Knowledge (XXG)

Michaelis–Arbuzov reaction

Source 📝

220: 699: 608: 674: 685: 161: 705:
Phosphite esters are the least reactive class of reagents used in this reaction. They react to produce phosphonates. They require the most heating for the reaction to occur (120 °C - 160 °C is common). This high temperature allows for fractional distillation to be employed in the removal of
600:
is a competing reaction pathway for α-bromo- and α-chloroketones. Under the reaction conditions a mixture of the Perkow product and the normal Arbuzov product occur, usually favoring the Perkow product by a significant amount. Using higher temperatures during the reaction can lead to favoring of the
669:
of the reaction. The reaction proceeds smoothly when the R group is aliphatic. When all of A, B and R are aryl groups, a stable phosphonium salt is formed and the reaction proceeds no further under normal conditions. Heating to higher temperatures in the presence of alcohols has been known to give
732:
Phosphinites are the most reactive class of reagents used in this reaction. They react to produce phosphine oxides. They often require very little heating (45 °C) for the reaction to occur and have been known to self-isomerize without the presence of alkyl halides.
259:). These intermediates are occasionally stable enough to be isolated, such as for triaryl phosphites which do not react to form the phosphonate without thermal cleavage of the intermediate (200 °C), or cleavage by alcohols or bases. The displaced 680:
Phosphite salts (Ex: R = Na) can also undergo the reaction with precipitation of the corresponding Na-halide salt. Amidophosphites and silyloxyphosphites have been used before to yield amidophosphonates and phosphinic acids.
504: 664:
groups are known to slow down the rate of the reaction, with electron donating groups increasing the rate of the reaction. This is consistent with initial attack of the phosphorus reagent on the alkyl halide as the
706:
the alkyl halide produced, though excess of the starting alkyl halide can also be used. Solvents are often not used for this reaction, though there is precedent for the improvement of selectivity with its usage.
303:
group initially dissociates from the phosphonium salt followed by attack of the anion. Phosphite esters with tertiary alkyl halide groups can undergo the reaction, which would be unexpected if only an S
4236: 670:
the isomerization product. Cyclic phosphites generally react to eject the non-cyclic OR group, though for some 5-member rings additional heating is required to afford the final cyclic product.
544: 394:
of the anion. There exists many instances of the intermediate phosphonium salts being sufficiently stable that they can be isolated when the anion is weakly nucleophilic, such as with
658: 3352: 3297: 4065: 713:
of the ester to an acid is a common side reaction. The poor availability of substituted phosphonites limits the usage of this class of reagent in the Arbuzov reaction.
3407: 969:
Jacobsen, H. I.; Griffin, M. J.; Preis, S.; Jensen, E. V. (1957). "Phosphonic Acids. IV. Preparation and Reactions of β-Ketophosphonate and Enol Phosphate Esters".
3557: 2191: 219: 347:
groups. For example, the triaryl phosphites mentioned above generally do not react because they form stable phosphonium salts. Since aryl groups do not undergo S
4286: 810:
Arbuzov, A. E. (1906). "On the structure of phosphonic acid and its derivates: Isometization and transition of bonds from trivalent to pentavalent phosphorus".
4060: 3162: 1886: 565:
and substituted derivatives have been known to undergo the reaction under photolytic conditions. Secondary alkyl halides often do not react well, producing
2932: 1083: 3732: 1676: 3827: 1931: 3807: 3302: 2469: 2350: 1906: 3897: 3652: 709:
Phosphonites are generally more reactive than phosphite esters. They react to produce phosphinates. Heating is also required for the reaction, but
1119: 2484: 601:
Arbuzov product. The reaction of α-iodoketones give only the Arbuzov product. Other methods of producing β-ketophosphonates have been developed.
331:
2 reaction is unlikely to be the mechanism for the synthesis of the neopentyl halides in this reaction. Substrates that cannot react through an S
4130: 3587: 4080: 183:. Several reviews have been published. The reaction also occurs for coordinated phosphite ligands, as illustrated by the demethylation of {(C 3692: 3672: 3632: 2439: 4226: 4151: 4035: 2647: 2051: 1382: 4221: 4050: 3707: 3562: 3192: 72: 3037: 2274: 3397: 2887: 2562: 109:
phosphorus species and another alkyl halide. The picture below shows the most common types of substrates undergoing the Arbuzov reaction;
4301: 4085: 3107: 426:
As a general guideline, the reactivity of the organic halide component can be listed as follows: (from most reactive to least reactive)
3662: 549:
In general, tertiary alkyl halides, aryl halides and vinyl halides do not react. There are notable exceptions to this trend, including
4296: 4010: 3872: 3627: 4186: 3657: 3572: 3542: 3522: 3387: 3382: 2757: 2682: 2325: 2279: 2146: 1407: 4125: 4291: 4251: 4201: 3677: 3427: 3357: 1846: 3887: 3492: 2385: 2106: 3877: 1417: 1055: 1044: 1033: 4045: 3802: 3752: 2542: 2474: 2365: 1941: 1696: 1621: 1402: 604:
The reaction of trivalent phosphorus compounds with alkyl fluorides is abnormal. One example of this reactivity is shown below.
432: 283:
groups experience inversion of configuration at the carbon center attacked by the halide anion. This is what is expected of an S
4385: 3757: 3567: 3042: 2952: 1076: 4331: 4115: 4055: 3457: 3432: 3342: 2922: 2802: 1836: 1332: 4216: 3702: 3497: 1766: 4321: 3907: 3417: 2927: 2872: 2717: 2677: 2509: 2264: 1981: 1831: 752: 4281: 3842: 3797: 3287: 3142: 4316: 4231: 4090: 4005: 3902: 2977: 2632: 2300: 1711: 1272: 4206: 4181: 4166: 3862: 3727: 3682: 3447: 2992: 2842: 2056: 1736: 1681: 4211: 4156: 3687: 3102: 2817: 2812: 2305: 2121: 2111: 1826: 1686: 1636: 1631: 1606: 1512: 4380: 4266: 3867: 3787: 3402: 3367: 3212: 2637: 2597: 2494: 2269: 2021: 1966: 1566: 1277: 1267: 1242: 4241: 3942: 3747: 3182: 2747: 2722: 2662: 2254: 1961: 1611: 1796: 691:
An Arbuzov type rearrangement can also occur where the O from an OR group acts as the leaving group in the initial S
3532: 3067: 2519: 1741: 1706: 1302: 1237: 1069: 589:
being inert to the reaction conditions. When a halide atom is found in the ester chain off of the phosphorus atom,
65: 4100: 3722: 2782: 2707: 2231: 2066: 1751: 1527: 1487: 1232: 4341: 4246: 3980: 3952: 3922: 3837: 3767: 3697: 3617: 3517: 3477: 3172: 2792: 2091: 2086: 1548: 1412: 515: 320: 4306: 4176: 4040: 3882: 3742: 3262: 2236: 1786: 1746: 1497: 4196: 3792: 3762: 3637: 3592: 3422: 3332: 3147: 3137: 2967: 2524: 2464: 2429: 2216: 2176: 1951: 1821: 1337: 1327: 1257: 3772: 2752: 1776: 1322: 1202: 355:
2 type mechanisms, triaryl phosphites lack a low energy pathway for decomposition of the phosphonium salt. An
3985: 4390: 4276: 4135: 3927: 3852: 3832: 3552: 3502: 3362: 3327: 3267: 3197: 2499: 2479: 2211: 2131: 2026: 1986: 1956: 1891: 1761: 1671: 1661: 1537: 1247: 729:
functional groups cannot be used with phosphonites in the reaction as they all react with the phosphonite.
