Knowledge (XXG)

Multi-core processor

Source đź“ť

558:
unified cache, hence any two working dual-core dies can be used, as opposed to producing four cores on a single die and requiring all four to work to produce a quad-core CPU. From an architectural point of view, ultimately, single CPU designs may make better use of the silicon surface area than multiprocessing cores, so a development commitment to this architecture may carry the risk of obsolescence. Finally, raw processing power is not the only constraint on system performance. Two processing cores sharing the same system bus and memory bandwidth limits the real-world performance advantage.
884: 5996: 58: 38: 1008: 46: 675:). Consequently, such code is much more difficult to debug than single-threaded code when it breaks. There has been a perceived lack of motivation for writing consumer-level threaded applications because of the relative rarity of consumer-level demand for maximum use of computer hardware. Also, serial tasks like decoding the 778:
a coordination language and program building blocks (programming libraries or higher-order functions). Each block can have a different native implementation for each processor type. Users simply program using these abstractions and an intelligent compiler chooses the best implementation based on the context.
777:
are written in these native languages and take advantage of multi-core processing. Balancing the application workload across processors can be problematic, especially if they have different performance characteristics. There are different conceptual models to deal with the problem, for example using
690:
The telecommunications market had been one of the first that needed a new design of parallel datapath packet processing because there was a very quick adoption of these multiple-core processors for the datapath and the control plane. These MPUs are going to replace the traditional Network Processors
541:
Multi-core chips also allow higher performance at lower energy. This can be a big factor in mobile devices that operate on batteries. Since each core in a multi-core CPU is generally more energy-efficient, the chip becomes more efficient than having a single large monolithic core. This allows higher
493:
have turned to multi-core designs, sacrificing lower manufacturing-costs for higher performance in some applications and systems. Multi-core architectures are being developed, but so are the alternatives. An especially strong contender for established markets is the further integration of peripheral
391:
Several business motives drive the development of multi-core architectures. For decades, it was possible to improve performance of a CPU by shrinking the area of the integrated circuit (IC), which reduced the cost per device on the IC. Alternatively, for the same circuit area, more transistors could
557:
Integration of a multi-core chip can lower the chip production yields. They are also more difficult to manage thermally than lower-density single-core designs. Intel has partially countered this first problem by creating its quad-core designs by combining two dual-core ones on a single die with a
266:
In the consumer market, dual-core processors (that is, microprocessors with two units) started becoming commonplace on personal computers in the late 2000s. Quad-core processors were also being adopted in that era for higher-end systems before becoming standard. In the late 2010s, hexa-core (six
686:
Given the increasing emphasis on multi-core chip design, stemming from the grave thermal and power consumption problems posed by any further significant increase in processor clock speeds, the extent to which software can be multithreaded to take advantage of these new chips is likely to be the
403:
As the rate of clock speed improvements slowed, increased use of parallel computing in the form of multi-core processors has been pursued to improve overall processing performance. Multiple cores were used on the same CPU chip, which could then lead to better sales of CPU chips with two or more
898:
operates in an area of processor technology distinct from that of "mainstream" PCs. The same technological drives towards multi-core apply here too. Indeed, in many cases the application is a "natural" fit for multi-core technologies, if the task can easily be partitioned between the different
810:
In the third stage, development moves from the abstract toward the concrete. Developers revisit decisions made in the partitioning and communication phases with a view to obtaining an algorithm that will execute efficiently on some class of parallel computer. In particular, developers consider
801:
The tasks generated by a partition are intended to execute concurrently but cannot, in general, execute independently. The computation to be performed in one task will typically require data associated with another task. Data must then be transferred between tasks so as to allow computation to
538:(FSB). In terms of competing technologies for the available silicon die area, multi-core design can make use of proven CPU core library designs and produce a product with lower risk of design error than devising a new wider-core design. Also, adding more cache suffers from diminishing returns. 670:
thread waits for commands from the user (e.g. cancel the scan). In such cases, a multi-core architecture is of little benefit for the application itself due to the single thread doing all the heavy lifting and the inability to balance the work evenly across multiple cores. Programming truly
254:
problems may realize speedup factors near the number of cores, or even more if the problem is split up enough to fit within each core's cache(s), avoiding use of much slower main-system memory. Most applications, however, are not accelerated as much unless programmers invest effort in
533:
designs. Also, a dual-core processor uses slightly less power than two coupled single-core processors, principally because of the decreased power required to drive signals external to the chip. Furthermore, the cores share some circuitry, like the L2 cache and the interface to the
906:, legacy code or supporting independent developers less critical than is the case for PC or enterprise computing. As a result, it is easier for developers to adopt new technologies and as a result there is a greater variety of multi-core processing architectures and suppliers. 628:
How multiple cores are implemented and integrated significantly affects both the developer's programming skills and the consumer's expectations of apps and interactivity versus the device. A device advertised as being octa-core will only have independent cores if advertised as
262:
The parallelization of software is a significant ongoing topic of research. Cointegration of multiprocessor applications provides flexibility in network architecture design. Adaptability within parallel models is an additional feature of systems utilizing these protocols.
383:(TLP) methods, and multiple independent CPUs are commonly used to increase a system's overall TLP. A combination of increased available space (due to refined manufacturing processes) and the demand for increased TLP led to the development of multi-core CPUs. 934:
all manufacturing products with eight processors. For the system developer, a key challenge is how to exploit all the cores in these devices to achieve maximum networking performance at the system level, despite the performance limitations inherent in a
756:
Multi-core processing has also affected the ability of modern computational software development. Developers programming in newer languages might find that their modern languages do not support multi-core functionality. This then requires the use of
620:
The composition and balance of the cores in multi-core architecture show great variety. Some architectures use one core design repeated consistently ("homogeneous"), while others use a mixture of different cores, each optimized for a different,
687:
single greatest constraint on computer performance in the future. If developers are unable to design software to fully exploit the resources provided by multiple cores, then they will ultimately reach an insurmountable performance ceiling.
