacing between the rings and t = the width of the outer ring. The material had a thickness of 1.6 mm. Permittivity was 3.85 at 4 GHz. The SRR was fabricated
2002:
According to some researchers SRR/wire-configured metamaterials are bulky 3-D constructions that are difficult to adapt for RF/microwave device and circuit applications. These structures can achieve a negative index of refraction only within a narrow bandwidth. When applied to wireless devices at RF
1869:
loaded with capacitive and inductive elements in a high-pass configuration support certain types of backward waves. In addition, planar transmission lines are a natural match for 2-D wave propagation. With lumped circuit elements they retain a compact configuration and can still support the lower RF
1296:
Combining left-handed segments with a conventional (right-handed) transmission line results in advantages over conventional designs. Left-handed transmission lines are essentially a high-pass filter with phase advance. Conversely, right-handed transmission lines are a low-pass filter with phase lag.
390:
system could be produced. By stacking slabs of this configuration, the phase compensation (beam translation effects) would occur throughout the entire system. Furthermore, by changing the index of any of the DPS-DNG pairs, the speed at which the beam enters the front face, and exits the back face of
2428:
The phase compensator described above can be used to conceptualize the possibility of designing a compact 1-D cavity resonator. The above two-layer structure is applied as two perfect reflectors, or in other words, two perfect conducting plates. Conceptually, what is constrained in the resonator is
1896:
A transmission line that has lumped circuit elements that synthesize a left-handed medium is referred to as a "dual transmission line" as compared to "conventional transmission line". The dual transmission line structure can be implemented in practice by loading a host transmission line with lumped
2325:
The real component values for negative permittivity and permeability results in real component values for negative refraction n. In a lossless medium, all that would exist are real values. This concept can be used to map out phase compensation when a conventional lossless material, DPS, is matched
1981:
used one-dimensional LC loaded transmission line network, which supports fast backward-wave propagation to demonstrate characteristics analogous to "reversed Cherenkov radiation". Their proposed backward-wave radiating structure was inspired by negative refractive index LC materials. The simulated
2274:
At the interface between two media, the concept of the continuity of the tangential electric and magnetic field components can be applied. If either the permeability or permittivity of two media has opposite signs then the normal components of the tangential field, on both sides of the interface,
2045:
An antenna creates sufficiently strong electromagnetic fields at large distances. Reciprocally, it is sensitive to the electromagnetic fields impressed upon it externally. The actual coupling between a transmitting and receiving antenna is so small that amplifier circuits are required at both the
1892:
When transverse electromagnetic propagation occurs with a transmission line medium, the analogy for permittivity and permeability is Δ = L, and Ό = C. This analogy was developed with positive values for these parameters. The next logic step was realizing that negative values could be achieved. In
1261:
or microwave signals propagating along them would significantly decrease distortion. Therefore, components for attenuating distortion become less critical, and could lead to simplification of many systems. Metamaterials can eliminate dispersion along the microstrip by correcting for the frequency
2219:
This configuration uses a flat aperture constructed of zero-index metamaterial. This has advantages over ordinary (conventional) curved lenses, which results in a much improved directivity. These investigations have provided capabilities for the miniaturization of microwave source and non-source
2130:
and tunable operational frequency are produced with negative magnetic permeability. When combining a right-handed material (RHM) with a Veselago-left-handed material (LHM) other novel properties are obtained. A single negative material resonator, obtained with an SRR, can produce an electrically
2105:
The reactive power indicates that the DNG shell acts as a natural matching network for the dipole. The DNG material matches the intrinsic reactance of this antenna system to free space, hence the impedance of DNG material matches free space. It provides a natural matching circuit to the antenna.
1888:
Negative refraction and focusing can be accomplished without employing resonances or directly synthesizing the permittivity and permeability. In addition, this media can be practically fabricated by appropriately loading a host transmission line medium. Furthermore, the resulting planar topology
2006:
The proposed structures go beyond the wire/SRR composites in that they do not rely on SRRs to synthesize the material parameters, thus leading to dramatically increased operating bandwidths. Moreover, their unit cells are connected through a transmission-line network and they may, therefore, be
2166:
The monopole-SRR antenna operated efficiently at (λ/10) using the SRR-wire configuration. It demonstrated good coupling efficiency and sufficient radiation efficiency. Its operation was comparable to a conventional antenna at λ/2, which is a conventional antenna size for efficient coupling and
2010:
In the long-wavelength regime, the permittivity and permeability of conventional materials can be artificially synthesized using periodic LC networks arranged in a low-pass configuration. In the dual (high-pass) configuration, these equivalent material parameters assume simultaneously negative
1784:
limit, narrowband and broadband phase-shifting lines, small antennas, low-profile antennas, antenna feed networks, novel power architectures, and high-directivity couplers. Loading a planar metamaterial network of TLs with series capacitors and shunt inductors produces higher performance. This
2041:
is created in the elements by applying a voltage at the antenna terminals, causing the elements to radiate an electromagnetic field. In reception, the reverse occurs: an electromagnetic field from another source induces an alternating current in the elements and a corresponding voltage at the
1990:
Planar media can be implemented with an effective negative refractive index. The underlying concept is based on appropriately loading a printed network of transmission lines periodically with inductors and capacitors. This technique results in effective permittivity and permeability material
2270:
interact as a result of opposing permittivity and / or permeability values that are either ordinary (positive) or extraordinary (negative), notable anomalous behaviors may occur. The pair would be a DNG metamaterial (layer), paired with a DPS, ENG or MNG layer. Wave propagation behavior and
2053:
Dipole antennas, short antennas, parabolic and other reflector antennas, horn antennas, periscope antennas, helical antennas, spiral antennas, surface-wave and leaky wave antennas. Leaky wave antennas include dielectric and dielectric loaded antennas, and the variety of microstrip antennas.
2612:
This structure was designed for use in waveguiding or scattering of waves. It employs two adjacent layers. The first layer is an epsilon-negative (ENG) material or a mu-negative (MNG) material. The second layer is either a double-positive (DPS) material or a double-negative (DNG) material.
182:
This configuration analytically and numerically appears to produce an order of magnitude increase in power. At the same time, the reactance appears to offer a corresponding decrease. Furthermore, the DNG shell becomes a natural impedance matching network for this system.
89:
reflect most of the signal back to the source. A metamaterial antenna behaves as if it were much larger than its actual size, because its novel structure stores and re-radiates energy. Established lithography techniques can be used to print metamaterial elements on a
2275:
will be discontinuous at the boundary. This implies a concentrated resonant phenomenon at the interface. This appears to be similar to the current and voltage distributions at the junction between an inductor and capacitor, at the resonance of an L-C circuit. This "
2594:
The metamaterial incorporates a conducting transmission element, a substrate comprising at least a first ground plane for grounding the transmission element, a plurality of unit-cell circuits composed periodically along the transmission element and at least one
178:
The earliest research in metamaterial antennas was an analytical study of a miniature dipole antenna surrounded with a metamaterial. This material is known variously as a negative index metamaterial (NIM) or double negative metamaterial (DNG) among other names.
158:, thus making better use of available space for space-constrained cases. In these instances, miniature antennas with high gain are significantly relevant because the radiating elements are combined into large antenna arrays. Furthermore, metamaterials' negative 2603:
to at least the first ground plane. It also includes a means for suspending this transmission element a predetermined distance from the substrate in a way such that the transmission element is located at a second predetermined distance from the ground plane.
1968:
As a negative refractive index medium, a dual TL structure is not simply a phase compensator. It can enhance the amplitude of evanescent waves, as well as correct the phase of propagating waves. Evanescent waves actually grow within the dual TL structure.
2049:
The required antenna for any given application is dependent on the bandwidth employed, and range (power) requirements. In the microwave to millimeter-wave range – wavelengths from a few meters to millimeters – the following antennas are usually employed:
2455:. Therefore, in principle, one can have a thin subwavelength cavity resonator for a given frequency, if at this frequency the second layer acts a metamaterial with negative permittivity and permeability and the ratio correlates to the correct values. 1569:
From the simplified schematics to the right it can be seen that total impedance, conductance, reactance (capacitance and inductance) and the transmission medium (transmission line) can be represented by single components that give the overall value.
1357:
is just above zero. The relevant parameter is often the contrast between the permittivities rather than the overall permittivity value at desired frequencies. This occurs because the equivalent (effective) permittivity has a behavior governed by a
2377:, then the total phase difference between the front and back faces is zero. This demonstrates how the NIM slab at chosen frequencies acts as a phase compensator. It is important to note that this phase compensation process is only on the ratio of 2170:
When the SRR is made part of this configuration, characteristics such as the antenna's radiation pattern are entirely changed in comparison to a conventional monopole antenna. With modifications to the SRR structure the antenna size could reach
236:
Besides antenna miniaturization, the novel configurations have potential applications ranging from radio frequency devices to optical devices. Other combinations, for other devices in metamaterial antenna subsystems are being researched. Either
5219:
With the increasing proliferation of wireless devices inside and out of the home and workplace there are concerns over how interference from the external electromagnetic environment can cause problems for the connectivity of devices in the
2635:
Metamaterials can reduce interference across multiple devices with smaller and simpler shielding. While conventional absorbers can be three inches thick, metamaterials can be in the millimeter range—2 mm (0.078 in) thick.
2583:(MMIC), among other benefits. A transmission line is created with photolithography. A metamaterial lens, consisting of a thin wire array focuses the transmitted or received signals between the line and the emitter / receiver elements. 1300:
The conventional Leaky Wave antenna has had limited commercial success because it lacks complete backfire-to-endfire frequency scanning capability. The CRLH allowed complete backfire-to-endfire frequency scanning, including broadside.
227:
range by using both the forward and backward waves in leaky wave antennas. Various metamaterial antenna systems can be employed to support surveillance sensors, communication links, navigation systems and command and control systems.
1861:
In 2002, rather than using SRR-wire configuration, or other 3-D media, researchers looked at planar configurations that supported backward wave propagation, thus demonstrating negative refractive index and focusing as a consequence.
2575:
transmission lines by suspending them above the ground plane at a predetermined distance. In other words, they are not in contact with a solid substrate. Dielectric signal loss is reduced significantly, reducing signal attenuation.
2471:
LC circuitry configurations. Using FSS in a cavity allows for miniaturization, decrease of the resonant frequency, lowers the cut-off frequency and smooth transition from a fast-wave to a slow-wave in a waveguide configuration.
1952:
allowed the material properties to be dynamically tuned. The proposed media are planar and inherently support two-dimensional (2-D) wave propagation, making them well-suited for RF/microwave device and circuit applications.
1816:< 1), which restores the decaying evanescent waves from the source. This results in a diffraction-limited resolution of λ/6, after some small losses. This compares with λ/2, the normal diffraction limit for conventional 1893:
order to synthesize a left-handed medium (Δ < 0 and Ό < 0) the series reactance and shunt susceptibility should become negative, because the material parameters are directly proportional to these circuit quantities.
1800:, this allows for a more efficient coupling to external radiation and enables a broader frequency band. For example, the superlens can be applied to the TLM architecture. In conventional lenses, imaging is limited by the 1939:
elements, which permit them to be compact at frequencies where an SRR cannot be compact. The flexibility gained through the use of either discrete or printed elements enables planar metamaterials to be scalable from the
2287:
The geometry consists of two parallel plates as perfect conductors (PEC), an idealized structure, filled by two stacked planar slabs of homogeneous and isotropic materials with their respective constitutive parameters
2042:
antenna's terminals. Some receiving antennas (such as parabolic and horn types) incorporate shaped reflective surfaces to collect EM waves from free space and direct or focus them onto the actual conductive elements.
151:, with efficient power and acceptable bandwidth. Antennas employing metamaterials offer the possibility of overcoming restrictive efficiency-bandwidth limitations for conventionally constructed, miniature antennas. 344:
Although some SRR inefficiencies were identified, they continued to be employed as of 2009 for research. SRRs have been involved in wide-ranging metamaterial research, including research on metamaterial antennas.
5115:
Baccarelli, Paolo; Burghignoli, P.; Frezza, F.; Galli, A.; Lampariello, P.; Lovat, G.; Paulotto, S. (2005-01-17). "Effects of Leaky-Wave Propagation in Metamaterial Grounded Slabs Excited by a Dipole Source".
2416:
can be any value, as long as this ratio satisfies the above condition. Finally, even though this two-layer structure is present, the wave traversing this structure would not experience the phase difference.