4015: 3737: 3487: 3467: 3442: 3392: 3307: 3282: 3237: 3207: 3187: 3157: 3122: 3077: 3052: 3027: 2912: 2837: 2617: 2310: 2246: 2046: 1771: 1691: 1377: 1352: 1129: 1124: 4351: 3097: 1721: 57: 3937: 3892: 3607: 3577: 3547: 3482: 3462: 3377: 3372: 3337: 3292: 3277: 3272: 3252: 3242: 3177: 3167: 3047: 2567: 2370: 1946: 1901: 1731: 1467: 1187: 1149: 842: 666: 558: 356: 1397: 1392: 3990: 607: 4120: 4070: 4020: 4000: 3847: 3822: 3537: 3527: 3412: 3227: 3222: 3152: 2937: 2737: 2697: 2627: 2592: 2547: 2514: 2380: 2355: 2335: 2156: 2116: 2076: 2041: 1971: 1726: 1596: 1571: 1109: 661: 582: 383: 698: 4336: 4326: 4311: 3957: 3932: 3917: 3912: 3642: 3597: 3582: 3472: 3452: 3347: 3232: 3217: 3062: 3007: 2997: 2987: 2962: 2727: 2602: 2577: 2489: 2345: 2330: 2315: 2171: 2136: 2081: 1851: 1701: 1646: 1517: 1432: 1292: 1217: 633: 1362: 946:
Gerrard, W.; Green, W. J. (1951). "568. Mechanism of the formation of dialkyl alkylphosphonates".
673: 4075: 4025: 3995: 3857: 3647: 3437: 3322: 3257: 3247: 3012: 2942: 2907: 2902: 2882: 2877: 2822: 2732: 2582: 2444: 2434: 2340: 2126: 2071: 2001: 1921: 1816: 1716: 1651: 1576: 1422: 1287: 1222: 893: 550: 1207: 378:
Stereochemical experiments on cyclic phosphites have revealed the presence of both pentavalent
3812: 3132: 3017: 2982: 2947: 2892: 2847: 2807: 2762: 2742: 2692: 2687: 2657: 2642: 2552: 2459: 2395: 2360: 2186: 2061: 1936: 1861: 1841: 1756: 1591: 1586: 1532: 1442: 1347: 1307: 1262: 1144: 1139: 1104: 1003: 971: 395: 172: 94: 41: 31: 569:
as side-products. Allyl and propargyl halides are also reactive, but can proceed through an S
4346: 4191: 4161: 4105: 4030: 3962: 3717: 3667: 3512: 3317: 3092: 3087: 3032: 3022: 2797: 2607: 2587: 2557: 2454: 2390: 2375: 2206: 2161: 2151: 2141: 2036: 2016: 2011: 1996: 1991: 1871: 1866: 1806: 1791: 1781: 1626: 1616: 1482: 1472: 1462: 1372: 1367: 1342: 1282: 1134: 1093: 979: 951: 928: 883: 875: 792: 742: 684: 252: 168: 27: 4256: 3947: 3782: 3777: 3072: 3057: 3002: 2957: 2917: 2867: 2832: 2827: 2772: 2767: 2702: 2652: 2572: 2400: 2284: 2259: 2221: 2196: 2181: 2166: 2101: 1976: 1926: 1916: 1896: 1856: 1666: 1656: 1641: 1437: 1357: 1182: 1177: 855: 779:"Ueber das Verhalten der Jodalkyle gegen die sogen. Phosphorigsäureester oder O-Phosphine" 747: 722: 597: 391: 180: 175:
soon thereafter. This reaction is widely used for the synthesis of various phosphonates,
150: 110: 1227: 1197: 593:
to the corresponding Arbuzov product has been known without addition of an alkyl halide.
4261: 4171: 4110: 3202: 3112: 3082: 2857: 2712: 2449: 2226: 2096: 1911: 1881: 1581: 1477: 1252: 1114: 757: 387: 160: 4374: 4271: 3972: 3817: 3712: 3507: 2897: 2862: 2852: 2787: 2777: 2667: 2504: 2320: 2031: 2006: 1876: 1522: 1507: 1492: 1387: 1317: 1297: 1212: 714: 590: 244: 897: 3312: 2672: 2424: 2201: 1801: 1601: 1452: 1447: 1312: 1167: 630:
The general form of the trivalent phosphorus reagent can be considered as follows:
292: 236: 228: 208: 102: 1811: 1457: 1427: 1192: 998: 918:
Bhattacharya, A. K.; Thyagarajan, G. (1981). "Michaelis–Arbuzov rearrangement".
578: 562: 379: 368: 340: 311:
1 type mechanism comes from the use of the Arbuzov reaction in the synthesis of
288: 176: 142: 134: 126: 118: 106: 4095: 3622: 2972: 1061: 920: 796: 586: 695:
2 attack of the phosphorus. This is only known to occur when A and B are Cl.
888: 870: 710: 372: 312: 98: 1502: 1172: 955: 783: 399: 983: 932: 1162: 315:
halides, a class of compounds that are notoriously unreactive towards S
390:. The decomposition of these intermediates is driven primarily by the 585:
interestingly enough, only undergoes the reaction a single time with
566: 554: 271:
carbons, displacing the oxygen atom to give the desired phosphonate (
260: 778: 1054:, Coll. Vol. 10, p. 289 (2004); Vol. 78, p. 169 (2002). ( 1043:, Coll. Vol. 8, p. 451 (1993); Vol. 65, p. 119 (1987). ( 726: 718: 1032:, Coll. Vol. 4, p. 325 (1963); Vol. 31, p. 33 (1951). ( 344: 1546: 1065: 660:
with A and B generally being alkyl, alkoxy or aryloxy groups.
386:
being involved in the dealkylation step of the reaction using
697: 683: 672: 606: 218: 159: 499:{\displaystyle {\ce {RCOX>RCH2X>RR'CHX\gg RR'R''CX}}} 279:). This has been supported by the observation that chiral R 453: 323:, the inert nature of the neopentyl halides towards the S 577:
2` mechanism. Reaction with primary alkyl halides and
557:
halides. Some activated aryl halides, often involving
636: 518: 435: 307:
2 mechanism was operating. Further support for this S
227:
The Michaelis–Arbuzov reaction is initiated with the
4237:
Erlenmeyer–Plöchl azlactone and amino-acid synthesis
4144: 3971: 3606: 3121: 2616: 2533: 2413: 2293: 2245: 1555: 652: 538: 498: 3298:Divinylcyclopropane-cycloheptadiene rearrangement 997:Nagata, W.; Wakabayashi, T.; Hayase, Y. (1988). 339:1 pathway generally do not react, which include 1039:Davidsen, S. K.; Phllips, G. W.; Martin, S. F. 223:The mechanism of the Michaelis–Arbuzov reaction 3558:Thermal rearrangement of aromatic hydrocarbons 2192:Thermal rearrangement of aromatic hydrocarbons 291:based mechanism of dealkylation similar to an 4287:Lectka enantioselective beta-lactam synthesis 1077: 999:"Diethyl 2-(cyclohexylamino)vinylphosphonate" 382:and tetravalent phosphonium intermediates in 8: 4066:Inverse electron-demand Diels–Alder reaction 1887:Heterogeneous metal catalyzed cross-coupling 539:{\displaystyle {\ce {RI > RBr > RCl}}} 3408:Lobry de Bruyn–Van Ekenstein transformation 3968: 2242: 1543: 1084: 1070: 1062: 871:"Michaelis–Arbusow- und Perkow-Reaktionen" 15: 3898:Petrenko-Kritschenko piperidone synthesis 3353:Fritsch–Buttenberg–Wiechell rearrangement 887: 641: 637: 635: 561:have been known to undergo the reaction. 