445:; the increasing gap between processor and memory speeds. This, in effect, pushes for cache sizes to be larger in order to mask the latency of memory. This helps only to the extent that memory bandwidth is not the bottleneck in performance. 811:
whether it is useful to combine, or agglomerate, tasks identified by the partitioning phase, so as to provide a smaller number of tasks, each of greater size. They also determine whether it is worthwhile to replicate data and computation.
819:
In the fourth and final stage of the design of parallel algorithms, the developers specify where each task is to execute. This mapping problem does not arise on uniprocessors or on shared-memory computers that provide automatic task
584:
core includes a high-performance core (called 'big') and a low-power core (called 'LITTLE'). There is also a trend towards improving energy-efficiency by focusing on performance-per-watt with advanced fine-grain or ultra fine-grain
792:
The partitioning stage of a design is intended to expose opportunities for parallel execution. Hence, the focus is on defining a large number of small tasks in order to yield what is termed a fine-grained decomposition of a
3196: 1936:
The research and development of multicore processors often compares many options, and benchmarks are developed to help such evaluations. Existing benchmarks include SPLASH-2, PARSEC, and COSMIC for heterogeneous systems.
2051:(SMP). In a partitioned architecture, each CPU boots into separate segments of physical memory and operate independently; in an SMP OS, processors work in a shared space, executing threads within the OS independently. 571:
The trend in processor development has been towards an ever-increasing number of cores, as processors with hundreds or even thousands of cores become theoretically possible. In addition, multi-core chips mixed with
463:; the trend of consuming exponentially increasing power (and thus also generating exponentially increasing heat) with each factorial increase of operating frequency. This increase can be mitigated by " 364:
have become a major design concern. These physical limitations can cause significant heat dissipation and data synchronization problems. Various other methods are used to improve CPU performance. Some
671:
multithreaded code often requires complex co-ordination of threads and can easily introduce subtle and difficult-to-find bugs due to the interweaving of processing on data shared between threads (see
2634: 2607: 506:
circuitry to operate at a much higher clock rate than what is possible if the signals have to travel off-chip. Combining equivalent CPUs on a single die significantly improves the performance of
554:(OS) support and to existing application software. Also, the ability of multi-core processors to increase application performance depends on the use of multiple threads within applications. 2480: 5322: 4349: 640:
Chuck Moore suggested computers should be like cellphones, using a variety of specialty cores to run modular software scheduled by a high-level applications programming interface.
2024:(DSPs) have used multi-core architectures for much longer than high-end general-purpose processors. A typical example of a DSP-specific implementation would be a combination of a 3186: 2346: 987:
Zynq UltraScale+ MPSoC has a quad-core ARM Cortex-A53 and dual-core ARM Cortex-R5. Software solutions such as OpenAMP are being used to help with inter-processor communication.
2032:. This allows for the design of products that require a general-purpose processor for user interfaces and a DSP for real-time data processing; this type of design is common in 844:
Vendors may license some software "per processor". This can give rise to ambiguity, because a "processor" may consist either of a single core or of a combination of cores.
943:
provide portable packet processing software designed so that the networking data plane runs in a fast path environment outside the operating system of the network device.
3321: 522:
less. These higher-quality signals allow more data to be sent in a given time period, since individual signals can be shorter and do not need to be repeated as often.
580:(or asymmetric) cores promise further performance and efficiency gains, especially in processing multimedia, recognition and networking applications. For example, a 2124: 109:(such as add, move data, and branch). However, the MCP can run instructions on separate cores at the same time, increasing overall speed for programs that support 4460: 3643: 434:
For general-purpose processors, much of the motivation for multi-core processors comes from greatly diminished gains in processor performance from increasing the
5412: 4162: 188:
have cores that do not share the same instruction set). Just as with single-processor systems, cores in multi-core systems may implement architectures such as
5264: 2069: 874:
counts an AMD X2 or an Intel dual-core CPU as a single processor but uses other metrics for other types, especially for processors with more than two cores.
400:
also increased by orders of magnitude in the decades of the late 20th century, from several megahertz in the 1980s to several gigahertz in the early 2000s.
4319: 3885: 3702: 2630: 963:
the four-core MSC8144 and six-core MSC8156 (and both have stated they are working on eight-core successors). Newer entries include the Storm-1 family from
3030: 3012: 2994: 2972: 2593: 3231:. 17th International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA-11). Las Vegas, Nevada, USA. pp. 551–557. 2404: 2173: 1063:
Epiphany, a many-core processor architecture which allows up to 4096 processors on-chip, although only a 16-core version has been commercially produced.
424:(SMP) designs using discrete CPUs, the issues regarding implementing multi-core processor architecture and supporting it with software are well known. 3665: 2393:
Patterson, David A. "Future of computer architecture." Berkeley EECS Annual Research Symposium (BEARS), College of Engineering, UC Berkeley, US. 2006.
471:
poses manufacturing, system design and deployment problems that have not been justified in the face of the diminished gains in performance due to the
4314: 3070: 345: 4386: 2439: 1891: 1885: 1878: 738: 377:
are suitable for many applications, but are inefficient for others that contain difficult-to-predict code. Many applications are better suited to
2250: 657:, took the opposing view. He said multi-core chips need to be homogeneous collections of general-purpose cores to keep the software model simple. 2498: 2462: 320:
refers to multiple physically separate processing-units (which often contain special circuitry to facilitate communication between each other).