2781:
Slyusar V. I. 60 Years of Electrically Small Antennas Theory.//Proceedings of the 6-th International Conference on Antenna Theory and Techniques, 17–21 September 2007, Sevastopol, Ukraine. - Pp. 116 - 118.
2312:. Choosing which combination of parameters to employ involves pairing DPS and DNG or ENG and MNG materials. As mentioned previously, this is one pair of oppositely-signed constitutive parameters, combined. 2458:
The cavity can conceptually be thin while still resonant, as long as the ratio of thicknesses is satisfied. This can, in principle, provide possibility for subwavelength, thin, compact cavity resonators.
1873:
The principles behind focusing are derived from Veselago and Pendry. Combining a conventional, flat, (planar) DPS slab, M-1, with a left-handed medium, M-2, a propagating electromagnetic wave with a
144:, for instance, an antenna would need to be half a meter long. In contrast, experimental metamaterial antennas are as small as one-fiftieth of a wavelength, and could have further decreases in size. 2548:
applications. In general phased array systems work by coherently reassembling signals over the entire array by using circuit elements to compensate for relative phase differences and time delays.
1421:= 0.1 eV. Perhaps the most important result of the interaction of metal and the plasma frequency is that permittivity is negative below the plasma frequency, all the way to the minute value of 2356:. Furthermore, whatever phase difference is developed by traversing the first slab can be decreased and even cancelled by traversing the second slab. If the ratio of the two thicknesses is 3782:
Ziolkowski, Richard W. and; Ching-Ying Cheng (2004-01-07). "Tailoring double negative metamaterial responses to achieve anomalous propagation effects along microstrip transmission lines".
383:
through the second slab the phase difference is significantly decreased and even compensated for. Therefore, as the wave exits the second slab the total phase difference is equal to zero.
1841:
A metamaterial-loaded transmission line has significant advantages over conventional or standard delay transmission lines. It is more compact in size, it can achieve positive or negative
4765: 1853:, leading to shorter group delays. It can work in lower frequency because of high series distributed-capacitors and has smaller plane dimensions than its equivalent coplanar structure. 4208: 992: 2090:
antennas can be notably increased. This could be accomplished by surrounding an antenna with a shell of double negative (DNG) material. When the electric dipole is embedded in a
1406:, independent of the wave vector of the EM excitation (radiation) field. Furthermore, a minute-fractionally small amount of plasmon energy is absorbed into the system denoted as 1877:
k1 in M-1, results in a refracted wave with a wave vector k2 in M-2. Since, M-2 supports backward wave propagation k2 is refracted to the opposite side of the normal, while the
3784: 3728: 2762: 965: 3046: 1881:
of M-2 is anti-parallel with k2. Under such conditions, power is refracted through an effectively negative angle, which implies an effectively negative index of refraction.
3316:
Slyusar V.I. Metamaterials on antenna solutions.// 7th International Conference on Antenna Theory and Techniques ICATT’09, Lviv, Ukraine, October 6–9, 2009. - Pp. 19 - 24
1897:
series capacitors (C) and shunt inductors (L). In this periodic structure, the loading is strong such that the lumped elements dominate the propagation characteristics.
1366:. Methods that have been developed theoretically using dielectric photonic crystals applied in the microwave domain to realize a directive emitter using metallic grids. 977: 5235:
Ziolkowski, R. W.; Lin, Chia-Ching; Nielsen, Jean A.; Tanielian, Minas H.; Holloway, Christopher L. (August–September 2009). "Design and Experimental Verification of".
4264: 4495:
Hsu, Yi-Jang; Huang, Yen-Chun; Lih, Jiann-Shing; Chern, Jyh-Long (2004). "Electromagnetic resonance in deformed split ring resonators of left-handed meta-materials".
1736: 360:
due to their negative index of refraction. This is accomplished by combining a slab of conventional lossless DPS material with a slab of lossless DNG metamaterial.
2203:
to determine the L and C values of the LHM equivalent circuit model for desirable characteristics of directive patch antennas. Design examples derived from actual
5237: 4049: 3054: 3022: 2564:
are reduced in size. This equates to a reduction in radiated energy loss, and a relatively wider useful bandwidth. The system is an efficient, dynamically ranged
32: 1546:
technology and is used to convey microwave-frequency signals. It consists of a conducting strip separated from a ground plane by a dielectric layer known as the
3395: 2864: 2251:
equipment. The desired affect is accomplished by varying the pattern of activated metamaterial elements as needed. The technology is a practical application of
1710: 1684: 1658: 1632: 1606: 1253:
of the signals' wave components, as they propagate in the DNG medium. Hence, stacked DNG metamaterials could be useful for modifying signal propagation along a
4787: 4702:
WU, Q.; Pan, P.; Meng, F.-Y.; Li, L.-W.; Wu, J. (2007-01-31). "A novel flat lens horn antenna designed based on zero refraction principle of metamaterials".
113: 2279:" is essentially independent of the total thickness of the paired layers, because it occurs along the discontinuity between two such conjugate materials. 3187:
Proceedings of the 3rd International Congress on Advanced Electromagnetic Materials in Microwaves and Optics, London, UK, August 30th-September 4th, 2009
1909:, as with wireless devices, requires the resonators to be scaled to larger dimensions. This worked against making the devices more compact. In contrast, 1228: 997: 1830:
Metamaterials were first used for antenna technology around 2005. This type of antenna used the established capability of SNGs to couple with external
1288:
Part of the design strategy is that the effective permittivity and permeability of such a metamaterial should be negative – requiring a DNG material.
1007: 2671: 1451:
are focused into a narrow cone. Dimensions are small in comparison to the wavelength and thus the slab behaves as a homogeneous material with a low
1277:
creating a dispersion-compensating segment of transmission line. This could be accomplished by introducing a metamaterial with a specific localized
4746: 2580: 1563: 4612:
Wang, Rui; Yuan, Bo; Wang, Gaofeng; Yi, Fan (2007). "Efficient Design of Directive Patch Antennas in Mobile Communications Using Metamaterials".
3921: 348:
A more recent view is that by using SRRs as building blocks, the electromagnetic response and associated flexibility is practical and desirable.
4773: 4369:"Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial" 3598:"Experimental and theoretical verification of focusing in a large, periodically loaded transmission line negative refractive index metamaterial" 97:
These novel antennas aid applications such as portable interaction with satellites, wide angle beam steering, emergency communications devices,
5328: 832: 224: 4588: 4434: 4287: 4000: 3563: 3350: 3194: 2984: 2098:
without the interaction of the DNG material. In addition, the dipole-DNG shell combination increases the real power radiated by more than an
847: 469: 4239: 1994:
RF/microwave devices can be implemented based on these proposed media for applications in wireless communications, surveillance and radars.
2480:
As an LHM application four different cavities operating in the microwave regime were fabricated and experimentally observed and described.
1436: 3014: 2046:
transmitting and receiving stations. Antennas are usually created by modifying ordinary circuitry into transmission line configurations.
1823:
By combining right-handed (RHM) with left-handed materials (LHM) as a composite material (CRLH) construction, both a backward to forward
5290: 4826: 3182: 3657: 1402:
is a composite material. The effect of plasmons on any metal sample is to create properties in the metal such that it can behave as a
4960:"Guided Modes in a Waveguide Filled With a Pair of Single-Negative (SNG), Double-Negative (DNG), and/or Double-Positive (DPS) Layers" 1751:
Often, because of the goal that moves physical metamaterial inclusions (or cells) to smaller sizes, discussion and implementation of
727: 3128: 2102:
over a free space antenna. A notable decrease in the reactance of the dipole antenna corresponds to the increase in radiated power.
1504: 459: 3210: 1313:, found in metamaterial antenna systems, is used as an efficient coupler to external radiation, focusing radiation along or from a 1257:. At the same time, dispersion leads to distortion. However, if the dispersion could be compensated for along the microstrip line, 2167:
radiation. Therefore, the monopole-SRR antenna becomes an acceptable electrically small antenna at the SRR's resonance frequency.
3183:"Metamaterial-inspired electrically small radiators: it is time to draw preliminary conclusions and depict the future challenges" 4041: 642: 3831: 4301: 1221: 987: 464: 204: 70:
into free space. However, this class of antenna incorporates metamaterials, which are materials engineered with novel, often
1885:
the LHM. A focusing effect should manifest itself as a “spot” distribution of voltage at a predictable location in the LHM.
4155: 1776:
Some noted metamaterial antennas employ negative-refractive-index transmission-line metamaterials (NRI-TLM). These include
4811: 2003:
frequencies the split ring-resonators have to be scaled to larger dimensions, which, in turn forces a larger device size.
1786: 1002: 707: 5203: 2676: 2651: 2075: 867: 857: 842: 607: 474: 238: 4656: 907: 597: 5012: 4959: 4899: 4847: 3848: 3723: 3154: 2588: 1512: 1160: 1035: 932: 4424: 3249: 3223: 1385:. The lattice constant or lattice parameter refers to the constant distance between unit cells in a crystal lattice. 827: 4795: 2026: 660: 59: 4900:"An Idea for Thin Subwavelength Cavity Resonators Using Metamaterials With Negative Permittivity and Permeability" 3403: 2556:
Patented in 2004, one phased array antenna system is useful in automotive radar applications. By using NIMs as a
2544:
Phased array systems and antennas for use in such systems are well known in areas such as telecommunications and
1921: 1761: 1756: 1214: 1175: 702: 692: 632: 627: 567: 321:
In 2002, a different class of negative refractive index (NRI) metamaterials was introduced that employs periodic
163: 3459:
Shelby, R. A.; Smith, D. R.; Schultz, S. (2001). "Experimental Verification of a Negative Index of Refraction".
2802: 2613:
Alternatively, the second layer can be an ENG material when the first layer is an MNG material or the reverse.
1838:
allowed for a wavelength larger than the antenna. At microwave frequencies this allowed for a smaller antenna.
1578: 1145: 1025: 712: 2243:
and motors are replaced by arrays of metamaterials in a planar configuration. Also, with this new technology
3665: 3536: 2859: 2681: 1150: 1120: 552: 542: 537: 368: 257:, waveguides, scatters and antennas (radiators). Metamaterial antennas were commercially available by 2009. 1362:
in the microwave domain. This low optical index material then is a good candidate for extremely convergent
5333: 5254: 5186:; AlĂč, Andrea "Waveguides and scattering devices incorporating epsilon-negative and/or mu-negative slabs" 4467: 4326: 4021: 3884: 3476: 3272: 2757: 2686: 2646: 2030: 1661: 972: 742: 517: 140:. Standard antennas need to be at least half the size of the signal wavelength to operate efficiently. At 109: 5296: 4102: 1889:
permits LHM structures to be readily integrated with conventional planar microwave circuits and devices.
1585:
as closely as possible, because it is usually desirable that the load absorbs as much power as possible.
341:
interfaced with a positive index, parallel-plate waveguide. This was experimentally verified soon after.
3250:"Application of Double Negative Materials to Increase the Power Radiated by Electrically Small Antennas" 3042: 2721: 2716: 2701: 2696: 2666: 2252: 2208: 2135: 2091: 1929: 1609: 1543: 1448: 1282: 1070: 757: 747: 697: 687: 434: 284: 212: 91: 1428:
These facts ultimately result in the arrayed wire structure as being effectively a homogeneous medium.
5302: 3961: 1935:
Moreover, their unit cells are connected through a transmission-line network and may be equipped with
5246: 5125: 5071: 5024: 4971: 4911: 4859: 4711: 4668: 4621: 4543: 4504: 4459: 4380: 4341: 4223: 4170: 4117: 3937: 3793: 3737: 3674: 3614: 3468: 3264: 3063: 2928: 2873: 2818: 2706: 2626: 2115: 2034: 1765: 1752: 1508: 1473: 1432: 1195: 1095: 1060: 812: 677: 577: 562: 497: 322: 303: 299: 253:
slabs are employed in the subsystems. Antenna subsystems that are currently being researched include
5259: 4472: 4103:"Experimental verification of backward-wave radiation from a negative refractive index metamaterial" 3481: 3367:"NETGEAR Ships 'The Ultimate Networking Machine' for Gamers, Media Enthusiasts and Small Businesses" 3277: 2502: 1817: 602: 4530:
Aydin, Koray; Bulu, Irfan; Guven, Kaan; Kafesaki, Maria; Soukoulis, Costas M; Ozbay, Ekmel (2005).