519: 517: 452: 447: 436: 434: 4061:Intramolecular Diels–Alder cycloaddition 1050:Enders, D.; von Berg, S.; Jandeleit, B. 769: 319:2 reactions. Based on the principle of 287:2 reaction. Evidence also exists for a 263:anion then usually reacts via another S 4081:Metal-centered cycloaddition reactions 3733:Debus–Radziszewski imidazole synthesis 1677:Bodroux–Chichibabin aldehyde synthesis 851: 840: 4227:Diazoalkane 1,3-dipolar cycloaddition 4131:Vinylcyclopropane (5+2) cycloaddition 4036:Diazoalkane 1,3-dipolar cycloaddition 3808:Hurd–Mori 1,2,3-thiadiazole synthesis 3303:Dowd–Beckwith ring-expansion reaction 2470:Hurd–Mori 1,2,3-thiadiazole synthesis 1383:LFER solvent coefficients (data page) 7: 3038:Sharpless asymmetric dihydroxylation 2275:Methoxymethylenetriphenylphosphorane 913: 911: 909: 907: 3163:Allen–Millar–Trippett rearrangement 4302:Nitrone-olefin (3+2) cycloaddition 4297:Niementowski quinazoline synthesis 4086:Nitrone-olefin (3+2) cycloaddition 4011:Azide-alkyne Huisgen cycloaddition 3873:Niementowski quinazoline synthesis 3628:Azide-alkyne Huisgen cycloaddition 2933:Meerwein–Ponndorf–Verley reduction 2485:Leimgruber–Batcho indole synthesis 777:Michaelis, A.; Kaehne, R. (1898). 14: 4126:Trimethylenemethane cycloaddition 3828:Johnson–Corey–Chaykovsky reaction 3693:Cadogan–Sundberg indole synthesis 3673:Bohlmann–Rahtz pyridine synthesis 3633:Baeyer–Emmerling indole synthesis 2440:Cadogan–Sundberg indole synthesis 1932:Johnson–Corey–Chaykovsky reaction 171:in 1898, and greatly explored by 4222:Cook–Heilbron thiazole synthesis 4051:Hexadehydro Diels–Alder reaction 3878:Niementowski quinoline synthesis 3708:Cook–Heilbron thiazole synthesis 3653:Bischler–Möhlau indole synthesis 3563:Tiffeneau–Demjanov rearrangement 3193:Baker–Venkataraman rearrangement 2351:Horner–Wadsworth–Emmons reaction 2022:Mizoroki-Heck vs. Reductive Heck 1907:Horner–Wadsworth–Emmons reaction 1418:Neighbouring group participation 1028:Ford-Moore, A. H.; Perry, B. J. 3758:Fiesselmann thiophene synthesis 3588:Westphalen–Lettré rearrangement 3568:Vinylcyclopropane rearrangement 3398:Kornblum–DeLaMare rearrangement 3043:Epoxidation of allylic alcohols 2953:Noyori asymmetric hydrogenation 2888:Kornblum–DeLaMare rearrangement 2563:Gallagher–Hollander degradation 167:The reaction was discovered by 4217:Chichibabin pyridine synthesis 3703:Chichibabin pyridine synthesis 3663:Blum–Ittah aziridine synthesis 3498:Ring expansion and contraction 1767:Cross dehydrogenative coupling 653:{\displaystyle {\ce {ABP-OR}}} 367:) has also been implicated in 327:2 reaction indicates that an S 1: 4187:Bischler–Napieralski reaction 4145:Heterocycle forming reactions 3798:Hemetsberger indole synthesis 3658:Bischler–Napieralski reaction 3573:Wagner–Meerwein rearrangement 3543:Sommelet–Hauser rearrangement 3523:Seyferth–Gilbert homologation 3388:Ireland–Claisen rearrangement 3383:Hofmann–Martius rearrangement 3143:2,3-sigmatropic rearrangement 2758:Corey–Winter olefin synthesis 2683:Barton–McCombie deoxygenation 2326:Corey–Winter olefin synthesis 2280:Seyferth–Gilbert homologation 2147:Seyferth–Gilbert homologation 4292:Lehmstedt–Tanasescu reaction 4252:Gabriel–Colman rearrangement 4207:Bucherer carbazole synthesis 4202:Borsche–Drechsel cyclization 4182:Bernthsen acridine synthesis 4167:Bamberger triazine synthesis 4152:Algar–Flynn–Oyamada reaction 3863:Nazarov cyclization reaction 3728:De Kimpe aziridine synthesis 3683:Bucherer carbazole synthesis 3678:Borsche–Drechsel cyclization 3448:Nazarov cyclization reaction 3428:Meyer–Schuster rearrangement 3358:Gabriel–Colman rearrangement 3108:Wolffenstein–Böters reaction 2993:Reduction of nitro compounds 2843:Grundmann aldehyde synthesis 2648:Algar–Flynn–Oyamada reaction 2057:Olefin conversion technology 2052:Nozaki–Hiyama–Kishi reaction 1847:Gabriel–Colman rearrangement 1737:Claisen-Schmidt condensation 1682:Bouveault aldehyde synthesis 581:generally proceed smoothly. 275:) and another alkyl halide ( 4267:Hantzsch pyridine synthesis 4046:Enone–alkene cycloadditions 3868:Nenitzescu indole synthesis 3788:Hantzsch pyridine synthesis 3753:Ferrario–Ackermann reaction 3403:Kowalski ester homologation 3368:Halogen dance rearrangement 3213:Benzilic acid rearrangement 2638:Akabori amino-acid reaction 2598:Von Braun amide degradation 2543:Barbier–Wieland degradation 2495:Nenitzescu indole synthesis 2475:Kharasch–Sosnovsky reaction 2366:Julia–Kocienski olefination 2270:Kowalski ester homologation 1967:Kowalski ester homologation 1942:Julia–Kocienski olefination 1697:Cadiot–Chodkiewicz coupling 1622:Aza-Baylis–Hillman reaction 1567:Acetoacetic ester synthesis 1278:Dynamic binding (chemistry) 1268:Conrotatory and disrotatory 1243:Charge remote fragmentation 19:Michaelis–Arbuzov reaction 4407: 4332:Robinson–Gabriel synthesis 4282:Kröhnke pyridine synthesis 4116:Retro-Diels–Alder reaction 4056:Imine Diels–Alder reaction 3843:Kröhnke pyridine synthesis 3458:Newman–Kwart rearrangement 3433:Mislow–Evans rearrangement 3343:Fischer–Hepp rearrangement 3288:Di-π-methane rearrangement 3068:Stephen aldehyde synthesis 2803:Eschweiler–Clarke reaction 2520:Williamson ether synthesis 1837:Fujiwara–Moritani reaction 1742:Combes quinoline synthesis 1707:Carbonyl olefin metathesis 1408:More O'Ferrall–Jencks plot 1333:Grunwald–Winstein equation 1303:Electron-withdrawing group 1238:Catalytic resonance theory 1013:, vol. 6, p. 448 267:2 reaction on one of the R 87:Michaelis–Arbuzov reaction 4342:Urech hydantoin synthesis 4322:Pomeranz–Fritsch reaction 4247:Fischer oxazole synthesis 3981:1,3-Dipolar cycloaddition 3953:Urech hydantoin synthesis 3923:Reissert indole synthesis 3908:Pomeranz–Fritsch reaction 3838:Knorr quinoline synthesis 3768:Fischer oxazole synthesis 3698:Camps quinoline synthesis 3618:1,3-Dipolar cycloaddition 3518:Semipinacol rearrangement 3493:Ramberg–Bäcklund reaction 3478:Piancatelli rearrangement 3418:McFadyen–Stevens reaction 3173:Alpha-ketol rearrangement 2928:McFadyen–Stevens reaction 2873:Kiliani–Fischer synthesis 2793:Elbs persulfate oxidation 2718:Bouveault–Blanc reduction 2678:Baeyer–Villiger oxidation 2510:Schotten–Baumann reaction 2386:Ramberg–Bäcklund reaction 2265:Kiliani–Fischer synthesis 2107:Ramberg–Bäcklund reaction 2092:Pinacol coupling reaction 2087:Piancatelli rearrangement 