5393: 4139: 3118: 647:, generally agreed. He suggested the cellphone's use of many specialty cores working in concert is a good model for future multi-core designs. 201: 110: 2484: 608:
Chips designed from the outset for a large number of cores (rather than having evolved from single core designs) are sometimes referred to as
2325: 1542: 3094: 140:
in a single physical package. Designers may couple cores in a multi-core device tightly or loosely. For example, cores may or may not share
5660: 5083: 4207: 3470: 3314: 2917: 2773: 2747: 2869: 5683: 5093: 4234: 964: 2723: 2699: 2342: 6026: 5572: 3361: 1100: 683:
are impossible to parallelize because each result generated is used to help create the next result of the entropy decoding algorithm.
2096: 1022: 1018: 5678: 5655: 4401: 4229: 4202: 3581: 3273: 2563:
John Darlinton; Moustafa Ghanem; Yike Guo; Hing Wing To (1996). "Guided Resource Organisation in Heterogeneous Parallel Computing".
2025: 393: 3552: 5257: 5216: 4779: 3672: 3638: 3633: 3517: 1993: 519: 5650: 5465: 5191: 5088: 4489: 4396: 4197: 3440: 3418: 3307: 2893: 2372: 1874: 1111: 185: 6021: 5757: 5620: 3936: 3371: 3044: 2942: 1988: 770: 242:
algorithms used and their implementation. In particular, possible gains are limited by the fraction of the software that can
2275: 2036:. In other applications, a growing number of companies have developed multi-core DSPs with very large numbers of processors. 3158: 5981: 5815: 5433: 5353: 4391: 4239: 4073: 3687: 3648: 3505: 746: 742: 730: 453: 366: 341: 6031: 3248:. The 20th IEEE International Conference on High Performance Computer Architecture (HPCA-14) workshop. Orlando, FL, USA. 828:, multi-core processors are ideal because they allow many users to connect to a site simultaneously and have independent 4828: 4673: 4668: 4590: 4066: 4027: 3682: 3677: 3611: 3423: 181: 3547: 3143: 2545: 1571:(Polaris), a 3.16 GHz, 80-core processor prototype, which the company originally stated would be released by 2011. 485:
In order to continue delivering regular performance improvements for general-purpose processors, manufacturers such as
6041: 6000: 5946: 5406: 5250: 4455: 4152: 3850: 2845: 2507:
Galaxy smartphones run on either Octa-core (2.3GHz Quad + 1.6GHz Quad) or Quad-core (2.15GHz + 1.6GHz Dual) processors
1908: 1400: 758: 573: 785:
acquires a central role in developing parallel applications. The basic steps in designing parallel applications are:
333:
are sometimes used to describe multi-core architectures with an especially high number of cores (tens to thousands).
3293: 2300: 1611:, 256-core processor, released 2012 (256 usable VLIW cores, Network-on-Chip (NoC), 32/64-bit IEEE 754 compliant FPU) 5925: 5720: 5605: 5567: 5417: 5307: 5105: 4752: 4169: 3660: 3628: 3398: 3386: 3366: 1450: 1426: 750: 706: 550:
Maximizing the usage of the computing resources provided by multi-core processors requires adjustments both to the
189: 1034: 5941: 5920: 5865: 5752: 5742: 5715: 5577: 5196: 5159: 5149: 3537: 2821: 2677: 2073: 2048: 2004: 952: 936: 829: 734: 726: 594: 542:
performance with less energy. A challenge in this, however, is the additional overhead of writing parallel code.
530: 421: 220: 2797: 6036: 5895: 5521: 5460: 5373: 5211: 4618: 4554: 4531: 4381: 4343: 4179: 4129: 4124: 3601: 3495: 3403: 3026: 3008: 2986: 2968: 2315: 2021: 1898: 1833: 1802: 1726:
core and eight specialized SPUs (Synergistic Processing Unit) optimized for vector operations used in the Sony
1444: 1438: 1432: 1314: 1292: 983:, where a system uses more than one kind of processor or cores, multi-core solutions are becoming more common: 762: 667: 379: 300: 288: 224: 118: 3408: 2408: 1577:
dual-, quad-, 6-, 8-, 10-, 12-, 14-, 15-, 16-, 18-, 20-, 22-, 24-, 26-, 28-, 32-, 48-, and 56-core processors.
636:
The article "CPU designers debate multi-core future" by Rick Merritt, EE Times 2008, includes these comments:
5810: 2177: 295:(SoC). The terms are generally used only to refer to multi-core microprocessors that are manufactured on the 5956: 5951: 5401: 5164: 4947: 4841: 4805: 4722: 4706: 4548: 4337: 4296: 4284: 4147: 4061: 3982: 3747: 3351: 1918: 1568: 1307: 1090: 980: 919: 622: 590: 577: 284: 251: 173: 86: 31: 5695: 5627: 5531: 5423: 5378: 4970: 4942: 4852: 4817: 4566: 4560: 4542: 4276: 4270: 4174: 4078: 3969: 3908: 3770: 3413: 2572: 1494: 1172:, dual-, quad-, 6-, 8-, 12-, 16-, 24-, 32-, and 64-core desktop, mobile, and embedded platform processors. 1106: 374: 5485: 1545:, a family of dual-, quad-, 6-, 8-, 10-, 12-, 14-, 16-, and 18-core processors, and the successor of the 267:
cores) started entering the mainstream and since the early 2020s has overtaken quad-core in many spaces.