2913: 2726: 2600: 2038: 1555: 1500: 1496: 1274: 1242: 1155: 1135: 1130: 937: 922: 807: 777: 672: 364: 334: 330: 75: 4571:
Fangming Zhu; Qingchun Lin; Jun Hu (2005). "A Directive Patch Antenna with a Metamaterial Cover".
2258:
Research and applications of metamaterial based antennas. Related components are also researched.
283:"), and that a periodic array of copper split ring resonators could produce an effective negative 5272: 5141: 5040: 4987: 4927: 4848:"Pairing an epsilon-negative slab with a mu-negative slab: Resonance, tunneling and transparency" 4727: 4684: 4637: 4594: 4293: 4066: 3809: 3753: 3569: 3502: 3079: 2954: 2731: 2565: 2267: 2196: 2188: 2123: 2099: 1917: 1805: 1551: 1030: 770: 572: 532: 4532:"Investigation of magnetic resonances for different split-ring resonator parameters and designs" 4450:
Pendry, J.B.; et al. (1999). "Magnetism from conductors and enhanced nonlinear phenomena".
2337:
has Δ < 0 and Ό < 0. Assume that the intrinsic impedance of the DPS dielectric material (d
398:
Furthermore, this phase compensation can lead to a set of applications, which are miniaturized,
375:
is radiated on this configuration. As this wave propagates through the first slab of material a
27: 3540: 3425: 3221:
Proceedings of the Virtual Institute for Artificial Electromagnetic Materials and Metamaterials
3026: 1439:
of an electromagnetic radiation source located inside the material in order to collect all the
5097: 4584: 4430: 4398: 4283: 3996: 3986: 3953: 3658:"Hybrid metamaterials enable fast electrical modulation of freely propagating terahertz waves" 3632: 3559: 3494: 3346: 3190: 2834: 2596: 2231:(M-SAT) is an invention that uses metamaterials to direct and maintain a consistent broadband 1866: 1801: 1797: 1739: 1559: 1492: 1476: 1393: 1310: 1246: 1090: 407: 392: 326: 148: 2271:
properties may occur that would otherwise not happen if only DNG layers are paired together.
1721: 5264: 5133: 5089: 5079: 5032: 4979: 4919: 4867: 4823: 4719: 4676: 4629: 4576: 4551: 4512: 4477: 4388: 4349: 4275: 4231: 4178: 4125: 4058: 3992: 3945: 3929: 3801: 3745: 3682: 3622: 3551: 3486: 3282: 3200: 3071: 2993: 2944: 2936: 2881: 2826: 2810: 2691: 2152: 2083: 1809: 1452: 1382: 1359: 1354: 1350: 1342: 1322: 1190: 1105: 1065: 1055: 942: 897: 880: 797: 732: 502: 426: 403: 380: 307: 159: 1483: 1468: 4830: 3835: 3690: 3597: 3227: 3214: 2232: 2119: 2079: 2020: 1906: 1878: 1374: 1370: 1317:
transmission line into transmitting and receiving components. Hence, it can be used as an
1258: 1125: 1050: 1045: 912: 787: 752: 647: 612: 512: 216: 196: 155: 136:
of an antenna. The newest metamaterial antennas radiate as much as 95 percent of an input
133: 79: 63: 51: 4327:"Planar negative refractive index media using periodically L-C loaded transmission lines" 4156:"Planar Negative Refractive Index Media Using Periodically L–C Loaded Transmission Lines" 3342: 3135: 1165: 5303:
Microwave transmission-line networks for backward-wave media and reduction of scattering
5250: 5129: 5075: 5028: 4975: 4915: 4863: 4715: 4672: 4625: 4547: 4508: 4463: 4384: 4345: 4227: 4174: 4121: 3941: 3797: 3741: 3678: 3618: 3472: 3268: 3207: 3129:"Analysis and Design of a Cylindrical EBG based directive antenna, Halim Boutayeb et al" 3067: 2932: 2877: 2822: 5312: 3605: 2557: 1936: 1846: 1713: 1695: 1669: 1643: 1617: 1591: 1444: 1085: 1080: 902: 792: 717: 667: 617: 590: 547: 522: 492: 485: 4272:
IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313)
5322: 5183: 4955: 4951: 4731: 4641: 4297: 4074: 3719: 3436: 2244: 2184: 2156: 1777: 1528: 1520: 1245:
as a transmission medium, it could be useful as a dispersion compensation device for
1200: 1185: 1170: 1110: 822: 737: 722: 637: 622: 527: 399: 376: 357: 55: 17: 5145: 5044: 4931: 4598: 4556: 4531: 4070: 3813: 3757: 3573: 3317: 2062:
The SRR was introduced by Pendry in 1999, and is one of the most common elements of
391:
the entire stack-system changes. In this manner, a volumetric, low loss, time delay
219:
efficiency and axial ratio performance of low-profile antennas located close to the
5276: 5170: 4688: 3849:"Emerging Metamaterials Antennas and their advantages over conventional approaches" 3827: 3506: 3083: 2958: 2661: 2248: 2063: 1925: 1910: 1378: 1318: 1278: 1266: 1180: 1075: 1040: 982: 917: 802: 682: 557: 276: 250: 246: 242: 220: 208: 192: 137: 40: 5315:
Manual of Regulations and Procedures for Federal Radio Frequency Management. 2011.
4991: 2830: 2094:
DNG medium, the antenna acts inductively rather than capacitively, as it would in
1297:
This configuration is designated composite right/left-handed (CRLH) metamaterial.
837: 3336: 2862:(2003-10-14). "Periodically LTL With Effective NRI and Negative Group Velocity". 1845:
while occupying the same short physical length and it exhibits a linear, flatter
78:. Antenna designs incorporating metamaterials can step-up the antenna's radiated 5297:
The electrodynamics of substances with simultaneously negative values of Δ and Ό
4788:"Kymeta spins out from Intellectual Ventures after closing $ 12 million funding" 3949: 3917: 3045:; Jin, Peng; Nielsen, J. A.; Tanielian, M. H.; Holloway, Christopher L. (2009). 2621: 2220:
devices, circuits, antennas and the improvement of electromagnetic performance.
2192: 2139: 2127: 1874: 1842: 1781: 1687: 1250: 1100: 952: 782: 444: 387: 337:(DPS) material with negative index material (DNG). It employed a small, planar, 71: 4824:
AFRL-Demonstrated Metamaterials Technology Transforms Antenna Radiation Pattern
4209:"Growing evanescent waves in negative-refractive-index transmission-line media" 3555: 43:, greatly boosting the radiated signal. The square is 30 millimeters on a side. 5268: 5188: 4800:
Company to commercialize IV's metamaterials-based satellite antenna technology
4723: 4633: 4580: 3075: 2783: 2572: 2506: 2175:). Coupling 2, 3, and 4 SRRs side by side slightly shifts radiation patterns. 2095: 1635: 1539: 1532: 1403: 1314: 1270: 1254: 817: 372: 86: 36: 5137: 5036: 4983: 4923: 4353: 4279: 4182: 4062: 3805: 3749: 3103: 2011:
values, and may therefore be used to synthesize a negative refractive index.
1957:
Growing evanescent waves in negative-refractive-index transmission-line media
1487:
Schematic representation of the elementary components of a transmission line.
1269:-loaded transmission line that can be introduced with the original length of 371:-matched to the outside region (e.g., free space). The desired monochromatic 275:
array of intersecting, thin wires could be used to create negative values of
4871: 4680: 3548:
2002 IEEE MTT-S International Microwave Symposium Digest (Cat. No.02CH37278)
3490: 3286: 2978:
Wu, B.-I.; W. Wang; J. Pacheco; X. Chen; T. Grzegorczyk; J. A. Kong (2005).
2885: 2711: 2529:) spiral inductor delay lines to 401. 404 are also connected to ground vias 2236: 2204: 2160: 1945: 1941: 1850: 1831: 1793: 1524: 1363: 1140: 1115: 927: 852: 449: 338: 315: 311: 272: 254: 200: 167: 141: 121: 5101: 4657:"Subwavelength, Compact, Resonant Patch Antennas Loaded With Metamaterials" 4402: 3957: 3888: 3859: 3636: 3498: 3158: 3146: 2940: 2838: 2801:
Enoch, Stefan; Tayeb, G; Sabouroux, P; Guérin, N; Vincent, P (2002-11-04).
5293:
Demonstrated metamaterials technology transforms antenna radiation pattern
3858:. Electromagnetic Theory Symposium 2007 (EMTS 2007): 01–03. Archived from 3220: 3038:
Some content is derived from Public Domain material on the NIST web site.
1573:
With transmission line media it is important to match the load impedance Z
5084: 5060:"Experimental observation of cavity formation in composite metamaterials" 5059: 4393: 4368: 4265:"A backward-wave antenna based on negative refractive index L-C networks" 3627: 2998: 2979: 2561: 2517:
represents unit-cell circuits composed periodically along the microstrip.
1949: 1835: 892: 887: 507: 2266:
When the interface between a pair of materials that function as optical
2126:
over a comparable free space antenna. Electrically small antennas, high
35:
is smaller than a standard antenna with comparable properties. Its high
5093: 4042:"Characteristics of the Composite Right/Left-Handed Transmission Lines" 2949: 2914:"Radiation properties of a split ring resonator and monopole composite" 2629: 2200: 2159:, ground plane and radiating components. The ground plane material was 1389: 862: 5307: 5165: 5163: 5161: 5159: 5157: 5155: 4655:
Alu, Andrea; Bilotti, Filiberto; Engheta, Nader; Vegni, Lucio (2007).
4516: 4481: 4235: 4129: 3686: 2980:"A Study of Using Metamaterials as Antenna Substrate to Enhance Gain" 2656: 2538: 2420:
Following this, the next step is the subwavelength cavity resonator.
2240: 2148: 2087: 1913:
configurations could be scaled to both microwave and RF frequencies.
1440: 947: 454: 265: 132:
Antenna designs incorporating metamaterials can step-up the radiated
98: 67: 4154:
Eleftheriades, George V.; Iyer, A.K.; Kremer, P.C. (December 2002).
3596:
Iyer, Ashwin K.; Kremer, Peter; Eleftheriades, George (2003-04-07).
2255:
theory. The antenna is approximately the size of a laptop computer.
4766:"Intellectual Ventures Invents Beam-Steering Metamaterials Antenna" 3447:
LG Chocolate BL40 is first cellphone to use a metamaterials antenna
2211:
were performed, which illustrates the efficiency of this approach.
2138:
rings with relative opposite gaps in the inner and outer ring. Its
2131:
small antenna when operating at microwave frequencies, as follows:
66:. Their purpose, as with any electromagnetic antenna, is to launch 2620: 2545: 2144: 1824: 1482: 1467: 1334: 102: 26: 154:
Metamaterials permit smaller antenna elements that cover a wider
39:
is derived from the "Z element" inside the square that acts as a
1516: 1346: 1338: 367:, while the DNG has a negative refractive index. Both slabs are 2424:
Compact subwavelength 1-D cavity resonators using metamaterials
5058:
Caglayan, Humeyra; Bulu, I; Loncar, M; Ozbay, E (2008-07-21).
4747:"Bill Gates Invests In Intellectual Ventures' Spin-Out Kymeta" 3541:"Negative refractive index metamaterials supporting 2-D waves" 3370:(...eight ultra-sensitive, internal, metamaterial antennas...) 2467:
Frequency selective surface (FSS) based metamaterials utilize
117: 3922:"Extremely Low Frequency Plasmons in Metallic Mesostructures" 2333:
has Δ > 0 and Ό > 0. Conversely, the NIM of thickness d
4325:
Eleftheriades, G.V.; Iyer, A.K.; Kremer, P.C. (2002-12-16).
3047:"Experimental Verification of Z Antennas at UHF Frequencies" 1932:
resulted in a substantial increase in operating bandwidths.
1857:
Negative refractive index metamaterials supporting 2-D waves
1542:
is a type of transmission line that can be fabricated using
3591: 3589: 3015:"Engineered Metamaterials Enable Remarkably Small Antennas" 1973:
Backward wave antenna using an NRI loaded transmission line
4418: 4416: 4414: 4412: 2033:. Physically, an antenna is an arrangement of one or more 85:
Conventional antennas that are very small compared to the
4367:
Iyer, Ashwin; Peter Kremer; George Eleftheriades (2003).