1982:Liebeskind–Srogl coupling 1832:Fujimoto–Belleau reaction 1549:List of organic reactions 1413:Negative hyperconjugation 1158: 1100: 797:10.1002/cber.189803101190 753:Michaelis–Becker reaction 321:microscopic reversibility 101:phosphorus ester with an 79: 53:Organic Chemistry Portal 47: 18: 4317:Pictet–Spengler reaction 4232:Einhorn–Brunner reaction 4197:Boger pyridine synthesis 4091:Oxo-Diels–Alder reaction 4006:Aza-Diels–Alder reaction 3903:Pictet–Spengler reaction 3803:Hofmann–Löffler reaction 3793:Hegedus indole synthesis 3763:Fischer indole synthesis 3638:Bartoli indole synthesis 3593:Willgerodt rearrangement 3423:McLafferty rearrangement 3333:Ferrier carbocyclization 3148:2,3-Wittig rearrangement 3138:1,2-Wittig rearrangement 2978:Parikh–Doering oxidation 2968:Oxygen rebound mechanism 2633:Adkins–Peterson reaction 2525:Yamaguchi esterification 2465:Hegedus indole synthesis 2430:Bartoli indole synthesis 2301:Bamford–Stevens reaction 2217:Weinreb ketone synthesis 2177:Stork enamine alkylation 1952:Knoevenagel condensation 1822:Ferrier carbocyclization 1712:Castro–Stephens coupling 1338:Hammett acidity function 1328:Free-energy relationship 1273:Curtin–Hammett principle 1258:Conformational isomerism 812:J. Russ. Phys. Chem. Soc 725:, primary and secondary 243:- A phosphite) with the 4277:Knorr pyrrole synthesis 4212:Bucherer–Bergs reaction 4157:Allan–Robinson reaction 4136:Wagner-Jauregg reaction 3928:Ring-closing metathesis 3853:Larock indole synthesis 3833:Knorr pyrrole synthesis 3688:Bucherer–Bergs reaction 3553:Stieglitz rearrangement 3533:Skattebøl rearrangement 3503:Ring-closing metathesis 3363:Group transfer reaction 3328:Favorskii rearrangement 3268:Cornforth rearrangement 3198:Bamberger rearrangement 3103:Wolff–Kishner reduction 2923:Markó–Lam deoxygenation 2818:Fleming–Tamao oxidation 2813:Fischer–Tropsch process 2500:Oxymercuration reaction 2480:Knorr pyrrole synthesis 2306:Barton–Kellogg reaction 2212:Wagner-Jauregg reaction 2132:Ring-closing metathesis 2122:Reimer–Tiemann reaction 2112:Rauhut–Currier reaction 2027:Nef isocyanide reaction 1987:Malonic ester synthesis 1957:Knorr pyrrole synthesis 1892:High dilution principle 1827:Friedel–Crafts reaction 1762:Cross-coupling reaction 1687:Bucherer–Bergs reaction 1672:Blanc chloromethylation 1662:Blaise ketone synthesis 1637:Baylis–Hillman reaction 1632:Barton–Kellogg reaction 1607:Allan–Robinson reaction 1513:Woodward–Hoffmann rules 1248:Charge-transfer complex 889:10.1351/pac196409020307 869:Arbuzov, B. A. (1964). 829:Arbuzov, A. E. (1906). 207:}, which is called the 4386:Substitution reactions 4242:Feist–Benary synthesis 4016:Bradsher cycloaddition 3986:4+4 Photocycloaddition 3943:Simmons–Smith reaction 3888:Paternò–Büchi reaction 3748:Feist–Benary synthesis 3738:Dieckmann condensation 3488:Pummerer rearrangement 3468:Oxy-Cope rearrangement 3443:Myers allene synthesis 3393:Jacobsen rearrangement 3308:Electrocyclic reaction 3283:Demjanov rearrangement 3238:Buchner ring expansion 3208:Beckmann rearrangement 3188:Aza-Cope rearrangement 3183:Arndt–Eistert reaction 3158:Alkyne zipper reaction 3078:Transfer hydrogenation 3053:Sharpless oxyamination 3028:Selenoxide elimination 2913:Lombardo methylenation 2838:Griesbaum coozonolysis 2748:Corey–Itsuno reduction 2723:Boyland–Sims oxidation 2663:Angeli–Rimini reaction 2311:Boord olefin synthesis 2255:Arndt–Eistert reaction 2247:Homologation reactions 2047:Nitro-Mannich reaction 1962:Kolbe–Schmitt reaction 1772:Cross-coupling partner 1692:Buchner ring expansion 1612:Arndt–Eistert reaction 1378:Kinetic isotope effect 1125:Rearrangement reaction 702: 688: 677: 654: 611: 540: 500: 224: 164: 4101:Pauson–Khand reaction 3938:Sharpless epoxidation 3893:Pechmann condensation 3773:Friedländer synthesis 3723:Davis–Beirut reaction 3578:Wallach rearrangement 3548:Stevens rearrangement 3483:Pinacol rearrangement 3463:Overman rearrangement 3378:Hofmann rearrangement 3373:Hayashi rearrangement 3338:Ferrier rearrangement 3293:Dimroth rearrangement 3278:Curtius rearrangement 3273:Criegee rearrangement 3253:Claisen rearrangement 3243:Carroll rearrangement 3178:Amadori rearrangement 3168:Allylic rearrangement 3048:Sharpless epoxidation 2783:Dess–Martin oxidation 2708:Bohn–Schmidt reaction 2568:Hofmann rearrangement 2371:Kauffmann olefination 2294:Olefination reactions 2232:Wurtz–Fittig reaction 2067:Palladium–NHC complex 1947:Kauffmann olefination 1902:Homologation reaction 1752:Corey–House synthesis 1732:Claisen rearrangement 1528:Yukawa–Tsuno equation 1488:Swain–Lupton equation 1468:Spherical aromaticity 1403:Möbius–Hückel concept 1188:Aromatic ring current 1150:Substitution reaction 701: 687: 676: 667:rate-determining step 655: 610: 541: 501: 357:allylic rearrangement 222: 163: 4307:Paal–Knorr synthesis 4177:Barton–Zard reaction 4121:Staudinger synthesis 4071:Ketene cycloaddition 4041:Diels–Alder reaction 4021:Cheletropic reaction 4001:Alkyne trimerisation 3883:Paal–Knorr synthesis 3848:Kulinkovich reaction 3823:Jacobsen epoxidation 3743:Diels–Alder reaction 3538:Smiles rearrangement 3528:Sigmatropic reaction 3413:Lossen rearrangement 3263:Corey–Fuchs reaction 3228:Boekelheide reaction 3223:Bergmann degradation 3153:Achmatowicz reaction 2938:Methionine sulfoxide 2738:Clemmensen reduction 2698:Bergmann degradation 2628:Acyloin condensation 2593:Strecker degradation 2548:Bergmann degradation 2515:Ullmann condensation 2381:Peterson olefination 2356:Hydrazone iodination 2336:Elimination reaction 2237:Zincke–Suhl reaction 2157:Sonogashira coupling 2117:Reformatsky reaction 2077:Peterson olefination 2042:Nierenstein reaction 1972:Kulinkovich reaction 1787:Diels–Alder reaction 1747:Corey–Fuchs reaction 1727:Claisen condensation 1597:Alkyne trimerisation 1572:Acyloin condensation 1538:Σ-bishomoaromaticity 1498:Thorpe–Ingold effect 1110:Elimination reaction 956:10.1039/jr9510002550 662:Electron-withdrawing 634: 583:Carbon tetrachloride 516: 433: 384:chemical equilibrium 255:as