41:
Diagram of a generic dual-core processor with CPU-local level-1 caches and a shared, on-die level-2 cache
5787: 5747: 5700: 5690: 5428: 5348: 5287: 5144: 5053: 4799: 4511: 4329: 4088: 4056: 4014: 3926: 3727: 3542: 3532: 3522: 3512: 3482: 3465: 3330: 2431: 1977: 1972: 1719: 1500: 902:
In addition, embedded software is typically developed for a specific hardware release, making issues of
774: 602: 526: 193: 666:
An outdated version of an anti-virus application may create a new thread for a scan process, while its
2125:"NVIDIA Announces the GeForce RTX 30 Series: Ampere For Gaming, Starting With RTX 3080 & RTX 3090" 1066: 633:, or similar styling, as opposed to being merely two sets of quad-cores each with fixed clock speeds. 431:
Using a proven processing-core design without architectural changes reduces design risk significantly.
303:; separate microprocessor dies in the same package are generally referred to by another name, such as 5727: 5615: 5610: 5600: 5587: 5383: 5174: 5110: 4418: 4308: 4255: 3787: 3500: 3356: 3338: 3282: 2502: 1215: 903: 861: 782: 722: 702: 5221: 4823: 3267: 883: 525:
Assuming that the die can physically fit into the package, multi-core CPU designs require much less
238:
The improvement in performance gained by the use of a multi-core processor depends very much on the
5890: 5845: 5671: 5666: 5645: 5511: 5206: 5026: 4877: 4859: 4811: 4465: 4412: 4217: 4212: 4189: 4105: 3987: 3842: 3737: 3596: 2656:"6WINDGATE Software: Network Optimization Software – SDN Software – Control Plane Software | 6WIND" 2577: 1667: 865: 733:
can be used on multi-core platforms. Intel introduced a new abstraction for C++ parallelism called
356:
While manufacturing technology improves, reducing the size of individual gates, physical limits of
337: 2520: 5915: 5764: 5737: 5562: 5526: 5516: 5317: 5297: 5292: 5273: 5078: 5070: 4922: 4897: 4701: 4576: 4100: 4041: 3921: 3653: 3381: 1912: 1651: 915: 895: 871: 325: 243: 114: 82: 5475: 2751: 5961: 5637: 5595: 5490: 5031: 4998: 4914: 4846: 4747: 4737: 4727: 4658: 4653: 4648: 4571: 4500: 4406: 4366: 3999: 3949: 3899: 3875: 3757: 3697: 3692: 3574: 3490: 2321: 1797: 1789: 1639: 1608: 1396: 1289: 1263: 956: 927: 435: 305: 216: 130: 2199:
Duran, A (2011). "Ompss: a proposal for programming heterogeneous multi-core architectures".
5971: 5770: 5705: 5552: 5368: 5363: 5358: 5327: 5201: 5134: 4975: 4882: 4836: 4643: 4638: 4633: 4628: 4623: 4613: 4483: 4450: 4361: 4356: 4265: 4117: 4112: 4095: 4083: 4022: 3586: 3564: 3450: 3428: 3346: 3249: 3232: 2208: 2044: 1733: 1595: 1207: 1204: 676: 586: 551: 361: 292: 197: 153: 1670:
HAL series tightly coupled 16-256 cores, L1 shared memory, hardware synchronized processor.
1301: 5835: 5775: 5710: 5557: 5547: 5480: 5312: 5302: 5115: 5100: 5048: 4952: 4927: 4764: 4757: 4608: 4603: 4598: 4537: 4445: 4435: 4157: 3992: 3944: 3707: 3591: 3559: 3460: 3455: 3376: 2103: 1962: 1685: 1677:
KC256, a 257-core microcontroller with a PowerPC core and 256 8-bit "processing elements".
1655: 1509:, the first dual-core (and, later, quad-core) processor for the budget/entry-level market. 1285: 923: 515: 503: 212: 169: 165: 145: 137: 106: 102: 5470: 967:
with 40 and 80 general purpose ALUs per chip, all programmable in C as a SIMD engine and
247: 832:
of execution. This allows for Web servers and application servers that have much better
309:. This article uses the terms "multi-core" and "dual-core" for CPUs manufactured on the 227:(GPU). Core count goes up to even dozens, and for specialized chips over 10,000, and in 5966: 5782: 5439: 5332: 5226: 5060: 5043: 5036: 4932: 4789: 4526: 4440: 4371: 3954: 3916: 3865: 3860: 3855: 3569: 3393: 3229:
Predicting CPU Availability of a Multi-core Processor Executing Concurrent Java Threads
2029: 1999: 1785: 1463: 1414: 1218:
processor cores, intended for high-performance embedded and entertainment applications.
1185: 991: 581: 535: 507: 177: 78: 6015: 5855: 5732: 5021: 4937: 3977: 3959: 3752: 3445: 3287: 2603: 1947: 1762: 1756: 1750: 1744: 1727: 1277:
CSX700, 192-core processor, released in 2008 (32/64-bit floating point; Integer ALU).
672: 650: 357: 228: 149: 2368: 2226: 5455: 5231: 5169: 4985: 4962: 4774: 4495: 3433: 3246:
A New Composite CPU/Memory Model for Predicting Efficiency of Multi-core Processing
2598: 2033: 1469: 1390: 1250: 1227: 1211: 1121: 1117: 802:
proceed. This information flow is specified in the communication phase of a design.