3530: 3528: 3526: 3524: 3522: 3520: 3518: 3516: 3248:
Ziolkowski, Richard Wly; Allison D. Kipple (2003-10-14).
2579:
This system was designed to boost the performance of the
379:
emerges between the exit and entrance faces. As the wave
147:
Metamaterials are a basis for further miniaturization of
5204:"Metamaterials to revolutionize wireless infrastructure" 2134:
The configuration of an SRR assessed was two concentric
1760:
LC model is related to the lumped LC model, however the
1353:
can be positive and less than one. This means that the
5013:"A Metamaterial Surface for Compact Cavity Resonators" 4614:
International Journal of Infrared and Millimeter Waves
4263:
Grbic, Anthony; George V. Eleftheriades (2002-08-07).
4207:
Grbic, Anthony; George V. Eleftheriades (2003-03-24).
4101:
Grbic, Anthony; George V. Eleftheriades (2002-11-15).
3330: 3328: 3326: 3324: 2907: 2905: 2903: 2901: 2899: 2897: 2895: 2571:
In addition, signal amplitude is increased across the
195:
surrounding antennas offer improved isolation between
3724:"A Positive Future for Double-Negative Metamaterials" 2489:
Leaky mode propagation with metamaterial ground plane
1724: 1698: 1672: 1646: 1620: 1594: 1325:, as well as correct the phase of propagating waves. 302:(SRR), with thin wire conducting posts and produce a 5118:
IEEE Transactions on Microwave Theory and Techniques
4964:
IEEE Transactions on Microwave Theory and Techniques
4452:
IEEE Transactions on Microwave Theory and Techniques
4334:
IEEE Transactions on Microwave Theory and Techniques
4163:
IEEE Transactions on Microwave Theory and Techniques
3785:
IEEE Transactions on Microwave Theory and Techniques
3729:
IEEE Transactions on Microwave Theory and Techniques
3243: 3241: 3239: 3237: 2796: 2794: 2792: 2790: 1901:
Left-handed behavior in LC loaded transmission lines
1772:
Metamaterial-loaded transmission-line configurations
4893: 4891: 4889: 4887: 4885: 4883: 4881: 4429:. New Delhi: New Age International. pp. 1, 2. 4040:Sanada, Atsushi; Caloz, C.; Itoh, T. (2004-02-26). 3714: 3712: 3710: 3338:
Metamaterials: physics and engineering explorations
3335:Engheta, Nader; Richard W. Ziolkowski (June 2006). 3097: 3095: 2763:
Metamaterials: Physics and Engineering Explorations
2525:
are T-junctions between capacitors, which connect (
1986:
Planar NIMs with periodic loaded transmission lines
4573:2005 Asia-Pacific Microwave Conference Proceedings 2513:) for a phased array metamaterial antenna system. 1920:enabled a new class of metamaterials to produce a 1730: 1704: 1678: 1652: 1626: 1600: 1377:structure can be analyzed as an array of aerials ( 4320: 4318: 4316: 4314: 3777: 3775: 3773: 3396:"RAYSPAN Ships 20 Millionth Metamaterial Antenna" 2239:whether the platform is in motion or stationary. 4202: 4200: 4198: 4096: 4094: 2912:Kamil, Boratay Alici; Ekmel Özbay (2007-03-22). 223:. Metamaterials have also been used to increase 108:Some applications for metamaterial antennas are 3155:"Invisibility Becomes More than Just a Fantasy" 3104:"Metamaterial-Based Electrically Small Antenna" 3102:Bukva, Erica (August 20 – September 19, 2007). 1924:. Relying on LC networks to emulate electrical 1865:It has long been known that transmission lines 1447:. By using a slab of a metamaterial, diverging 1321:. In addition, it can enhance the amplitude of 5238:IEEE Antennas and Wireless Propagation Letters 5017:IEEE Antennas and Wireless Propagation Letters 5011:Caiazzo, Marco; Maci, S.; Engheta, N. (2004). 4904:IEEE Antennas and Wireless Propagation Letters 4050:IEEE Microwave and Wireless Components Letters 3312: 3310: 3308: 3306: 3304: 3302: 3055:IEEE Antennas and Wireless Propagation Letters 3023:National Institute of Standards and Technology 2344:The plane wave then enters the lossless NIM (d 1961:The periodic 2-D LC loaded transmission-line ( 1948:range. In addition, replacing capacitors with 241:slabs are used exclusively or combinations of 33:National Institute of Standards and Technology 4852:IEEE Transactions on Antennas and Propagation 4841: 4839: 4833:. U.S. Air Force research.Accessed 2011-03-12 4814:. University of Arizona. Accessed 2011-03-12. 4661:IEEE Transactions on Antennas and Propagation 3912: 3910: 3908: 3257:IEEE Transactions on Antennas and Propagation 3147:"'Metafilms' Can Shrink Radio, Radar Devices" 2865:IEEE Transactions on Antennas and Propagation 2608:ENG and MNG waveguides and scattering devices 2329:In phase compensation, the DPS of thickness d 1222: 352:Phase compensation due to negative refraction 8: 4035: 4033: 4031: 4029: 1503:from one place to another for directing the 1431:This metamaterial allows for control of the 1249:. The dispersion produces a variance of the 3988:Electrons in solids: an introductory survey 1764:is more accurate but more complex than the 298:were the first to successfully combine the 294:In May 2000, a group of researchers, Smith 5171:"Phased array metamaterial antenna system" 3656:Chen, Hou-Tong; et al. (2008-09-04). 2151:substrate. The SRR was excited by using a 2110:Single negative SRR and monopole composite 1262:dependence of the effective permittivity. 1229: 1215: 433: 417: 124:, space vehicle navigation and airplanes. 5258: 5083: 4555: 4471: 4392: 4149: 4147: 4145: 3626: 3480: 3276: 2997: 2948: 2304:. Each slab has thickness = d, slab 1 = d 2155:. The monopole antenna was composed of a 1723: 1697: 1671: 1645: 1619: 1593: 1499:or structure that forms all or part of a 1349:. This material's permittivity above the 1333:In this instance an SRR uses layers of a 414:Transmission line dispersion compensation 406:, and waveguides with applications below 58:to increase performance of miniaturized ( 3110:. Navy Office of Small Business Programs 2672:Metamaterials surface antenna technology 2587:and inductors as components of multiple 2501: 2463:Miniature cavity resonator utilizing FSS 2229:Metamaterials surface antenna technology 2224:Metamaterials surface antenna technology 1789:while the refractive index is negative. 5202:Matthew, Finnegan (December 10, 2010). 3828:Backfire to Endfire Leaky wave antenna. 2803:"A Metamaterial for Directive Emission" 2774: 2581:Monolithic microwave integrated circuit 978:Electromagnetism and special relativity 425: 3885:"URSI Commission B EMT-Symposium 2007" 3722:; Richard W. Ziolkowski (April 2005). 1804:. With superlenses the details of the 1265:The strategy is to design a length of 395:could be realized for a given system. 386:With this system a phase-compensated, 2985:Progress in Electromagnetics Research 2476:Composite metamaterial based cavities 2283:Parallel-plate waveguiding structures 2262:Subwavelength cavities and waveguides 1515:. Types of transmission line include 1443:in a small angular domain around the 998:Maxwell equations in curved spacetime 306:that had negative values of Δ, ÎŒ and 7: 3856:URSI Commission B "Fields and Waves" 3426:"Metamaterials Arrive in Cellphones" 2316:Thin subwavelength cavity resonators 2143:with an etching technique onto a 30 105:to search for geophysical features. 3887:. URSI Commission B. Archived from 2560:to focus microwaves, the antenna's 1812:are supported in the metamaterial ( 1381:). As a lattice structure it has a 3883:URSI Commission B website (2007). 3181:Bilotti, Filiberto; Vegni, Lucio. 1664:of the dielectric per unit length, 25: 4274:. Vol. 4. pp. 340–343. 2352:is in the opposite direction of k 1566:can be formed from a microstrip. 4812:Metamaterial-Engineered Antennas 4764:Katie M. Palmer (January 2012). 3920:; AJ Holden; WJ Stewart (1996). 3424:Das, Saswato R. (October 2009). 2858:Omar F., Siddiqui; Mo Mojahedi; 2599:for electrically connecting the 2027:classical electromagnetic theory 363:DPS has a conventional positive 74:, structures to produce unusual 4745:Eric Savitz (August 21, 2012). 3019:Description of research results 3013:Ost, Laura (January 26, 2010). 1550:. Microwave components such as 1464:Conventional transmission lines 1392:created the view that metal at 1273:line to make the paired system 271:were able to show that a three- 4794:. Aug 21, 2012. Archived from 4423:Chatterjee, Rajeswari (1996). 2058:Radiation properties with SRRs 2037:, usually called elements. An 205:multiple-input multiple-output 191:Metamaterials employed in the 1: 5329:Radio frequency antenna types 5192:publication date May 15, 2007 4846:Alu, A.; Engheta, N. (2003). 3847:Caloz, C. (26–28 July 2007). 3550:. Vol. 2. p. 1067. 2831:10.1103/PhysRevLett.89.213902 2390:rather than the thickness of 2076:double negative metamaterials 2070:Double negative metamaterials 1808:images are not lost. Growing 1785:results in a large operating 1003:Relativistic electromagnetism 31:This Z antenna tested at the 2677:Negative index metamaterials 2652:Chirality (electromagnetism) 2589:distributed-element circuits 2199:model. This study developed 1255:microstrip transmission line 239:double negative metamaterial 5308:Radiating power through air 5291:U.S. Air Force Research Lab 4426:Antenna theory and practice 3950:10.1103/PhysRevLett.76.4773 3394:Hurst, Brian (2009-09-28). 