an intermediate ( 239:phosphorus species ( 4327:Prilezhaev reaction 4312:Pellizzari reaction 3991:(4+3) cycloaddition 3958:Van Leusen reaction 3933:Robinson annulation 3918:Pschorr cyclization 3913:Prilezhaev reaction 3643:Bergman cyclization 3598:Wolff rearrangement 3583:Weerman degradation 3473:Pericyclic reaction 3453:Neber rearrangement 3348:Fries rearrangement 3233:Brook rearrangement 3218:Bergman cyclization 3063:Staudinger reaction 3008:Rosenmund reduction 2998:Reductive amination 2963:Oppenauer oxidation 2753:Corey–Kim oxidation 2728:Cannizzaro reaction 2603:Weerman degradation 2578:Isosaccharinic acid 2490:Mukaiyama hydration 2346:Hofmann elimination 2331:Dehydrohalogenation 2316:Chugaev elimination 2137:Robinson annulation 2082:Pfitzinger reaction 1852:Gattermann reaction 1797:Wulff–Dötz reaction 1777:Dakin–West reaction 1702:Carbonyl allylation 1647:Bergman cyclization 1433:Kennedy J. P. Orton 1353:Hammond's postulate 1323:Flippin–Lodge angle 1293:Electromeric effect 1218:Beta-silicon effect 1203:Baker–Nathan effect 984:10.1021/ja01567a067 933:10.1021/cr00044a004 615:Phosphorus reactant 455: 4381:Coupling reactions 4076:McCormack reaction 4026:Conia-ene reaction 3858:Madelung synthesis 3648:Biginelli reaction 3438:Mumm rearrangement 3323:Favorskii reaction 3258:Cope rearrangement 3248:Chan rearrangement 3013:Rubottom oxidation 2943:Miyaura borylation 2908:Lipid peroxidation 2903:Lindgren oxidation 2883:Kornblum oxidation 2878:Kolbe electrolysis 2823:Fukuyama reduction 2733:Carbonyl reduction 2583:Marker degradation 2445:Diazonium compound 2435:Boudouard reaction 2414:Carbon-heteroatom 2341:Grieco elimination 2127:Rieche formylation 2072:Passerini reaction 2002:Meerwein arylation 1922:Hydroxymethylation 1817:Favorskii reaction 1717:Chan rearrangement 1652:Biginelli reaction 1577:Aldol condensation 1423:2-Norbornyl cation 1398:Möbius aromaticity 1393:Markovnikov's rule 1288:Effective molarity 1233:Bürgi–Dunitz angle 1223:Bicycloaromaticity 703: 689: 678: 650: 612: 551:1,2-dichloroethene 536: 496: 443: 225: 215:Reaction mechanism 165: 4368: 4367: 4364: 4363: 4360: 4359: 4352:Wohl–Aue reaction 3996:6+4 Cycloaddition 3813:Iodolactonization 3133:1,2-rearrangement 3098:Wohl–Aue reaction 3018:Sabatier reaction 2983:Pinnick oxidation 2948:Mozingo reduction 2893:Leuckart reaction 2848:Haloform reaction 2763:Criegee oxidation 2743:Collins oxidation 2693:Benkeser reaction 2688:Bechamp reduction 2658:Andrussow process 2643:Alcohol oxidation 2553:Edman degradation 2460:Haloform reaction 2409: 2408: 2396:Takai olefination 2361:Julia olefination 2187:Takai olefination 2062:Olefin metathesis 1937:Julia olefination 1862:Grignard reaction 1842:Fukuyama coupling 1757:Coupling reaction 1722:Chan–Lam coupling 1592:Alkyne metathesis 1587:Alkane metathesis 1443:Phosphaethynolate 1348:George S. Hammond 1308:Electronic effect 1263:Conjugated system 1145:Stereospecificity 1140:Stereoselectivity 1105:Addition reaction 1094:organic reactions 1052:Organic Syntheses 1041:Organic Syntheses 1030:Organic Syntheses 1011:Collected Volumes 1004:Organic Syntheses 972:J. Am. Chem. Soc. 850:Missing or empty 648: 640: 534: 528: 522: 494: 487: 479: 472: 465: 458: 446: 439: 396:tetrafluoroborate 335:2 pathway or an S 173:Aleksandr Arbuzov 95:chemical reaction 89:(also called the 83: 82: 42:Coupling reaction 32:Aleksandr Arbuzov 4398: 4347:Wenker synthesis 4337:Stollé synthesis 4192:Bobbitt reaction 4162:Auwers synthesis 4106:Povarov reaction 4031:Cyclopropanation 3969: 3963:Wenker synthesis 3718:Darzens reaction 3668:Bobbitt reaction 3513:Schmidt reaction 3318:Enyne metathesis 3093:Whiting reaction 3088:Wharton reaction 3033:Shapiro reaction 3023:Sarett oxidation 2988:Prévost reaction 2798:Emde degradation 2608:Wohl degradation 2588:Ruff degradation 2558:Emde degradation 2455:Grignard reagent 2391:Shapiro reaction 2376:McMurry reaction 2243: 2207:Ullmann reaction 2172:Stollé synthesis 2162:Stetter reaction 2152:Shapiro reaction 2142:Sakurai reaction 2037:Negishi coupling 2017:Minisci reaction 2012:Michael reaction 1997:McMurry reaction 1992:Mannich reaction 1872:Hammick reaction 1867:Grignard reagent 1807:Enyne metathesis 1792:Doebner reaction 1782:Darzens reaction 1627:Barbier reaction 1617:Auwers synthesis 1544: 1518:Woodward's rules 1483:Superaromaticity 1473:Spiroaromaticity 1373:Inductive effect 1368:Hyperconjugation 1343:Hammett equation 1283:Edwards equation 1135:Regioselectivity 1086: 1079: 1072: 1063: 1016: 1014: 1007: 994: 988: 987: 966: 960: 959: 943: 937: 936: 915: 902: 901: 891: 876:Pure Appl. Chem. 866: 860: 859: 853: 848: 846: 838: 826: 820: 819: 807: 801: 800: 774: 743:Abramov reaction 659: 657: 656: 651: 649: 646: 645: 638: 627: 626: 622: 545: 543: 542: 537: 535: 532: 526: 520: 505: 503: 502: 497: 495: 492: 491: 485: 483: 477: 470: 469: 463: 456: 454: 451: 444: 437: 423: 422: 418: 253:phosphonium salt 181:phosphine oxides 169:August Michaelis 151:phosphine oxides 149:) react to form 133:) react to form 117:) react to form 111:phosphite esters 91:Arbuzov reaction 75: 60: 58:arbuzov-reaction 28:August Michaelis 16: 4406: 4405: 4401: 4400: 4399: 4397: 4396: 4395: 4371: 4370: 4369: 4356: 4257:Gewald reaction 4140: 3967: 3948:Skraup reaction 3783:Graham reaction 3778:Gewald reaction 3609: 3602: 3124: 3117: 3073:Swern oxidation 3058:Stahl oxidation 3003:Riley oxidation 2958:Omega oxidation 2918:Luche reduction 2868:Jones oxidation 2833:Glycol cleavage 2828:Ganem oxidation 2773:Davis oxidation 2768:Dakin oxidation 2703:Birch reduction 2653:Amide reduction 2619: 2612: 2573:Hooker reaction 2535: 2529: 2417: 2415: 2405: 2401:Wittig reaction 2289: 2285:Wittig reaction 2260:Hooker reaction 2241: 2222:Wittig reaction 2197:Thorpe reaction 2182:Suzuki reaction 2167:Stille reaction 2102:Quelet reaction 1977:Kumada coupling 1927:Ivanov reaction 1917:Hydrovinylation 1897:Hiyama coupling 1857:Glaser coupling 1667:Blaise reaction 1657:Bingel reaction 1642:Benary reaction 1559: 1557: 1551: 1542: 