511: 408:
has produced a 48-core processor for research in cloud computing; each core has an
161: 126: 62: 57: 17: 2946: 3187:"Meet KiloCore, a 1,000-core processor so efficient it could run on a AA battery" 2251:"Intel taking its six-core processors mainstream in 2018 with Coffee Lake family" 207:
Multi-core processors are widely used across many application domains, including
5976: 5016: 4980: 4691: 4663: 4521: 4376: 1550: 1524: 1386: 1249:
BCM2836, BCM2837, BCM2710 and BCM2711 quad-core ARM SoC (designed for different
1142:, single-, dual-, quad-, 6-, 8-, 12-, and 16-core server/workstation processors. 825: 680: 371: 256: 157: 37: 1503:, single-core, dual-core, and quad-core processors for smartphones and tablets. 891:
on a plug-in card with processor, memory, power supply, and external interfaces
4902: 4892: 4887: 4869: 4769: 4742: 4004: 3837: 3807: 3527: 3253: 2212: 2149:"Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway | TOP500" 1546: 1518: 1482: 1272: 1163: 1145: 853: 833: 464: 397: 50: 518:
between different CPUs travel shorter distances, and therefore those signals
5850: 5825: 4993: 4990: 4732: 3802: 3780: 1846: 1580: 1311: 1259: 1178:, quad-, 8-, 12-, 16-, 24-, 32-, and 64-core server and embedded processors. 1151: 1127: 971:
with 300 processors on a single die, focused on communication applications.
960: 849: 710: 692: 235:
up to 20 million processing elements total in addition to host processors).
141: 3210: 2655: 2047:
are able to use a dual-CPU multiprocessor: partitioned multiprocessing and
1927:, Kilocore, a 1000 core 1.78 GHz processor on a 32 nm IBM process 5900: 5880: 5805: 5008: 3880: 3827: 3299: 3191: 2524: 1967: 1924: 1858: 1774: 1768: 1691: 1674: 1661: 1565:, single, dual-core, and quad-core processors for the entry-level market. 1512: 1458: 1420: 1404: 1198: 1060: 968: 931: 718: 696: 609: 239: 208: 117:
techniques. Manufacturers typically integrate the cores onto a single IC
3244:
Khondker S. Hasan; John Antonio; Sridhar Radhakrishnan (February 2014).
3236: 2549: 2148: 5905: 5885: 5860: 5495: 3817: 3775: 3045:"Intel shows off Xeon Platinum CPU with up to 56 cores and 112 threads" 1902: 1868: 1824: 1723: 1715: 1562: 1556: 1538: 1534: 1530: 1506: 1486: 1410: 1380: 1344: 1329: 1325: 1321: 1157: 1139: 857: 766: 644: 232: 2669: 5875: 5870: 5242: 5120: 3832: 3797: 3762: 1982: 1818: 1813: 1697: 1681: 1634: 1620: 1603: 1490: 1374: 1368: 1362: 1356: 1350: 1340: 1181: 1133: 1114:, dual-, triple-, and quad-core of Accelerated Processor Units (APU). 1096: 984: 714: 654: 598: 392:
be used in the design, which increased functionality, especially for
3227:
Khondker S. Hasan; Nicolas G. Grounds; John K. Antonio (July 2011).
1485:, single, dual-core, quad-core, 8-, 12-, and 16-core processors for 45: 2594:"Windows Server 2016 moving to per core, not per socket, licensing" 1985:(Open Computing Language) – a framework for heterogeneous execution 769:, which perform math computations faster than newer languages like 705:
techniques can benefit from multiple cores directly. Some existing
4290: 3822: 3792: 3296:, published on Feb 19, 2010 (more than one dead link in the slide) 2990: 2276:"Six-core CPUs are now more popular than quad-core chips on Steam" 1957: 1643: 1477: 1267: 1221: 1189: 1169: 1086: 1083: 1073: 940: 882: 486: 405: 231:(i.e. clusters of chips) the count can go over 10 million (and in 56: 44: 36: 2343:"Intel Shows 48-core x86 Processor as Single-chip Cloud Computer" 5910: 5840: 5830: 5154: 4302: 4222: 3812: 1952: 1738: 1707: 1574: 1298: 1175: 1077: 1069: 467:" the processor by using smaller traces for the same logic. The 5246: 3303: 3119:"Intel® Xeon Phi™ 72x5 Processor Family Product Specifications" 502:
The proximity of multiple CPU cores on the same die allows the
172:. Homogeneous multi-core systems include only identical cores; 5820: 5797: 3742: 3732: 1864: 1711: 1335: 1001: 490: 409: 246:
simultaneously on multiple cores; this effect is described by
3095:"Intel® Xeon Phi™ x100 Product Family Product Specifications" 1664:
PC200 series 200–300 cores per device for DSP & wireless.
2483:(Press release). MediaTek. November 20, 2013. Archived from 2463:"These 5 Myths About the Octa-Core Phones Are Actually True" 1282:
Cradle Technologies CT3400 and CT3600, both multi-core DSPs.
2918:"Intel® Pentium® Processor D Series Product Specifications" 2774:"Intel® Celeron® Processor J Series Product Specifications" 2633:. OMT-CO Operations Management Technology Consulting GmbH. 1453:, an eight-core z/Architecture processor, released in 2021. 1447:, a twelve-core z/Architecture processor, released in 2019. 1435:, an eight-core z/Architecture processor, released in 2015. 176:
multi-core systems have cores that are not identical (e.g.
1722:
processor, a nine-core processor with one general purpose
959:
has the three-core TMS320C6488 and four-core TMS320C5441,
2870:"Intel® Core™ X-series Processors Product Specifications" 2481:"MediaTek Launches MT6592 True Octa-Core Mobile Platform" 1423:, a quad-core z/Architecture processor, released in 2010. 129:. As of 2024, the microprocessors used in almost all new 2724:"Intel® Atom™ Processor Z Series Product Specifications" 2700:"Intel® Atom™ Processor C Series Product Specifications" 1441:, a ten-core z/Architecture processor, released in 2017. 1429:, a six-core z/Architecture processor, released in 2012. 1365:, a 4, 6 and 8-core PowerPC processor, released in 2010. 3144:"40-core processor with Forth-based IDE tools unveiled" 1403:-capable, PowerPC microprocessor used in the Microsoft 1160:, single-, dual-, and quad-core entry level processors. 1154:, dual-, triple-, quad-, and 6-core desktop processors. 1030: 1694:"SiCortex node" has six MIPS64 cores on a single chip. 1559:, single, dual-core, quad-core, and 8-core processors. 1383:, a 15 or 30-core PowerPC processor, released in 2021. 1377:, a 12 or 24-core PowerPC processor, released in 2017. 1262:
Xtensa LX6, available in a dual-core configuration in
456:
to keep a high-performance single-core processor busy.