2326:with a lossless NIM (DNG). 2191:was proposed that enhanced 2074:Through the application of 2025:Antenna theory is based on 1513:electric power transmission 213:high-impedance groundplanes 5350: 4575:. Vol. 3. p. 1. 4497:Journal of Applied Physics 4110:Journal of Applied Physics 3556:10.1109/MWSYM.2002.1011823 2018: 728:LiĂ©nard–Wiechert potential 333:. This configuration used 5269:10.1109/LAWP.2009.2029708 4724:10.1007/s00339-006-3820-9 4634:10.1007/s10762-007-9249-1 4581:10.1109/APMC.2005.1606717 4557:10.1088/1367-2630/7/1/168 3985:Bube, Richard H. (1992). 3429:(Online magazine article) 3189:. METAMORPHOSE VI AISBL. 3076:10.1109/LAWP.2009.2038180 2484:Metamaterial ground plane 2247:are not required as with 1998:Larger transmission lines 1922:negative refractive index 1762:distributed-element model 1388:The earlier discovery of 1343:three directions of space 1281:and a specific localized 993:Mathematical descriptions 703:Electromagnetic radiation 693:Electromagnetic induction 633:Magnetic vector potential 628:Magnetic scalar potential 187:Ground plane applications 164:electromagnetic radiation 103:ground-penetrating radars 5138:10.1109/TMTT.2004.839346 5037:10.1109/LAWP.2004.836576 4984:10.1109/TMTT.2003.821274 4924:10.1109/LAWP.2002.802576 4354:10.1109/TMTT.2002.805197 4280:10.1109/APS.2002.1016992 4183:10.1109/TMTT.2002.805197 4063:10.1109/LMWC.2003.822563 3806:10.1109/TMTT.2003.819193 3750:10.1109/TMTT.2005.845188 1827:capability is obtained. 1579:characteristic impedance 1479:for a transmission line. 1459:Transmission line models 1371:arrayed wires in a cubic 1247:time-domain applications 339:negative-refractive-lens 170:versus being dispersed. 4898:Engheta, Nader (2002). 4872:10.1109/TAP.2003.817553 4681:10.1109/TAP.2006.888401 4216:Applied Physics Letters 3834:April 12, 2010, at the 3666:Applied Physics Letters 3537:George V. Eleftheriades 3491:10.1126/science.1058847 3287:10.1109/TAP.2003.817561 2921:Physica Status Solidi B 2886:10.1109/TAP.2003.817556 2860:George V. Eleftheriades 2682:Nonlinear metamaterials 1757:distributed LC networks 1747:Lumped circuit elements 1731:{\displaystyle \omega } 543:Electrostatic induction 538:Electrostatic discharge 310:for frequencies in the 4536:New Journal of Physics 4022:Federal Standard 1037C 3043:Ziolkowski, Richard W. 2992:: 295–328 (34 pages). 2941:10.1002/pssb.200674505 2758:Metamaterials Handbook 2687:Photonic metamaterials 2647:Acoustic metamaterials 2632: 2537:Multiple systems have 2534: 2215:Flat lens horn antenna 1780:that can overcome the 1732: 1706: 1680: 1654: 1628: 1602: 1488: 1480: 973:Electromagnetic tensor 247:epsilon-negative (ENG) 110:wireless communication 44: 5189:U.S. patent 7,218,190 3995:. pp. 155, 156. 2722:Transformation optics 2717:Tunable metamaterials 2702:Seismic metamaterials 2697:Quantum metamaterials 2667:Metamaterial cloaking 2624: 2617:Reducing interference 2505: 2253:metamaterial cloaking 2209:mobile communications 1930:magnetic permeability 1733: 1707: 1681: 1655: 1629: 1603: 1544:printed circuit board 1509:electromagnetic waves 1486: 1471: 1449:electromagnetic waves 1283:magnetic permeability 966:Covariant formulation 758:Synchrotron radiation 698:Electromagnetic pulse 688:Electromagnetic field 285:magnetic permeability 243:double positive (DPS) 92:printed circuit board 48:Metamaterial antennas 30: 18:Metamaterial antennas 5085:10.1364/OE.16.011132 4776:on December 3, 2011. 4394:10.1364/OE.11.000696 3673:(9): 091117 (2008). 3628:10.1364/OE.11.000696 3433:Metamterial antennas 2999:10.2528/PIER04070701 2707:Split-ring resonator 2627:keyless entry system 2601:transmission element 2552:Phased array antenna 2235:beam locked on to a 2116:SRR-DNG metamaterial 1766:lumped-element model 1722: 1696: 1670: 1644: 1618: 1592: 1533:electric power lines 1523:, dielectric slabs, 1341:– with wires in the 1008:Stress–energy tensor 933:Reluctance (complex) 678:Displacement current 304:left-handed material 300:split-ring resonator 232:Novel configurations 221:ground plane surface 114:space communications 5299:Victor G. Veselago. 5251:2009IAWPL...8..989Z 5130:2005ITMTT..53...32B 5076:2008OExpr..1611132C 5029:2004IAWPL...3..261C 4976:2004ITMTT..52..199A 4916:2002IAWPL...1...10E 4864:2003ITAP...51.2558A 4716:2007ApPhA..87..151W 4673:2007ITAP...55...13A 4626:2007IJIMW..28..639W 4548:2005NJPh....7..168A 4509:2004JAP....96.1979H 4464:1999ITMTT..47.2075P 4385:2003OExpr..11..696I 4346:2002ITMTT..50.2702E 4228:2003ApPhL..82.1815G 4175:2002ITMTT..50.2702E 4122:2002JAP....92.5930G 3942:1996PhRvL..76.4773P 3894:on November 4, 2008 3865:on October 13, 2008 3798:2003ITMTT..51.2306C 3742:2005ITMTT..53.1535E 3679:2008ApPhL..93i1117C 3619:2003OExpr..11..696I 3473:2001Sci...292...77S 3406:on November 1, 2009 3269:2003ITAP...51.2626Z 3208:Metamaterials '2009 3203:on August 25, 2011. 3068:2009IAWPL...8.1329Z 2933:2007PSSBR.244.1192A 2878:2003ITAP...51.2619S 2823:2002PhRvL..89u3902E 2727:Acoustic dispersion 2521:series capacitors. 2494:were investigated. 2277:interface resonance 2114:The addition of an 2039:alternating current 2031:Maxwell's equations 1507:of energy, such as 1329:Directing radiation 923:Magnetomotive force 808:Electromotive force 778:Alternating current 713:Jefimenko equations 673:Cyclotron radiation 365:index of refraction 245:with DNG slabs, or 76:physical properties 5229:General references 5210:. JAM IT Media Ltd 4829:2011-06-05 at the 4792:The Sacramento Bee 3720:Engheta, Nader and 3374:The New York Times 3345:. pp. 43–85. 3226:2010-12-31 at the 3213:2011-06-26 at the 3029:on January 4, 2011 2732:Coplanar waveguide 2633: 2566:phased array radar 2535: 2321:Phase compensation 2268:transmission media 2197:equivalent circuit 2189:metamaterial cover 2124:order of magnitude 2100:order of magnitude 1918:transmission lines 1753:lumped LC circuits 1728: 1702: 1676: 1650: 1624: 1598: 1489: 1481: 1472:Variations on the 1369:In this instance, 771:Electrical network 608:Gauss magnetic law 573:Static electricity 533:Electric potential 408:diffraction limits 358:phase compensation 149:microwave antennas 60:electrically small 45: 4590:978-0-7803-9433-9 4517:10.1063/1.1767290 4482:10.1109/22.798002 4436:978-0-470-20957-8 4340:(12): 2702–2712. 4289:978-0-7803-7330-3 4236:10.1063/1.1561167 4130:10.1063/1.1513194 4002:978-0-12-138553-8 3991:. San Diego, CA: 3936:(25): 4773–4776. 3826:UCLA Technology. 3687:10.1063/1.2978071 3565:978-0-7803-7239-9 3535:Iyer, Ashwin K.; 3352:978-0-471-76102-0 3196:978-0-9551179-6-1 2872:(10): 2619–2625. 1946:tens of gigahertz 1802:diffraction limit 1798:diffraction limit 1796:can overcome the 1740:angular frequency 1705:{\displaystyle j} 1679:{\displaystyle C} 1653:{\displaystyle G} 1627:{\displaystyle L} 1601:{\displaystyle R} 1493:transmission line 1477:electronic symbol 1394:plasmon frequency 1311:metamaterial lens 1243:dispersive nature 1241:Because of DNG's 1239: 1238: 938:Reluctance (real) 908:Gyrator–capacitor 853:Resonant cavities 743:Maxwell equations 404:cavity resonators 393:transmission line 327:transmission line 255:cavity resonators 251:mu-negative (MNG) 215:can also improve 16:(Redirected from 5341: 5280: 5262: 5223: 5222: 5216: 5215: 5199: 5193: 5191: 5181: 5175: 5174: 5167: 5150: 5149: 5112: 5106: 5105: 5087: 5070:(15): 11132–40. 5055: 5049: 5048: 5008: 5002: 5001: 4999: 4998: 4958:(January 2004). 4948: 4942: 4941: 4939: 4938: 4895: 4876: 4875: 4843: 4834: 4821: 4815: 4809: 4803: 4802: 4784: 4778: 4777: 4772:. Archived from 4761: 4755: 4754: 4742: 4736: 4735: 4699: 4693: 4692: 4652: 4646: 4645: 4609: 4603: 4602: 4568: 4562: 4561: 4559: 4527: 4521: 4520: 4492: 4486: 4485: 4475: 4447: 4441: 4440: 4420: 4407: 4406: 4396: 4364: 4358: 4357: 4331: 4322: 4309: 4308: 4307:on July 6, 2011. 4306: 4300:. Archived from 4269: 4260: 4254: 4253: 4251: 4250: 4245:on July 20, 2011 4244: 4238:. Archived from 4213: 4204: 4193: 4192: 4190: 4189: 4160: 4151: 4140: 4139: 4137: 4136: 4107: 4098: 4089: 4088: 4086: 4085: 4079: 4073:. Archived from 4046: 4037: 4024: 4019: 4013: 4012: 4010: 4009: 3993:Elsevier Science 3982: 3976: 3975: 3973: 3972: 3966: 3960:. Archived from 3930:Phys. Rev. Lett. 3926: 3914: 3903: 3902: 3900: 3899: 3893: 3880: 3874: 3873: 3871: 3870: 3864: 3853: 3844: 3838: 3824: 3818: 3817: 3779: 3768: 3767: 3765: 3764: 3716: 3705: 3704: 3702: 3701: 3695: 3689:. Archived from 3662: 3653: 3647: 3646: 3644: 3643: 3630: 3602: 3593: 3584: 3583: 3581: 3580: 3545: 3532: 3511: 3510: 3484: 3456: 3450: 3449: 3444: 3443: 3430: 3421: 3415: 3414: 3412: 3411: 3402:. Archived from 3391: 3385: 3384: 3382: 3381: 3371: 3363: 3357: 3356: 3343:Wiley & Sons 3332: 3319: 3314: 3297: 3296: 3294: 3293: 3280: 3254: 3245: 3232: 3204: 3199:. Archived from 3178: 3172: 3169: 3167: 3166: 3157:. Archived from 3150: 3142: 3141:on July 6, 2011. 3140: 3134:. Archived from 3133: 3125: 3119: 3118: 3116: 3115: 3108:Navy SBIR / STTR 3099: 3090: 3087: 3051: 3037: 3035: 3034: 3025:. Archived from 3010: 3004: 3003: 3001: 2975: 2969: 2968: 2966: 2965: 2952: 2927:(4): 1192–1196. 