1438:Passive binding 1358:Homoaromaticity 1208:Baldwin's rules 1183:Antiaromaticity 1178:Anomeric effect 1154: 1096: 1090: 1025: 1020: 1019: 1009: 996: 995: 991: 968: 967: 963: 945: 944: 940: 917: 916: 905: 868: 867: 863: 849: 839: 828: 827: 823: 809: 808: 804: 776: 775: 771: 766: 748:Perkow reaction 739: 723:carboxylic acid 694: 632: 631: 628: 624: 620: 618: 617: 598:Perkow reaction 576: 572: 514: 513: 484: 476: 462: 431: 430: 424: 420: 416: 414: 413: 408: 392:nucleophilicity 364: 354: 350: 338: 334: 330: 326: 318: 310: 306: 302: 296: 286: 282: 270: 266: 232: 217: 206: 202: 198: 194: 190: 186: 71: 56: 30: 12: 11: 5: 4404: 4402: 4394: 4393: 4391:Name reactions 4388: 4383: 4373: 4372: 4366: 4365: 4362: 4361: 4358: 4357: 4355: 4354: 4349: 4344: 4339: 4334: 4329: 4324: 4319: 4314: 4309: 4304: 4299: 4294: 4289: 4284: 4279: 4274: 4269: 4264: 4262:Hantzsch ester 4259: 4254: 4249: 4244: 4239: 4234: 4229: 4224: 4219: 4214: 4209: 4204: 4199: 4194: 4189: 4184: 4179: 4174: 4172:Banert cascade 4169: 4164: 4159: 4154: 4148: 4146: 4142: 4141: 4139: 4138: 4133: 4128: 4123: 4118: 4113: 4111:Prato reaction 4108: 4103: 4098: 4093: 4088: 4083: 4078: 4073: 4068: 4063: 4058: 4053: 4048: 4043: 4038: 4033: 4028: 4023: 4018: 4013: 4008: 4003: 3998: 3993: 3988: 3983: 3977: 3975: 3966: 3965: 3960: 3955: 3950: 3945: 3940: 3935: 3930: 3925: 3920: 3915: 3910: 3905: 3900: 3895: 3890: 3885: 3880: 3875: 3870: 3865: 3860: 3855: 3850: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3790: 3785: 3780: 3775: 3770: 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3725: 3720: 3715: 3710: 3705: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3665: 3660: 3655: 3650: 3645: 3640: 3635: 3630: 3625: 3620: 3614: 3612: 3604: 3603: 3601: 3600: 3595: 3590: 3585: 3580: 3575: 3570: 3565: 3560: 3555: 3550: 3545: 3540: 3535: 3530: 3525: 3520: 3515: 3510: 3505: 3500: 3495: 3490: 3485: 3480: 3475: 3470: 3465: 3460: 3455: 3450: 3445: 3440: 3435: 3430: 3425: 3420: 3415: 3410: 3405: 3400: 3395: 3390: 3385: 3380: 3375: 3370: 3365: 3360: 3355: 3350: 3345: 3340: 3335: 3330: 3325: 3320: 3315: 3310: 3305: 3300: 3295: 3290: 3285: 3280: 3275: 3270: 3265: 3260: 3255: 3250: 3245: 3240: 3235: 3230: 3225: 3220: 3215: 3210: 3205: 3203:Banert cascade 3200: 3195: 3190: 3185: 3180: 3175: 3170: 3165: 3160: 3155: 3150: 3145: 3140: 3135: 3129: 3127: 3123:Rearrangement 3119: 3118: 3116: 3115: 3113:Zinin reaction 3110: 3105: 3100: 3095: 3090: 3085: 3083:Wacker process 3080: 3075: 3070: 3065: 3060: 3055: 3050: 3045: 3040: 3035: 3030: 3025: 3020: 3015: 3010: 3005: 3000: 2995: 2990: 2985: 2980: 2975: 2970: 2965: 2960: 2955: 2950: 2945: 2940: 2935: 2930: 2925: 2920: 2915: 2910: 2905: 2900: 2895: 2890: 2885: 2880: 2875: 2870: 2865: 2860: 2858:Hydrogenolysis 2855: 2850: 2845: 2840: 2835: 2830: 2825: 2820: 2815: 2810: 2808:Étard reaction 2805: 2800: 2795: 2790: 2785: 2780: 2775: 2770: 2765: 2760: 2755: 2750: 2745: 2740: 2735: 2730: 2725: 2720: 2715: 2713:Bosch reaction 2710: 2705: 2700: 2695: 2690: 2685: 2680: 2675: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2635: 2630: 2624: 2622: 2618:Organic redox 2614: 2613: 2611: 2610: 2605: 2600: 2595: 2590: 2585: 2580: 2575: 2570: 2565: 2560: 2555: 2550: 2545: 2539: 2537: 2531: 2530: 2528: 2527: 2522: 2517: 2512: 2507: 2502: 2497: 2492: 2487: 2482: 2477: 2472: 2467: 2462: 2457: 2452: 2450:Esterification 2447: 2442: 2437: 2432: 2427: 2421: 2419: 2411: 2410: 2407: 2406: 2404: 2403: 2398: 2393: 2388: 2383: 2378: 2373: 2368: 2363: 2358: 2353: 2348: 2343: 2338: 2333: 2328: 2323: 2318: 2313: 2308: 2303: 2297: 2295: 2291: 2290: 2288: 2287: 2282: 2277: 2272: 2267: 2262: 2257: 2251: 2249: 2240: 2239: 2234: 2229: 2227:Wurtz reaction 2224: 2219: 2214: 2209: 2204: 2199: 2194: 2189: 2184: 2179: 2174: 2169: 2164: 2159: 2154: 2149: 2144: 2139: 2134: 2129: 2124: 2119: 2114: 2109: 2104: 2099: 2097:Prins reaction 2094: 2089: 2084: 2079: 2074: 2069: 2064: 2059: 2054: 2049: 2044: 2039: 2034: 2029: 2024: 2019: 2014: 2009: 2004: 1999: 1994: 1989: 1984: 1979: 1974: 1969: 1964: 1959: 1954: 1949: 1944: 1939: 1934: 1929: 1924: 1919: 1914: 1912:Hydrocyanation 1909: 1904: 1899: 1894: 1889: 1884: 1882:Henry reaction 1879: 1874: 1869: 1864: 1859: 1854: 1849: 1844: 1839: 1834: 1829: 1824: 1819: 1814: 1809: 1804: 1799: 1794: 1789: 1784: 1779: 1774: 1769: 1764: 1759: 1754: 1749: 1744: 1739: 1734: 1729: 1724: 1719: 1714: 1709: 1704: 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1634: 1629: 1624: 1619: 1614: 1609: 1604: 1599: 1594: 1589: 1584: 1582:Aldol reaction 1579: 1574: 1569: 1563: 1561: 1556:Carbon-carbon 1553: 1552: 1547: 1541: 1540: 1535: 1533:Zaitsev's rule 1530: 1525: 1520: 1515: 1510: 1505: 1500: 1495: 1490: 1485: 1480: 1478:Steric effects 1475: 1470: 1465: 1460: 1455: 1450: 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1405: 1400: 1395: 1390: 1385: 1380: 1375: 1370: 1365: 1360: 1355: 1350: 1345: 1340: 1335: 1330: 1325: 1320: 1315: 1310: 1305: 1300: 1295: 1290: 1285: 1280: 1275: 1270: 1265: 1260: 1255: 1250: 1245: 1240: 1235: 1230: 1225: 1220: 1215: 1210: 1205: 1200: 1195: 1190: 1185: 1180: 1175: 1170: 1165: 1159: 1156: 1155: 1153: 1152: 1147: 1142: 1137: 1132: 1130:Redox reaction 1127: 1122: 1117: 1115:Polymerization 1112: 1107: 1101: 1098: 1097: 1091: 1089: 1088: 1081: 1074: 1066: 1060: 1059: 1048: 1037: 1024: 1023:External links 1021: 1018: 1017: 989: 961: 938: 927:(4): 415–430. 903: 882:(2): 307–353. 