1389:
MP, a dual-core PowerPC processor, used in the Apple
856:
licensing system. However, for some software such as
2369:"Intel unveils 48-core cloud computing silicon chip" 30:"Dual Core" redirects here. Not to be confused with 5934: 5796: 5636: 5586: 5540: 5504: 5448: 5392: 5341: 5280: 5184: 5133: 5069: 5007: 4961: 4913: 4868: 4788: 4715: 4684: 4589: 4510: 4474: 4428: 4328: 4254: 4188: 4138: 4049: 4040: 4013: 3968: 3935: 3907: 3898: 3718: 3621: 3610: 3481: 3337: 3211:"COSMIC:Statistical Multiprocessor Benchmark Suite" 1629:
XLS, an eight-core, quad-threaded MIPS64 processor.
1626:
XLR, an eight-core, quad-threaded MIPS64 processor.
1527:, 2 dual-core dies packaged in a multi-chip module. 1130:, dual-, triple-, and quad-core desktop processors. 420:Since computer manufacturers have long implemented 2894:"Intel® Itanium® Processor Product Specifications" 2405:"Q & A: Do multicores save energy? Not really" 2118: 2116: 1777:, a sixteen-core, 128-concurrent-thread processor. 1765:, a sixteen-core, 128-concurrent-thread processor. 1359:, a dual-core PowerPC processor, released in 2007. 1353:, a dual-core PowerPC processor, released in 2004. 1210:is a fully synthesizable multi-core container for 27:Microprocessor with more than one processing unit 3071:"2nd Gen Intel® Xeon® Scalable Processors Brief" 2670:"Sempron™ 3850 APU with Radeon™ R3 Series | AMD" 2301:"The 2,048-core PEZY-SC2 sets a Green500 record" 1771:, an eight-core, 64-concurrent-thread processor. 1759:, an eight-core, 64-concurrent-thread processor. 1583:57-, 60-, 61-, 64-, 68-, and 72-core processors. 1371:, a 12-core PowerPC processor, released in 2013. 848:Initially, for some of its enterprise software, 1224:ModemX, up to 128 cores, wireless applications. 918:have become mainstream, with companies such as 638: 3294:Architecting solutions for the Manycore future 1238:Vega 3, a 54-core processor, released in 2008. 1235:Vega 2, a 48-core processor, released in 2006. 1232:Vega 1, a 24-core processor, released in 2005. 868:, Microsoft has shifted to per-core licensing. 612:designs, emphasising qualitative differences. 452:; the increasing difficulty of finding enough 93:to emphasize their multiplicity (for example, 5258: 3315: 2969:"Intel releases 15-core Xeon E7 v2 processor" 2631:"The Licensing Of Oracle Technology Products" 643:Atsushi Hasegawa, a senior chief engineer at 180:have heterogeneous cores that share the same 8: 1594:SEAforth24, a 24-core processor designed by 316:In contrast to multi-core systems, the term 313:integrated circuit, unless otherwise noted. 4320:Computer performance by orders of magnitude 1148:, dual-, triple-, and quad-core processors. 1136:, quad-, 6-, and 8-core desktop processors. 5265: 5251: 5243: 4785: 4425: 4046: 3904: 3618: 3322: 3308: 3300: 3283:"Multicore Is Bad News for Supercomputers" 2748:"Intel Preps Dual-Core Celeron Processors" 2432:"Intel: Why a 1,000-core chip is feasible" 1646:cores; plus other more specialized cores). 1166:, single- and dual-core laptop processors. 939:(SMP) operating system. Companies such as 514:) operations. Put simply, this means that 454:parallelism in a single instruction stream 2576: 1805:, a five-core multimedia video processor. 1747:and UltraSPARC IV+, dual-core processors. 1124:single- and dual-core desktop processors. 761:to access code written in languages like 653:, founder and chief executive of startup 287:(CPU), but are sometimes also applied to 152:inter-core communication methods. Common 125:(CMP), or onto multiple dies in a single 2521:"CPU designers debate multi-core future" 1310:QorIQ series processors, up to 8 cores, 1201:BF561, a symmetrical dual-core processor 1033:by adding descriptive text and removing 438:. This is due to three primary factors: 346:semiconductor intellectual property core 2174:"What makes parallel programming hard?" 2060: 1879:Asynchronous array of simple processors 2967:Kowaliski, Cyril (February 18, 2014). 576:, memory-on-chip, and special-purpose 2565:Journal of High Performance Computing 2375:from the original on December 6, 2012 1753:, an eight-core, 32-thread processor. 737:. Other research efforts include the 7: 4291:Floating-point operations per second 3157:Hammond, Lance; et al. (1999). 3142:Cole, Bernard (September 24, 2008). 2941:Zazaian, Mike (September 26, 2006). 2610:from the original on 4 December 2015 2349:from the original on January 5, 2016 2097:"Multicore Processors – A Necessity" 1808:TMS320TMS320C66, 2-, 4-, 8-core DSP. 1591:SEAforth 40C18, a 40-core processor. 283:most commonly refer to some sort of 3199:from the original on June 23, 2016. 3027:"Intel Xeon Processor E3 v2 Family" 3009:"Intel Xeon Processor E7 v2 Family" 2987:"Intel Xeon Processor E7 v3 Family" 2546:"Multicore Packet Processing Forum" 1788:, a 260-core processor used in the 344:. Each "core" can be considered a " 156:used to interconnect cores include 2519:Merritt, Rick (February 6, 2008). 