2918: 2909: 2890: 2889: 2855: 2849: 2848: 2846: 2845: 2811:Phys. Rev. Lett. 2807: 2798: 2785: 2779: 2692:Photonic crystal 2498:Patented systems 2308:, and slab 2 = d 2153:monopole antenna 2122:by more than an 2029:as described by 1810:evanescent waves 1737: 1735: 1734: 1729: 1711: 1709: 1708: 1703: 1690:per unit length, 1685: 1683: 1682: 1677: 1659: 1657: 1656: 1651: 1638:per unit length, 1633: 1631: 1630: 1625: 1612:per unit length, 1607: 1605: 1604: 1599: 1535:and waveguides. 1495:is the material 1453:plasma frequency 1410:. For aluminium 1383:lattice constant 1360:plasma frequency 1355:refractive index 1351:plasma frequency 1323:evanescent waves 1231: 1224: 1217: 898:Electric machine 881:Magnetic circuit 843:Parallel circuit 833:Network analysis 798:Electric current 733:London equations 578:Triboelectricity 568:Potential energy 437: 427:Electromagnetism 418: 377:phase difference 356:DNG can provide 323:reactive loading 308:refractive index 211:. Metamaterial, 160:refractive index 128:Antennas designs 21: 5349: 5348: 5344: 5343: 5342: 5340: 5339: 5338: 5319: 5318: 5287: 5260:10.1.1.205.4814 5234: 5231: 5226: 5213: 5211: 5201: 5200: 5196: 5187: 5182: 5178: 5169: 5168: 5153: 5114: 5113: 5109: 5057: 5056: 5052: 5010: 5009: 5005: 4996: 4994: 4952:AlĂč, Andrea and 4950: 4949: 4945: 4936: 4934: 4897: 4896: 4879: 4845: 4844: 4837: 4831:Wayback Machine 4822: 4818: 4810: 4806: 4798:on 2012-09-01. 4786: 4785: 4781: 4763: 4762: 4758: 4744: 4743: 4739: 4701: 4700: 4696: 4654: 4653: 4649: 4611: 4610: 4606: 4591: 4570: 4569: 4565: 4529: 4528: 4524: 4494: 4493: 4489: 4473:10.1.1.564.7060 4449: 4448: 4444: 4437: 4422: 4421: 4410: 4366: 4365: 4361: 4329: 4324: 4323: 4312: 4304: 4290: 4267: 4262: 4261: 4257: 4248: 4246: 4242: 4211: 4206: 4205: 4196: 4187: 4185: 4158: 4153: 4152: 4143: 4134: 4132: 4105: 4100: 4099: 4092: 4083: 4081: 4077: 4044: 4039: 4038: 4027: 4020: 4016: 4007: 4005: 4003: 3984: 3983: 3979: 3970: 3968: 3964: 3924: 3916: 3915: 3906: 3897: 3895: 3891: 3882: 3881: 3877: 3868: 3866: 3862: 3851: 3846: 3845: 3841: 3836:Wayback Machine 3825: 3821: 3792:(12): 203–206. 3781: 3780: 3771: 3762: 3760: 3718: 3717: 3708: 3699: 3697: 3693: 3660: 3655: 3654: 3650: 3641: 3639: 3600: 3595: 3594: 3587: 3578: 3576: 3566: 3543: 3534: 3533: 3514: 3482:10.1.1.119.1617 3467:(5514): 77–79. 3458: 3457: 3453: 3441: 3439: 3428: 3423: 3422: 3418: 3409: 3407: 3393: 3392: 3388: 3379: 3377: 3369: 3365: 3364: 3360: 3353: 3334: 3333: 3322: 3315: 3300: 3291: 3289: 3278:10.1.1.205.5571 3252: 3247: 3246: 3235: 3228:Wayback Machine 3215:Wayback Machine 3197: 3180: 3179: 3175: 3164: 3162: 3153: 3145: 3138: 3131: 3127: 3126: 3122: 3113: 3111: 3101: 3100: 3093: 3049: 3041: 3032: 3030: 3012: 3011: 3007: 2977: 2976: 2972: 2963: 2961: 2916: 2911: 2910: 2893: 2857: 2856: 2852: 2843: 2841: 2805: 2800: 2799: 2788: 2780: 2776: 2772: 2767: 2642: 2619: 2610: 2554: 2500: 2491: 2486: 2478: 2465: 2452: 2448: 2439: 2435: 2426: 2413: 2409: 2400: 2396: 2387: 2383: 2374: 2370: 2366: 2362: 2355: 2351: 2347: 2340: 2336: 2332: 2323: 2318: 2311: 2307: 2303: 2299: 2295: 2291: 2285: 2264: 2233:radio frequency 2226: 2217: 2181: 2112: 2072: 2060: 2023: 2021:Antenna (radio) 2017: 2000: 1988: 1975: 1959: 1903: 1879:Poynting vector 1859: 1774: 1749: 1720: 1719: 1694: 1693: 1668: 1667: 1642: 1641: 1616: 1615: 1590: 1589: 1584: 1576: 1466: 1461: 1415: 1400: 1375:crystal lattice 1331: 1307: 1294: 1235: 1206: 1205: 1021: 1013: 1012: 968: 958: 957: 913:Induction motor 883: 873: 872: 788:Current density 773: 763: 762: 753:Poynting vector 663: 661:Electrodynamics 653: 652: 648:Right-hand rule 613:Magnetic dipole 603:Biot–Savart law 593: 583: 582: 518:Electric dipole 513:Electric charge 488: 416: 354: 263: 234: 197:radio frequency 189: 176: 156:frequency range 130: 64:antenna systems 50:are a class of 23: 22: 15: 12: 11: 5: 5347: 5345: 5337: 5336: 5331: 5321: 5320: 5317: 5316: 5310: 5305: 5300: 5294: 5286: 5285:External links 5283: 5282: 5281: 5230: 5227: 5225: 5224: 5194: 5184:Engheta, Nader 5176: 5151: 5107: 5064:Optics Express 5050: 5003: 4943: 4877: 4835: 4816: 4804: 4779: 4756: 4737: 4710:(2): 151–156. 4694: 4647: 4604: 4589: 4563: 4522: 4487: 4442: 4435: 4408: 4379:(7): 696–708. 4373:Optics Express 4359: 4310: 4288: 4255: 4194: 4141: 4090: 4025: 4014: 4001: 3977: 3904: 3875: 3839: 3819: 3769: 3706: 3648: 3613:(7): 696–708. 3606:Optics Express 3585: 3564: 3539:(2002-06-07). 3512: 3451: 3416: 3386: 3358: 3351: 3320: 3298: 3233: 3231: 3230: 3218: 3195: 3173: 3171: 3170: 3151: 3120: 3091: 3089: 3088: 3005: 2970: 2891: 2850: 2817:(21): 213902. 2786: 2773: 2771: 2768: 2766: 2765: 2760: 2754: 2753: 2752: 2751: 2750: 2749: 2748: 2747: 2735: 2734: 2729: 2724: 2719: 2714: 2709: 2704: 2699: 2694: 2689: 2684: 2679: 2674: 2669: 2664: 2659: 2654: 2649: 2643: 2641: 2638: 2618: 2615: 2609: 2606: 2558:biconcave lens 2553: 2550: 2499: 2496: 2490: 2487: 2485: 2482: 2477: 2474: 2464: 2461: 2450: 2446: 2437: 2433: 2425: 2422: 2411: 2407: 2398: 2394: 2385: 2381: 2372: 2368: 2364: 2360: 2353: 2349: 2345: 2338: 2334: 2330: 2322: 2319: 2317: 2314: 2309: 2305: 2301: 2297: 2293: 2289: 2284: 2281: 2263: 2260: 2245:phase shifters 2225: 2222: 2216: 2213: 2180: 2179:Patch antennas 2177: 2120:radiated power 2118:increased the 2111: 2108: 2080:power radiated 2071: 2068: 2059: 2056: 2019:Main article: 2016: 2015:Configurations 2013: 1999: 1996: 1987: 1984: 1974: 1971: 1958: 1955: 1937:lumped circuit 1907:RF frequencies 1905:Using SRRs at 1902: 1899: 1858: 1855: 1847:phase response 1773: 1770: 1748: 1745: 1744: 1743: 1727: 1717: 1714:imaginary unit 1701: 1691: 1675: 1665: 1649: 1639: 1623: 1613: 1597: 1582: 1574: 1564:power dividers 1529:optical fibers 1521:coaxial cables 1465: 1462: 1460: 1457: 1413: 1398: 1345:and slices of 1330: 1327: 1306: 1305:Microwave lens 1303: 1293: 1290: 1275:dispersionless 1237: 1236: 1234: 1233: 1226: 1219: 1211: 1208: 1207: 1204: 1203: 1198: 1193: 1188: 1183: 1178: 1173: 1168: 1163: 1158: 1153: 1148: 1143: 1138: 1133: 1128: 1123: 1118: 1113: 1108: 1103: 1098: 1093: 1088: 1083: 1078: 1073: 1068: 1063: 1058: 1053: 1048: 1043: 1038: 1033: 1028: 1022: 1019: 1018: 1015: 1014: 1011: 1010: 1005: 1000: 995: 990: 988:Four-potential 985: 980: 975: 969: 964: 963: 960: 959: 956: 955: 950: 945: 940: 935: 930: 925: 920: 915: 910: 905: 903:Electric motor 900: 895: 890: 884: 879: 878: 875: 874: 871: 870: 865: 860: 858:Series circuit 855: 850: 845: 840: 835: 830: 828:Kirchhoff laws 825: 820: 815: 810: 805: 800: 795: 793:Direct current 790: 785: 780: 774: 769: 768: 765: 764: 761: 760: 755: 750: 748:Maxwell tensor 745: 740: 735: 730: 725: 720: 718:Larmor formula 715: 710: 705: 700: 695: 690: 685: 680: 675: 670: 668:Bremsstrahlung 664: 659: 658: 655: 654: 651: 650: 645: 640: 635: 630: 625: 620: 618:Magnetic field 615: 610: 605: 600: 594: 591:Magnetostatics 589: 588: 585: 584: 581: 580: 575: 570: 565: 560: 555: 550: 545: 540: 535: 530: 525: 523:Electric field 520: 515: 510: 505: 500: 495: 493:Charge density 489: 486:Electrostatics 484: 483: 480: 479: 478: 477: 472: 467: 462: 457: 452: 447: 439: 438: 430: 429: 423: 422: 421:Articles about 415: 412: 353: 350: 335:positive index 262: 259: 233: 230: 209:antenna arrays 188: 185: 175: 172: 129: 126: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5346: 5335: 5334:Metamaterials 5332: 5330: 5327: 5326: 5324: 5314: 5311: 5309: 5306: 5304: 5301: 5298: 5295: 5292: 5289: 5288: 5284: 5278: 5274: 5270: 5266: 5261: 5256: 5252: 5248: 5244: 5240: 5239: 5233: 5232: 5228: 5221: 5209: 5205: 5198: 5195: 5190: 5185: 5180: 5177: 5172: 5166: 5164: 5162: 5160: 5158: 5156: 5152: 5147: 5143: 5139: 5135: 5131: 5127: 5123: 5119: 5111: 5108: 5103: 5099: 5095: 5091: 5086: 5081: 5077: 5073: 5069: 5065: 5061: 5054: 5051: 5046: 5042: 5038: 5034: 5030: 5026: 5022: 5018: 5014: 5007: 5004: 4993: 4989: 4985: 4981: 4977: 4973: 4969: 4965: 4961: 4957: 4956:Nader Engheta 4953: 4947: 4944: 4933: 4929: 4925: 4921: 4917: 4913: 4909: 4905: 4901: 4894: 4892: 4890: 4888: 4886: 4884: 4882: 4878: 4873: 4869: 4865: 4861: 4857: 4853: 4849: 4842: 4840: 4836: 4832: 4828: 4825: 4820: 4817: 4813: 4808: 4805: 4801: 4797: 4793: 4789: 4783: 4780: 4775: 4771: 4770:IEEE Spectrum 4767: 4760: 4757: 4752: 4748: 4741: 4738: 4733: 4729: 4725: 4721: 4717: 4713: 4709: 4705: 4704:Appl. Phys. A 4698: 4695: 4690: 4686: 4682: 4678: 4674: 4670: 4666: 4662: 4658: 4651: 4648: 4643: 4639: 4635: 4631: 4627: 4623: 4619: 4615: 4608: 4605: 4600: 4596: 4592: 4586: 4582: 4578: 4574: 4567: 4564: 4558: 4553: 4549: 4545: 4541: 4537: 4533: 4526: 4523: 4518: 4514: 4510: 4506: 4502: 4498: 4491: 4488: 4483: 4479: 4474: 4469: 4465: 4461: 4457: 4453: 4446: 4443: 4438: 4432: 4428: 4427: 4419: 4417: 4415: 4413: 4409: 4404: 4400: 4395: 4390: 4386: 4382: 4378: 4374: 4370: 4363: 4360: 4355: 4351: 4347: 4343: 4339: 4335: 4328: 4321: 4319: 4317: 4315: 4311: 4303: 4299: 4295: 4291: 4285: 4281: 4277: 4273: 4266: 4259: 4256: 4241: 4237: 4233: 