861: 821: 802: 768: 767: 765: 762: 761: 760: 758:Hirao coupling 755: 750: 745: 738: 735: 692: 644: 616: 613: 574: 570: 547: 546: 531: 525: 507: 506: 490: 482: 475: 468: 461: 450: 442: 412: 409: 407: 404: 362: 352: 348: 336: 332: 328: 324: 316: 308: 304: 300: 294: 284: 280: 268: 264: 247:alkyl halide ( 230: 216: 213: 204: 200: 196: 192: 188: 184: 81: 80: 77: 76: 69: 62: 61: 54: 50: 49: 45: 44: 39: 38:Reaction type 35: 34: 25: 21: 20: 13: 10: 9: 6: 4: 3: 2: 4403: 4392: 4389: 4387: 4384: 4382: 4379: 4378: 4376: 4353: 4350: 4348: 4345: 4343: 4340: 4338: 4335: 4333: 4330: 4328: 4325: 4323: 4320: 4318: 4315: 4313: 4310: 4308: 4305: 4303: 4300: 4298: 4295: 4293: 4290: 4288: 4285: 4283: 4280: 4278: 4275: 4273: 4272:Herz reaction 4270: 4268: 4265: 4263: 4260: 4258: 4255: 4253: 4250: 4248: 4245: 4243: 4240: 4238: 4235: 4233: 4230: 4228: 4225: 4223: 4220: 4218: 4215: 4213: 4210: 4208: 4205: 4203: 4200: 4198: 4195: 4193: 4190: 4188: 4185: 4183: 4180: 4178: 4175: 4173: 4170: 4168: 4165: 4163: 4160: 4158: 4155: 4153: 4150: 4149: 4147: 4143: 4137: 4134: 4132: 4129: 4127: 4124: 4122: 4119: 4117: 4114: 4112: 4109: 4107: 4104: 4102: 4099: 4097: 4094: 4092: 4089: 4087: 4084: 4082: 4079: 4077: 4074: 4072: 4069: 4067: 4064: 4062: 4059: 4057: 4054: 4052: 4049: 4047: 4044: 4042: 4039: 4037: 4034: 4032: 4029: 4027: 4024: 4022: 4019: 4017: 4014: 4012: 4009: 4007: 4004: 4002: 3999: 3997: 3994: 3992: 3989: 3987: 3984: 3982: 3979: 3978: 3976: 3974: 3973:Cycloaddition 3970: 3964: 3961: 3959: 3956: 3954: 3951: 3949: 3946: 3944: 3941: 3939: 3936: 3934: 3931: 3929: 3926: 3924: 3921: 3919: 3916: 3914: 3911: 3909: 3906: 3904: 3901: 3899: 3896: 3894: 3891: 3889: 3886: 3884: 3881: 3879: 3876: 3874: 3871: 3869: 3866: 3864: 3861: 3859: 3856: 3854: 3851: 3849: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3818:Isay reaction 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3789: 3786: 3784: 3781: 3779: 3776: 3774: 3771: 3769: 3766: 3764: 3761: 3759: 3756: 3754: 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3724: 3721: 3719: 3716: 3714: 3713:Cycloaddition 3711: 3709: 3706: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3669: 3666: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3634: 3631: 3629: 3626: 3624: 3621: 3619: 3616: 3615: 3613: 3611: 3608:Ring forming 3605: 3599: 3596: 3594: 3591: 3589: 3586: 3584: 3581: 3579: 3576: 3574: 3571: 3569: 3566: 3564: 3561: 3559: 3556: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3534: 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3509: 3508:Rupe reaction 3506: 3504: 3501: 3499: 3496: 3494: 3491: 3489: 3486: 3484: 3481: 3479: 3476: 3474: 3471: 3469: 3466: 3464: 3461: 3459: 3456: 3454: 3451: 3449: 3446: 3444: 3441: 3439: 3436: 3434: 3431: 3429: 3426: 3424: 3421: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3391: 3389: 3386: 3384: 3381: 3379: 3376: 3374: 3371: 3369: 3366: 3364: 3361: 3359: 3356: 3354: 3351: 3349: 3346: 3344: 3341: 3339: 3336: 3334: 3331: 3329: 3326: 3324: 3321: 3319: 3316: 3314: 3311: 3309: 3306: 3304: 3301: 3299: 3296: 3294: 3291: 3289: 3286: 3284: 3281: 3279: 3276: 3274: 3271: 3269: 3266: 3264: 3261: 3259: 3256: 3254: 3251: 3249: 3246: 3244: 3241: 3239: 3236: 3234: 3231: 3229: 3226: 3224: 3221: 3219: 3216: 3214: 3211: 3209: 3206: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3169: 3166: 3164: 3161: 3159: 3156: 3154: 3151: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3130: 3128: 3126: 3120: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3054: 3051: 3049: 3046: 3044: 3041: 3039: 3036: 3034: 3031: 3029: 3026: 3024: 3021: 3019: 3016: 3014: 3011: 3009: 3006: 3004: 3001: 2999: 2996: 2994: 2991: 2989: 2986: 2984: 2981: 2979: 2976: 2974: 2971: 2969: 2966: 2964: 2961: 2959: 2956: 2954: 2951: 2949: 2946: 2944: 2941: 2939: 2936: 2934: 2931: 2929: 2926: 2924: 2921: 2919: 2916: 2914: 2911: 2909: 2906: 2904: 2901: 2899: 2898:Ley oxidation 2896: 2894: 2891: 2889: 2886: 2884: 2881: 2879: 2876: 2874: 2871: 2869: 2866: 2864: 2863:Hydroxylation 2861: 2859: 2856: 2854: 2853:Hydrogenation 2851: 2849: 2846: 2844: 2841: 2839: 2836: 2834: 2831: 2829: 2826: 2824: 2821: 2819: 2816: 2814: 2811: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2788:DNA oxidation 2786: 2784: 2781: 2779: 2778:Deoxygenation 2776: 2774: 2771: 2769: 2766: 2764: 2761: 2759: 2756: 2754: 2751: 2749: 2746: 2744: 2741: 2739: 2736: 2734: 2731: 2729: 2726: 2724: 2721: 2719: 2716: 2714: 2711: 2709: 2706: 2704: 2701: 2699: 2696: 2694: 2691: 2689: 2686: 2684: 2681: 2679: 2676: 2674: 2671: 2669: 2668:Aromatization 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2634: 2631: 2629: 2626: 2625: 2623: 2621: 2615: 2609: 2606: 2604: 2601: 2599: 2596: 2594: 2591: 2589: 2586: 2584: 2581: 2579: 2576: 2574: 2571: 2569: 2566: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2544: 2541: 2540: 2538: 2532: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2506: 2505:Reed reaction 2503: 2501: 2498: 2496: 2493: 2491: 2488: 2486: 2483: 2481: 2478: 2476: 2473: 2471: 2468: 2466: 2463: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2422: 2420: 2416:bond forming 2412: 2402: 2399: 2397: 2394: 2392: 2389: 2387: 2384: 2382: 2379: 2377: 2374: 2372: 2369: 2367: 2364: 2362: 2359: 2357: 2354: 2352: 2349: 2347: 2344: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2321:Cope reaction 2319: 2317: 2314: 2312: 2309: 2307: 2304: 2302: 2299: 2298: 2296: 2292: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2258: 2256: 2253: 2252: 2250: 2248: 2244: 2238: 2235: 2233: 2230: 2228: 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2203: 2200: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2178: 2175: 2173: 2170: 2168: 2165: 2163: 2160: 2158: 2155: 2153: 2150: 2148: 2145: 2143: 2140: 2138: 2135: 2133: 2130: 2128: 2125: 2123: 2120: 2118: 2115: 2113: 2110: 2108: 2105: 2103: 2100: 2098: 2095: 2093: 2090: 2088: 2085: 2083: 2080: 2078: 2075: 2073: 2070: 2068: 2065: 2063: 2060: 2058: 2055: 2053: 2050: 2048: 2045: 2043: 2040: 2038: 2035: 2033: 2032:Nef synthesis 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2013: 2010: 2008: 2007:Methylenation 2005: 2003: 2000: 1998: 1995: 1993: 1990: 1988: 1985: 1983: 1980: 1978: 1975: 1973: 1970: 1968: 1965: 1963: 1960: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1918: 1915: 1913: 1910: 1908: 1905: 1903: 1900: 1898: 1895: 1893: 1890: 1888: 1885: 1883: 1880: 1878: 1877:Heck reaction 1875: 1873: 1870: 1868: 1865: 1863: 1860: 1858: 1855: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1833: 1830: 1828: 1825: 1823: 1820: 1818: 1815: 1813: 1810: 1808: 1805: 1803: 1800: 1798: 1795: 1793: 1790: 