2442:from the original on 6 August 2015 2070:"Definition: multi-core processor" 2068:Rouse, Margaret (March 27, 2007). 1101:massively parallel processor array 136:A multi-core processor implements 25: 2750:. 11 October 2007. Archived from 2592:Bright, Peter (4 December 2015). 2461:Kudikala, Chakri (Aug 27, 2016). 2341:Shrout, Ryan (December 2, 2009). 1468:Danube, a dual-core, MIPS-based, 394:complex instruction set computing 5995: 5994: 5217:Semiconductor device fabrication 3033:from the original on 2015-07-07. 3015:from the original on 2015-07-07. 2997:from the original on 2015-07-07. 2975:from the original on 2014-10-11. 2499:"What is an Octa-core processor" 1994:Partitioned global address space 1006: 186:AMD Accelerated Processing Units 101:). Each core reads and executes 5466:Analysis of parallel algorithms 5192:History of general-purpose CPUs 3419:Nondeterministic Turing machine 2680:from the original on 4 May 2019 2637:from the original on 2014-03-21 2403:Suleman, Aater (May 19, 2011). 2172:Suleman, Aater (May 20, 2011). 1875:University of California, Davis 1304:, a 100-core DSP/GPP processor. 691:that were based on proprietary 529:(PCB) space than do multi-chip 85:(IC) with two or more separate 3372:Deterministic finite automaton 3185:Chacos, Brad (June 20, 2016). 2846:"Products formerly Kentsfield" 2299:Schor, David (November 2017). 1989:Parallel random access machine 1741:5200, two-core VLIW processor. 1619:XLP, a 32-core, quad-threaded 250:. In the best case, so-called 1: 5413:Simultaneous and heterogenous 4163:Simultaneous and heterogenous 3274:"Embedded moves to multicore" 2176:. FutureChips. Archived from 1827:, a 72-core 64-bit processor. 1821:, a 64-core 32-bit processor. 1493:, embedded applications, and 1246:SiByte SB1250, SB1255, SB1455 367:instruction-level parallelism 6001:Category: Parallel computing 4847:Integrated memory controller 4829:Translation lookaside buffer 4028:Memory dependence prediction 3471:Random-access stored program 3424:Probabilistic Turing machine 2314:Vajda, András (2011-06-10). 2072:. TechTarget. Archived from 1417:processor, released in 2008. 1347:processor, released in 2001. 4303:Synaptic updates per second 3268:"What Is a Processor Core?" 2317:Programming Many-Core Chips 2201:Parallel Processing Letters 1909:University of Texas, Austin 1501:Atom SoC (system on a chip) 990:Mobile devices may use the 707:parallel programming models 574:simultaneous multithreading 6058: 5308:High-performance computing 4707:Heterogeneous architecture 3629:Orthogonal instruction set 3399:Alternating Turing machine 3387:Quantum cellular automaton 2822:"Products formerly Conroe" 2274:Alan Dexter (2022-04-05). 824:On the other hand, on the 29: 6027:Digital signal processing 5990: 5942:Automatic parallelization 5578:Application checkpointing 5197:Microprocessor chronology 5160:Dynamic frequency scaling 4315:Cache performance metrics 3278:Embedded Computing Design 3254:10.13140/RG.2.1.3051.9207 2943:"Intel: 80 Cores by 2011" 2798:"Products formerly Yonah" 2501:. Samsung. Archived from 2371:. BBC. December 3, 2009. 2227:"Definition of dual core" 2213:10.1142/S0129626411000151 2049:symmetric multiprocessing 2022:Digital signal processors 1921:, Sweden, ePUMA processor 953:digital signal processing 947:Digital signal processing 937:symmetric multiprocessing 494:functions into the chip. 422:symmetric multiprocessing 348:" as well as a CPU core. 340:cores placed on a single 289:digital signal processors 221:digital signal processing 144:, and they may implement 53:E6750 dual-core processor 5212:Hardware security module 4555:Digital signal processor 4532:Graphics processing unit 4344:Graphics processing unit 1899:University of Washington 1861:, 4-core Hydra processor 1834:Software Defined Silicon 1652:Parallax Propeller P8X32 1521:, a dual-core processor. 1515:, a dual-core processor. 955:the same trend applies: 773:. Intel's MKL and AMD's 380:thread-level parallelism 105:, specifically ordinary 87:central processing units 5957:Embarrassingly parallel 5952:Deterministic algorithm 5165:Dynamic voltage scaling 4948:Memory address register 4842:Branch target predictor 4806:Address generation unit 4549:Physics processing unit 4338:Central processing unit 4297:Transactions per second 4285:Instructions per second 4208:Array processing (SIMT) 3352:Stored-program computer 2320:. Springer. p. 3. 