4229: 4225: 4221: 4217: 4210: 4203: 4201: 4199: 4195: 4184: 4180: 4176: 4172: 4168: 4164: 4157: 4150: 4148: 4146: 4142: 4131: 4127: 4123: 4119: 4115: 4111: 4104: 4097: 4095: 4091: 4080:on 2007-07-22 4076: 4072: 4068: 4064: 4060: 4056: 4052: 4051: 4043: 4036: 4034: 4032: 4030: 4026: 4023: 4018: 4015: 4004: 3998: 3994: 3990: 3989: 3981: 3978: 3967:on 2011-07-17 3963: 3959: 3955: 3951: 3947: 3943: 3939: 3935: 3932: 3931: 3923: 3919: 3913: 3911: 3909: 3905: 3890: 3886: 3879: 3876: 3861: 3857: 3850: 3843: 3840: 3837: 3833: 3829: 3823: 3820: 3815: 3811: 3807: 3803: 3799: 3795: 3791: 3787: 3786: 3778: 3776: 3774: 3770: 3759: 3755: 3751: 3747: 3743: 3739: 3735: 3731: 3730: 3725: 3721: 3715: 3713: 3711: 3707: 3696:on 2011-06-05 3692: 3688: 3684: 3680: 3676: 3672: 3668: 3667: 3659: 3652: 3649: 3638: 3634: 3629: 3624: 3620: 3616: 3612: 3608: 3607: 3599: 3592: 3590: 3586: 3575: 3571: 3567: 3561: 3557: 3553: 3549: 3542: 3538: 3531: 3529: 3527: 3525: 3523: 3521: 3519: 3517: 3513: 3508: 3504: 3500: 3496: 3492: 3488: 3483: 3478: 3474: 3470: 3466: 3462: 3455: 3452: 3448: 3438: 3437:IEEE Spectrum 3434: 3427: 3420: 3417: 3405: 3401: 3397: 3390: 3387: 3375: 3368: 3362: 3359: 3354: 3348: 3344: 3340: 3339: 3331: 3329: 3327: 3325: 3321: 3318: 3313: 3311: 3309: 3307: 3305: 3303: 3299: 3288: 3284: 3279: 3274: 3270: 3266: 3262: 3258: 3251: 3244: 3242: 3240: 3238: 3234: 3229: 3225: 3222: 3219: 3216: 3212: 3209: 3206: 3205: 3202: 3198: 3192: 3188: 3184: 3177: 3174: 3161:on 2009-05-13 3160: 3156: 3152: 3148: 3144: 3143: 3137: 3130: 3124: 3121: 3109: 3105: 3098: 3096: 3092: 3085: 3081: 3077: 3073: 3069: 3065: 3061: 3057: 3056: 3048: 3044: 3040: 3039: 3028: 3024: 3020: 3016: 3009: 3006: 3000: 2995: 2991: 2987: 2986: 2981: 2974: 2971: 2960: 2956: 2951: 2946: 2942: 2938: 2934: 2930: 2926: 2922: 2915: 2908: 2906: 2904: 2902: 2900: 2898: 2896: 2892: 2887: 2883: 2879: 2875: 2871: 2867: 2866: 2861: 2854: 2851: 2840: 2836: 2832: 2828: 2824: 2820: 2816: 2813: 2812: 2804: 2797: 2795: 2793: 2791: 2787: 2784: 2778: 2775: 2769: 2764: 2761: 2759: 2756: 2755: 2746: 2743: 2742: 2741: 2740: 2739: 2738: 2737: 2736: 2733: 2730: 2728: 2725: 2723: 2720: 2718: 2715: 2713: 2710: 2708: 2705: 2703: 2700: 2698: 2695: 2693: 2690: 2688: 2685: 2683: 2680: 2678: 2675: 2673: 2670: 2668: 2665: 2663: 2660: 2658: 2655: 2653: 2650: 2648: 2645: 2644: 2639: 2637: 2631: 2628: 2623: 2616: 2614: 2607: 2605: 2602: 2598: 2592: 2590: 2584: 2582: 2577: 2574: 2569: 2567: 2563: 2559: 2551: 2549: 2547: 2542: 2540: 2532: 2528: 2524: 2520: 2516: 2512: 2508: 2504: 2497: 2495: 2488: 2483: 2481: 2475: 2473: 2470: 2462: 2460: 2456: 2454: 2453: 2441: 2440: 2423: 2421: 2418: 2415: 2414: 2403:. Therefore, 2402: 2401: 2389: 2388: 2376: 2375: 2342: 2327: 2320: 2315: 2313: 2282: 2280: 2278: 2272: 2269: 2261: 2259: 2256: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2223: 2221: 2214: 2212: 2210: 2206: 2202: 2198: 2194: 2190: 2186: 2185:patch antenna 2178: 2176: 2174: 2168: 2164: 2162: 2158: 2157:coaxial cable 2154: 2150: 2146: 2141: 2137: 2132: 2129: 2125: 2121: 2117: 2109: 2107: 2103: 2101: 2097: 2093: 2089: 2085: 2081: 2077: 2069: 2067: 2065: 2064:metamaterials 2057: 2055: 2051: 2047: 2043: 2040: 2036: 2032: 2028: 2022: 2014: 2012: 2008: 2004: 1997: 1995: 1992: 1985: 1983: 1980: 1972: 1970: 1966: 1964: 1956: 1954: 1951: 1947: 1943: 1938: 1933: 1931: 1927: 1923: 1919: 1914: 1912: 1908: 1900: 1898: 1894: 1890: 1886: 1882: 1880: 1876: 1871: 1868: 1863: 1856: 1854: 1852: 1848: 1844: 1839: 1837: 1833: 1828: 1826: 1821: 1819: 1815: 1811: 1807: 1803: 1799: 1795: 1790: 1788: 1783: 1779: 1771: 1769: 1767: 1763: 1758: 1754: 1746: 1741: 1725: 1718: 1715: 1699: 1692: 1689: 1673: 1666: 1663: 1647: 1640: 1637: 1621: 1614: 1611: 1595: 1588: 1587: 1586: 1580: 1571: 1567: 1565: 1561: 1557: 1553: 1549: 1545: 1541: 1536: 1534: 1530: 1526: 1522: 1518: 1514: 1510: 1506: 1502: 1498: 1494: 1485: 1478: 1475: 1470: 1463: 1458: 1456: 1454: 1450: 1446: 1442: 1438: 1434: 1429: 1426: 1424: 1420: 1417:= 15 eV, and 1416: 1409: 1405: 1401: 1395: 1391: 1386: 1384: 1380: 1379:antenna array 1376: 1372: 1367: 1365: 1361: 1356: 1352: 1348: 1344: 1340: 1337:mesh of thin 1336: 1328: 1326: 1324: 1320: 1316: 1312: 1304: 1302: 1298: 1291: 1289: 1286: 1284: 1280: 1276: 1272: 1268: 1263: 1260: 1256: 1252: 1248: 1244: 1232: 1227: 1225: 1220: 1218: 1213: 1212: 1210: 1209: 1202: 1199: 1197: 1194: 1192: 1189: 1187: 1184: 1182: 1179: 1177: 1174: 1172: 1169: 1167: 1164: 1162: 1159: 1157: 1154: 1152: 1149: 1147: 1144: 1142: 1139: 1137: 1134: 1132: 1129: 1127: 1124: 1122: 1119: 1117: 1114: 1112: 1109: 1107: 1104: 1102: 1099: 1097: 1094: 1092: 1089: 1087: 1084: 1082: 1079: 1077: 1074: 1072: 1069: 1067: 1064: 1062: 1059: 1057: 1054: 1052: 1049: 1047: 1044: 1042: 1039: 1037: 1034: 1032: 1029: 1027: 1024: 1023: 1017: 1016: 1009: 1006: 1004: 1001: 999: 996: 994: 991: 989: 986: 984: 981: 979: 976: 974: 971: 970: 967: 962: 961: 954: 951: 949: 946: 944: 941: 939: 936: 934: 931: 929: 926: 924: 921: 919: 916: 914: 911: 909: 906: 904: 901: 899: 896: 894: 891: 889: 886: 885: 882: 877: 876: 869: 866: 864: 861: 859: 856: 854: 851: 849: 846: 844: 841: 839: 836: 834: 831: 829: 826: 824: 823:Joule heating 821: 819: 816: 814: 811: 809: 806: 804: 801: 799: 796: 794: 791: 789: 786: 784: 781: 779: 776: 775: 772: 767: 766: 759: 756: 754: 751: 749: 746: 744: 741: 739: 738:Lorentz force 736: 734: 731: 729: 726: 724: 721: 719: 716: 714: 711: 709: 706: 704: 701: 699: 696: 694: 691: 689: 686: 684: 681: 679: 676: 674: 671: 669: 666: 665: 662: 657: 656: 649: 646: 644: 641: 639: 638:Magnetization 636: 634: 631: 629: 626: 624: 623:Magnetic flux 621: 619: 616: 614: 611: 609: 606: 604: 601: 599: 596: 595: 592: 587: 586: 579: 576: 574: 571: 569: 566: 564: 561: 559: 556: 554: 551: 549: 546: 544: 541: 539: 536: 534: 531: 529: 528:Electric flux 526: 524: 521: 519: 516: 514: 511: 509: 506: 504: 501: 499: 496: 494: 491: 490: 487: 482: 481: 476: 473: 471: 468: 466: 465:Computational 463: 461: 458: 456: 453: 451: 448: 446: 443: 442: 441: 440: 436: 432: 431: 428: 424: 420: 419: 413: 411: 409: 405: 401: 400:subwavelength 396: 394: 389: 384: 382: 378: 374: 370: 366: 361: 359: 351: 349: 346: 342: 340: 336: 332: 328: 324: 319: 317: 313: 309: 305: 301: 297: 292: 290: 286: 282: 278: 274: 270: 267: 260: 258: 256: 252: 248: 244: 240: 231: 229: 226: 225:beam scanning 222: 218: 214: 210: 206: 203:channels of ( 202: 198: 194: 193:ground planes 186: 184: 180: 174:The DNG shell 173: 171: 169: 165: 161: 157: 152: 150: 145: 143: 139: 135: 127: 125: 123: 119: 115: 111: 106: 104: 101:and portable 100: 99:micro-sensors 95: 93: 88: 83: 81: 77: 73: 69: 65: 61: 57: 56:metamaterials 53: 49: 42: 38: 34: 29: 19: 5242: 5236: 5218: 5212:. Retrieved 5207: 5197: 5179: 5121: 5117: 5110: 5067: 5063: 5053: 5020: 5016: 5006: 4995:. Retrieved 4967: 4963: 4946: 4935:. Retrieved 4910:(1): 10–13. 4907: 4903: 4858:(10): 2558. 4855: 4851: 4819: 4807: 4799: 4796:the original 4791: 4782: 4774:the original 4769: 4759: 4750: 4740: 4707: 4703: 4697: 4664: 4660: 4650: 4617: 4613: 4607: 4572: 4566: 4539: 4535: 4525: 4500: 4496: 4490: 4458:(11): 2075. 4455: 4451: 4445: 4425: 4376: 4372: 4362: 4337: 4333: 4302:the original 4271: 4258: 4247:. Retrieved 4240:the original 4222:(12): 1815. 4219: 4215: 4186:. Retrieved 4169:(12): 2702. 4166: 4162: 4133:. Retrieved 4116:(10): 5930. 4113: 4109: 4082:. Retrieved 4075:the original 4057:(2): 68–70. 4054: 4048: 4017: 4006:. Retrieved 3987: 3980: 3969:. Retrieved 3962:the original 3933: 3928: 3896:. Retrieved 3889:the original 3878: 3867:. Retrieved 3860:the original 3855: 3842: 3822: 3789: 3783: 3761:. Retrieved 3733: 3727: 3698:. Retrieved 3691:the original 3670: 3664: 3651: 3640:. Retrieved 3610: 3604: 3577:. Retrieved 3547: 3464: 3460: 3454: 3446: 3440:. Retrieved 3432: 3419: 3408:. Retrieved 3404:the original 3399: 3389: 3378:. Retrieved 3376:. 2009-10-20 3373: 3361: 3337: 3290:. Retrieved 3263:(10): 2626. 3260: 3256: 3201:the original 3186: 3176: 3163:. Retrieved 3159:the original 3136:the original 3123: 3112:. Retrieved 3107: 3059: 3053: 3031:. Retrieved 3027:the original 3018: 3008: 2989: 2983: 2973: 2962:. Retrieved 2924: 2920: 2869: 2863: 2853: 2842:. Retrieved 2814: 2809: 2777: 2744: 2662:Metamaterial 2634: 2611: 2593: 2585: 2578: 2570: 2555: 2543: 2536: 2530: 2526: 2522: 2518: 2514: 2510: 2492: 2479: 2468: 2466: 2457: 2444: 2443: 2431: 2430: 2427: 2419: 2405: 2404: 2392: 2391: 2379: 2378: 2358: 2357: 2343: 2328: 2324: 2286: 2276: 2273: 2265: 2257: 2249:phased array 2228: 2227: 2218: 2182: 2172: 2169: 2165: 2133: 2113: 2104: 2084:electrically 2073: 2061: 2052: 2048: 2044: 2024: 2009: 2005: 2001: 1993: 1989: 1978: 1976: 1967: 1962: 1960: 1934: 1926:permittivity 1915: 1904: 1895: 1891: 1887: 1883: 1872: 1867:periodically 1864: 1860: 1840: 1829: 1822: 1813: 1791: 1775: 1750: 1572: 1568: 1547: 1537: 1505:transmission 1490: 1430: 1427: 1422: 1418: 1411: 1407: 1396: 1387: 1368: 1332: 1319:input device 1308: 1299: 1295: 1287: 1279:permittivity 1267:metamaterial 1264: 1240: 983:Four-current 918:Linear motor 803:Electrolysis 683:Eddy current 643:Permeability 563:Polarization 558:Permittivity 397: 385: 362: 355: 347: 343: 329:as the host 320: 295: 293: 288: 280: 277:permittivity 268: 264: 235: 190: 181: 177: 153: 146: 138:radio signal 131: 107: 96: 84: 47: 46: 41:metamaterial 5245:: 989–993. 