1788: 1785: 1783: 1780: 1778: 1775: 1773: 1770: 1768: 1765: 1763: 1760: 1758: 1755: 1753: 1750: 1748: 1745: 1743: 1740: 1738: 1735: 1733: 1730: 1728: 1725: 1723: 1720: 1718: 1715: 1713: 1710: 1708: 1705: 1703: 1700: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1680: 1678: 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1608: 1605: 1603: 1600: 1598: 1595: 1593: 1590: 1588: 1585: 1583: 1580: 1578: 1575: 1573: 1570: 1568: 1565: 1564: 1562: 1558:bond forming 1554: 1550: 1545: 1539: 1536: 1534: 1531: 1529: 1526: 1524: 1523:Y-aromaticity 1521: 1519: 1516: 1514: 1511: 1509: 1508:Walsh diagram 1506: 1504: 1501: 1499: 1496: 1494: 1493:Taft equation 1491: 1489: 1486: 1484: 1481: 1479: 1476: 1474: 1471: 1469: 1466: 1464: 1463:Σ-aromaticity 1461: 1459: 1456: 1454: 1451: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1404: 1401: 1399: 1396: 1394: 1391: 1389: 1388:Marcus theory 1386: 1384: 1381: 1379: 1376: 1374: 1371: 1369: 1366: 1364: 1363:Hückel's rule 1361: 1359: 1356: 1354: 1351: 1349: 1346: 1344: 1341: 1339: 1336: 1334: 1331: 1329: 1326: 1324: 1321: 1319: 1318:Evelyn effect 1316: 1314: 1311: 1309: 1306: 1304: 1301: 1299: 1298:Electron-rich 1296: 1294: 1291: 1289: 1286: 1284: 1281: 1279: 1276: 1274: 1271: 1269: 1266: 1264: 1261: 1259: 1256: 1254: 1251: 1249: 1246: 1244: 1241: 1239: 1236: 1234: 1231: 1229: 1226: 1224: 1221: 1219: 1216: 1214: 1213:Bema Hapothle 1211: 1209: 1206: 1204: 1201: 1199: 1196: 1194: 1191: 1189: 1186: 1184: 1181: 1179: 1176: 1174: 1171: 1169: 1166: 1164: 1161: 1160: 1157: 1151: 1148: 1146: 1143: 1141: 1138: 1136: 1133: 1131: 1128: 1126: 1123: 1121: 1118: 1116: 1113: 1111: 1108: 1106: 1103: 1102: 1099: 1095: 1087: 1082: 1080: 1075: 1073: 1068: 1067: 1064: 1057: 1053: 1049: 1046: 1042: 1038: 1035: 1031: 1027: 1026: 1022: 1012: 1006: 1005: 1000: 993: 990: 985: 981: 977: 974: 973: 965: 962: 957: 953: 949: 948:J. Chem. Soc. 942: 939: 934: 930: 926: 923: 922: 914: 912: 910: 908: 904: 899: 895: 890: 885: 881: 878: 877: 872: 865: 862: 857: 844: 836: 832: 825: 822: 817: 813: 806: 803: 798: 794: 791:: 1048–1055. 790: 786: 785: 780: 773: 770: 763: 759: 756: 754: 751: 749: 746: 744: 741: 740: 736: 734: 730: 728: 724: 720: 716: 712: 707: 700: 696: 686: 682: 675: 671: 668: 663: 642: 623: 614: 609: 605: 602: 599: 594: 592: 591:isomerization 588: 584: 580: 568: 564: 560: 556: 552: 529: 523: 512: 511: 510: 488: 480: 473: 466: 459: 448: 440: 429: 428: 427: 419: 410: 405: 403: 401: 397: 393: 389: 385: 381: 376: 374: 370: 366: 358: 346: 342: 322: 314: 299:, where the R 298: 290: 278: 274: 262: 258: 254: 250: 246: 245:electrophilic 242: 238: 234: 221: 214: 212: 210: 195:} to give {(C 182: 178: 174: 170: 162: 158: 156: 152: 148: 144: 140: 136: 132: 128: 124: 120: 116: 112: 108: 104: 100: 96: 92: 88: 78: 74: 70: 67: 64: 63: 59: 55: 52: 51: 46: 43: 40: 37: 36: 33: 29: 26: 23: 22: 17: 3313:Ene reaction 2673:Autoxidation 2534:Degradation 2425:Azo coupling 2202:Ugi reaction 1802:Ene reaction 1602:Alkynylation 1453:Polyfluorene 1448:Polar effect 1313:Electrophile 1228:Bredt's rule 1198:Baird's rule 1168:Alpha effect 1051: 1040: 1029: 1010: 1002: 992: 978:(10): 2608. 975: 970: 964: 947: 941: 924: 919: 879: 874: 864: 852:|title= 843:cite journal 834: 830: 824: 815: 811: 805: 788: 782: 772: 731: 708: 704: 690: 679: 629: 603: 595: 579:acyl halides 559:heterocycles 548: 508: 425: 411:Alkyl halide 380:phosphoranes 377: 360: 276: 272: 256: 251:) to give a 248: 240: 237:nucleophilic 226: 209:Klaui ligand 177:phosphinates 166: 154: 146: 143:phosphinites 138: 135:phosphinates 130: 127:phosphonites 122: 119:phosphonates 114: 103:alkyl halide 90: 86: 84: 73:RXNO:0000060 68:ontology ID 48:Identifiers 24:Named after 1812:Ethenolysis 1458:Ring strain 1428:Nucleophile 1253:Clar's rule 1193:Aromaticity 831:Chem. Zentr 563:Iodobenzene 359:mechanism ( 289:carbocation 107:pentavalent 4375:Categories 4096:Ozonolysis 3623:Annulation 2973:Ozonolysis 1092:Topics in 921:Chem. Rev. 764:References 587:chloroform 297:1 reaction 105:to form a 3610:reactions 3125:reactions 2620:reactions 2536:reactions 2418:reactions 1560:reactions 711:pyrolysis 643:− 573:2 or an S 474:≫ 375:halides. 373:propargyl 313:neopentyl 99:trivalent 93:) is the 1503:Vinylogy 1173:Annulene 1120:Reagents 950:: 2550. 898:93719226 784:Berichte 737:See also 489:″ 481:′ 467:′ 402:anions. 400:triflate 233:2 attack 1163:A value 1056:Article 1045:Article 1034:Article 837:: 1639. 715:Hydroxy 567:alkenes 351:1 and S 235:of the 896:  818:: 687. 619:": --> 555:trityl 415:": --> 261:halide 179:, and 141:) and 894:S2CID 727:amine 719:thiol 406:Scope 388:P NMR 369:allyl 341:vinyl 97:of a 856:help 621:edit 596:The 553:and 530:> 524:> 509:and 460:> 441:> 438:RCOX 417:edit 371:and 345:aryl 343:and 125:), 85:The 980:doi 952:doi 929:doi 884:doi 793:doi 639:ABP 533:RCl 527:RBr 471:CHX 445:RCH 398:or 203:)Co 191:)Co 157:). 66:RSC 4377:: 1008:; 1001:. 976:79 925:81 906:^ 892:. 873:. 847:: 845:}} 841:{{ 835:II 833:. 816:38 814:. 789:31 787:. 781:. 721:, 717:, 647:OR 521:RI 493:CX 478:RR 464:RR 365:2' 211:. 1085:e 1078:t 1071:v 1058:) 1047:) 1036:) 1015:. 986:. 982:: 958:. 954:: 935:. 931:: 900:. 886:: 880:9 858:) 854:( 799:. 795:: 693:N 625:] 575:N 571:N 486:R 457:X 449:2 421:] 363:N 361:S 353:N 349:N 337:N 333:N 329:N 325:N 317:N 309:N 305:N 301:1 295:N 293:S 285:N 281:1 277:5 273:4 269:1 265:N 257:3 249:2 241:1 231:N 229:S 205:3 201:5 199:H 197:5 193:3 189:5 187:H 185:5 155:6 153:( 147:5 145:( 139:4 137:( 131:3 129:( 123:2 121:( 115:1 113:(

Index

August Michaelis
Aleksandr Arbuzov
Coupling reaction
arbuzov-reaction
RSC
RXNO:0000060
chemical reaction
trivalent
alkyl halide
pentavalent
phosphite esters
phosphonates
phosphonites
phosphinates
phosphinites
phosphine oxides

August Michaelis
Aleksandr Arbuzov
phosphinates
phosphine oxides
Klaui ligand
The mechanism of the Michaelis–Arbuzov reaction
SN2 attack
nucleophilic
electrophilic
phosphonium salt
halide
carbocation
SN1 reaction

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.