5094:11693/13532 5023:(14): 261. 4503:(4): 1979. 3918:Pendry, J.B 3736:(4): 1535. 2950:11693/49278 2193:directivity 2140:geometrical 2128:directivity 2092:homogeneous 2078:(DNG), the 1875:wave vector 1843:phase shift 1834:. Resonant 1794:superlenses 1782:diffraction 1688:capacitance 1662:conductance 1364:microlenses 1251:group speed 953:Transformer 783:Capacitance 708:Faraday law 503:Coulomb law 445:Electricity 388:waveguiding 273:dimensional 249:slabs with 72:microscopic 5323:Categories 5214:2010-12-30 4997:2010-01-03 4970:(1): 199. 4937:2009-10-08 4620:(8): 639. 4542:(1): 168. 4249:2009-11-30 4188:2009-11-26 4135:2009-11-30 4084:2009-12-28 4008:2009-09-27 3971:2009-09-27 3898:2010-04-24 3869:2010-04-24 3763:2009-12-27 3700:2009-11-12 3642:2009-11-08 3579:2009-11-08 3442:2011-03-09 3410:2009-10-20 3380:2009-10-20 3292:2009-11-30 3217:– Sessions 3165:2011-02-06 3114:2010-03-19 3033:2010-12-22 2964:2009-09-17 2844:2009-09-16 2770:References 2573:microstrip 2507:Microstrip 2469:equivalent 2183:In 2005 a 2096:free space 2035:conductors 1916:LC-loaded 1911:LC network 1806:near field 1636:inductance 1610:resistance 1540:microstrip 1525:striplines 1404:dielectric 1315:microstrip 1292:Innovation 1271:microstrip 1020:Scientists 868:Waveguides 848:Resistance 818:Inductance 598:AmpĂšre law 381:propagates 373:plane wave 122:satellites 87:wavelength 54:which use 37:efficiency 5255:CiteSeerX 5124:(1): 32. 4732:122690235 4667:(1): 13. 4642:108959389 4468:CiteSeerX 4298:118881068 3477:CiteSeerX 3273:CiteSeerX 2712:Superlens 2562:sidelobes 2237:satellite 2207:bands in 2205:frequency 2161:aluminium 1950:varactors 1942:megahertz 1851:frequency 1832:radiation 1787:bandwidth 1726:ω 1548:substrate 1474:schematic 1433:direction 1176:Steinmetz 1106:Kirchhoff 1091:Jefimenko 1086:Hopkinson 1071:Helmholtz 1066:Heaviside 928:Permeance 813:Impedance 553:Insulator 548:Gauss law 498:Conductor 475:Phenomena 470:Textbooks 450:Magnetism 369:impedance 325:of a 2-D 316:microwave 312:gigahertz 217:radiation 207:) (MIMO) 201:microwave 168:flat lens 5146:14055916 5102:18648427 5045:25842956 4932:12554352 4827:Archived 4599:27288814 4403:19461781 4071:22121283 3958:10061377 3832:Archived 3814:32207634 3758:15293380 3637:19461781 3574:31129309 3499:11292865 3224:Archived 3211:Archived 3062:: 1329. 2839:12443413 2640:See also 2568:system. 2201:formulae 1836:coupling 1825:scanning 1792:Because 1556:couplers 1552:antennas 1437:emission 1390:plasmons 1335:metallic 1201:Wiechert 1156:Poynting 1046:Einstein 893:DC motor 888:AC motor 723:Lenz law 508:Electret 162:focuses 52:antennas 5277:7804333 5247:Bibcode 5220:future. 5208:TechEye 5126:Bibcode 5072:Bibcode 5025:Bibcode 4972:Bibcode 4912:Bibcode 4860:Bibcode 4712:Bibcode 4689:6091311 4669:Bibcode 4622:Bibcode 4544:Bibcode 4505:Bibcode 4460:Bibcode 4381:Bibcode 4342:Bibcode 4224:Bibcode 4171:Bibcode 4118:Bibcode 3938:Bibcode 3794:Bibcode 3738:Bibcode 3675:Bibcode 3615:Bibcode 3507:9321456 3469:Bibcode 3461:Science 3400:Reuters 3265:Bibcode 3084:5558201 3064:Bibcode 2959:5348103 2929:Bibcode 2874:Bibcode 2819:Bibcode 2630:key fob 2539:patents 2241:Gimbals 2187:with a 2136:annular 1944:to the 1738:is the 1712:is the 1686:is the 1660:is the 1634:is the 1608:is the 1577:to the 1560:filters 1186:Thomson 1161:Ritchie 1151:Poisson 1136:Neumann 1131:Maxwell 1126:Lorentz 1121:LiĂ©nard 1051:Faraday 1036:Coulomb 863:Voltage 838:Ohm law 460:History 318:range. 261:History 142:300 MHz 5275:  5257:  5144:  5100:  5043:  4992:234001 4990:  4930:  4751:Forbes 4730:  4687:  4640:  4597:  4587:  4470:  4433:  4401:  4296:  4286:  4069:  3999:  3956:  3830:2003. 3812:  3756:  3635:  3572:  3562:  3505:  3497:  3479:  3349:  3275:  3193:  3082:  2957:  2837:  2657:Kymeta 2509:line ( 2442:, not 2149:copper 2147:thick 2088:dipole 2086:small 1979:et al. 1977:Grbic 1818:lenses 1778:lenses 1497:medium 1445:normal 1441:energy 1171:Singer 1166:Savart 1146:Ørsted 1111:Larmor 1101:Kelvin 1056:Fizeau 1026:AmpĂšre 948:Stator 455:Optics 331:medium 296:et al. 269:et al. 266:Pendry 68:energy 5273:S2CID 5142:S2CID 5041:S2CID 4988:S2CID 4928:S2CID 4728:S2CID 4685:S2CID 4638:S2CID 4595:S2CID 4330:(PDF) 4305:(PDF) 4294:S2CID 4268:(PDF) 4243:(PDF) 4212:(PDF) 4159:(PDF) 4106:(PDF) 4078:(PDF) 4067:S2CID 4045:(PDF) 3965:(PDF) 3925:(PDF) 3892:(PDF) 3863:(PDF) 3852:(PDF) 3810:S2CID 3754:S2CID 3694:(PDF) 3661:(PDF) 3601:(PDF) 3570:S2CID 3544:(PDF) 3503:S2CID 3253:(PDF) 3139:(PDF) 3132:(PDF) 3080:S2CID 3050:(PDF) 2955:S2CID 2917:(PDF) 2806:(PDF) 2745:Books 2546:radar 1849:with 1716:, and 1517:wires 1339:wires 1196:Weber 1191:Volta 1181:Tesla 1096:Joule 1081:Hertz 1076:Henry 1061:Gauss 943:Rotor 199:, or 166:by a 134:power 80:power 5313:NTIA 5098:PMID 4585:ISBN 4431:ISBN 4399:PMID 4284:ISBN 3997:ISBN 3954:PMID 3633:PMID 3560:ISBN 3495:PMID 3347:ISBN 3191:ISBN 2835:PMID 2173:λ/40 1928:and 1562:and 1501:path 1347:foam 1309:The 1116:Lenz 1041:Davy 1031:Biot 291:"). 5265:doi 5134:doi 5090:hdl 5080:doi 5033:doi 4980:doi 4920:doi 4868:doi 4720:doi 4677:doi 4630:doi 4577:doi 4552:doi 4513:doi 4478:doi 4389:doi 4350:doi 4276:doi 4232:doi 4179:doi 4126:doi 4059:doi 3946:doi 3802:doi 3746:doi 3683:doi 3623:doi 3552:doi 3487:doi 3465:292 3283:doi 3072:doi 2994:doi 2945:hdl 2937:doi 2925:244 2882:doi 2827:doi 2597:via 2531:405 2527:404 2523:403 2519:402 2515:401 2511:400 2449:+ d 2436:/ d 2410:+ d 2397:+ d 2384:/ d 2371:/ n 2367:= n 2363:/ d 2300:, u 2296:, u 2292:, Δ 2082:by 1755:or 1511:or 1435:of 1141:Ohm 314:or 287:( " 118:GPS 5325:: 5271:. 5263:. 5253:. 5241:. 5217:. 5206:. 5154:^ 5140:. 5132:. 5122:53 5120:. 5096:. 5088:. 5078:. 5068:16 5066:. 5062:. 5039:. 5031:. 5019:. 5015:. 4986:. 4978:. 4968:52 4966:. 4962:. 4954:; 4926:. 4918:. 4906:. 4902:. 4880:^ 4866:. 4856:51 4854:. 4850:. 4838:^ 4790:. 4768:. 4749:. 4726:. 4718:. 4708:87 4706:. 4683:. 4675:. 4665:55 4663:. 4659:. 4636:. 4628:. 4618:28 4616:. 4593:. 4583:. 4550:. 4538:. 4534:. 4511:. 4501:96 4499:. 4476:. 4466:. 4456:47 4454:. 4411:^ 4397:. 4387:. 4377:11 4375:. 4371:. 4348:. 4338:50 4336:. 4332:. 4313:^ 4292:. 4282:. 4270:. 4230:. 4220:82 4218:. 4214:. 4197:^ 4177:. 4167:50 4165:. 4161:. 4144:^ 4124:. 4114:92 4112:. 4108:. 4093:^ 4065:. 4055:14 4053:. 4047:. 4028:^ 3952:. 3944:. 3934:76 3927:. 3907:^ 3854:. 3808:. 3800:. 3790:51 3788:. 3772:^ 3752:. 3744:. 3734:53 3732:. 3726:. 3709:^ 3681:. 3671:93 3669:. 3663:. 3631:. 3621:. 3611:11 3609:. 3603:. 3588:^ 3568:. 3558:. 3546:. 3515:^ 3501:. 3493:. 3485:. 3475:. 3463:. 3445:. 3435:. 3431:. 3398:. 3372:. 3341:. 3323:^ 3301:^ 3281:. 3271:. 3261:51 3259:. 3255:. 3236:^ 3185:. 3106:. 3094:^ 3078:. 3070:. 3058:. 3052:. 3021:. 3017:. 2990:51 2988:. 2982:. 2953:. 2943:. 2935:. 2923:. 2919:. 2894:^ 2880:. 2870:51 2868:. 2833:. 2825:. 2815:89 2808:. 2789:^ 2625:A 2591:. 2541:. 2145:ÎŒm 1963:TL 1820:. 1768:. 1558:, 1554:, 1538:A 1531:, 1527:, 1519:, 1491:A 1455:. 1425:. 1373:, 1259:RF 410:. 402:, 279:(" 120:, 116:, 112:, 94:. 82:. 62:) 5279:. 5267:: 5249:: 5243:8 5173:. 5148:. 5136:: 5128:: 5104:. 5092:: 5082:: 5074:: 5047:. 5035:: 5027:: 5021:3 5000:. 4982:: 4974:: 4940:. 4922:: 4914:: 4908:1 4874:. 4870:: 4862:: 4753:. 4734:. 4722:: 4714:: 4691:. 4679:: 4671:: 4644:. 4632:: 4624:: 4601:. 4579:: 4560:. 4554:: 4546:: 4540:7 4519:. 4515:: 4507:: 4484:. 4480:: 4462:: 4439:. 4405:. 4391:: 4383:: 4356:. 4352:: 4344:: 4278:: 4252:. 4234:: 4226:: 4191:. 4181:: 4173:: 4138:. 4128:: 4120:: 4087:. 4061:: 4011:. 3974:. 3948:: 3940:: 3901:. 3872:. 3816:. 3804:: 3796:: 3766:. 3748:: 3740:: 3703:. 3685:: 3677:: 3645:. 3625:: 3617:: 3582:. 3554:: 3509:. 3489:: 3471:: 3413:. 3383:. 3355:. 3295:. 3285:: 3267:: 3168:. 3149:. 3117:. 3086:. 3074:: 3066:: 3060:8 3036:. 3002:. 2996:: 2967:. 2947:: 2939:: 2931:: 2888:. 2884:: 2876:: 2847:. 2829:: 2821:: 2533:. 2451:2 2447:1 2445:d 2438:2 2434:1 2432:d 2412:1 2408:1 2406:d 2399:1 2395:1 2393:d 2386:2 2382:1 2380:d 2373:1 2369:2 2365:2 2361:1 2359:d 2354:1 2350:2 2346:2 2339:1 2335:2 2331:1 2310:2 2306:1 2302:2 2298:1 2294:2 2290:1 2288:Δ 2171:( 1814:n 1742:. 1700:j 1674:C 1648:G 1622:L 1596:R 1583:0 1581:Z 1575:L 1423:Îł 1419:Îł 1414:p 1412:f 1408:Îł 1399:p 1397:f 1230:e 1223:t 1216:v 289:ÎŒ 281:Δ 20:)

Index

Metamaterial antennas

National Institute of Standards and Technology
efficiency
metamaterial
antennas
metamaterials
electrically small
antenna systems
energy
microscopic
physical properties
power
wavelength
printed circuit board
micro-sensors
ground-penetrating radars
wireless communication
space communications
GPS
satellites
power
radio signal
300 MHz
microwave antennas
frequency range
refractive index
electromagnetic radiation
flat lens
ground planes

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