1569:Teraflops Research Chip 1495:mobile internet devices 1308:Freescale Semiconductor 1258:Cadence Design Systems 1091:physics processing unit 1035:less pertinent examples 981:heterogeneous computing 920:Freescale Semiconductor 914:As of 2010, multi-core 852:continued to use a per- 285:central processing unit 252:embarrassingly parallel 32:Dual Core (hip hop duo) 5672:Associative processing 5628:Non-blocking algorithm 5434:Clustered multi-thread 4971:Hardwired control unit 4853:Memory management unit 4818:Memory management unit 4567:Secure cryptoprocessor 4561:Tensor Processing Unit 4543:Vision processing unit 4277:Cycles per instruction 4271:Instructions per cycle 4218:Associative processing 3909:Instruction pipelining 3331:Processor technologies 3160:The Stanford Hydra CMP 1890:167-core 1.2 GHz 1616:NetLogic Microsystems 1078:fault-tolerant version 1076:that also exists in a 965:Stream Processors, Inc 892: 659: 603:portable media players 396:(CISC) architectures. 370:(ILP) methods such as 336:Some systems use many 66: 54: 42: 6022:Computer architecture 5788:Hardware acceleration 5701:Superscalar processor 5691:Dataflow architecture 5288:Distributed computing 5054:Sum-addressed decoder 4800:Arithmetic logic unit 3927:Classic RISC pipeline 3881:Epiphany architecture 3728:Motorola 68000 series 2505:on January 17, 2022. 1973:Multicore Association 1884:36-core 610 MHz 975:Heterogeneous systems 886: 879:Embedded applications 739:Codeplay Sieve System 527:printed circuit board 387:Commercial incentives 60: 48: 40: 5667:Pipelined processing 5616:Explicit parallelism 5611:Implicit parallelism 5601:Dataflow programming 5175:Performance per watt 4753:replacement policies 4419:Package on a package 4309:Performance per watt 4213:Pipelined processing 3983:Tomasulo's algorithm 3788:Clipper architecture 3644:Application-specific 3357:Finite-state machine 2487:on October 29, 2020. 2411:on December 16, 2012 1919:Linköping University 1702:U74 includes 4 cores 1216:ARM Cortex-A9 MPCore 904:software portability 703:Parallel programming 404:cores. For example, 331:massively multi-core 103:program instructions 71:multi-core processor 5891:Parallel Extensions 5696:Pipelined processor 5207:Digital electronics 4860:Instruction decoder 4812:Floating-point unit 4466:Soft microprocessor 4413:System in a package 3988:Reservation station 3518:Transport-triggered 1642:(10496 CUDA cores, 1099:Am2045, a 336-core 1031:improve the article 866:Windows Server 2016 858:BizTalk Server 2013 759:numerical libraries 679:algorithms used in 436:operating frequency 338:soft microprocessor 299:integrated circuit 123:chip multiprocessor 65:dual-core processor 18:Microprocessor core 6042:Parallel computing 5765:Massively parallel 5743:distributed shared 5563:Cache invalidation 5527:Instruction window 5318:Manycore processor 5298:Massively parallel 5293:Parallel computing 5274:Parallel computing 5079:Integrated circuit 4923:Processor register 4577:Baseband processor 3922:Operand forwarding 3382:Cellular automaton 2754:on 4 November 2007 1680:Raspberry Pi Ltd. 1288:Octeon, a 32-core 916:network processors 910:Network processors 896:Embedded computing 893: 872:Oracle Corporation 164:, two-dimensional 154:network topologies 131:personal computers 115:parallel computing 83:integrated circuit 67: 55: 43: 6009: 6008: 5962:Parallel slowdown 5596:Stream processing 5486:Karp–Flatt metric 5240: 5239: 5129: 5128: 4748:Instruction cache 4738:Scratchpad memory 4585: 4584: 4572:Network processor 4501:Network on a chip 4456:Ultra-low-voltage 4407:Multi-chip module 4250: 4249: 4036: 4035: 4023:Branch prediction 4000:Register renaming 3894: 3893: 3876:VISC architecture 3698:Quantum computing 3693:VISC architecture 3575:Secondary storage 3491:Microarchitecture 3451:Register machines 2327:978-1-4419-9739-5 2129:www.anandtech.com 2076:on August 5, 2010 2045:operating systems 1836:quad-core XS1-G4. 1798:Texas Instruments 1790:Sunway TaihuLight 1399:, a triple-core, 1264:Espressif Systems 1052: 1051: 998:Hardware examples 957:Texas Instruments 595:frequency scaling 416:Technical factors 306:multi-chip module 16:(Redirected from 6049: 6032:Flynn's taxonomy 5998: 5997: 5972:Software lockout 5771:Computer cluster 5706:Vector processor 5661:Array processing 5646:Flynn's taxonomy 5553:Memory coherence 5328:Computer network 5267: 5260: 5253: 5244: 5202:Processor design 5094:Power management 4976:Instruction unit 4837:Branch predictor 4786: 4484:System on a chip 4426: 4266:Transistor count 4190:Flynn's taxonomy 4047: 3905: 3708:Addressing modes 3619: 3565:Memory hierarchy 3429:Hypercomputation 3347:Abstract machine 3324: 3317: 3310: 3301: 3257: 3240: 3215: 3214: 3207: 3201: 3200: 3182: 3176: 3175: 3173: 3171: 3165: 3154: 3148: 3147: 3139: 3133: 3132: 3130: 3129: 3115: 3109: 3108: 3106: 3105: 3091: 3085: 3084: 3082: 3081: 3066: 3060: 3059: 3057: 3056: 3041: 3035: 3034: 3023: 3017: 3016: 3005: 2999: 2998: 2983: 2977: 2976: 2964: 2958: 2957: 2955: 2954: 2945:. Archived from 2938: 2932: 2931: 2929: 2928: 2914: 2908: 2907: 2905: 2904: 2890: 2884: 2883: 2881: 2880: 2866: 2860: 2859: 2857: 2856: 2842: 2836: 2835: 2833: 2832: 2818: 2812: 2811: 2809: 2808: 2794: 2788: 2787: 2785: 2784: 2770: 2764: 2763: 2761: 2759: 2744: 2738: 2737: 2735: 2734: 2720: 2714: 2713: 2711: 2710: 2696: 2690: 2689: 2687: 2685: 2666: 2660: 2659: 2652: 2646: 2645: 2643: 2642: 2626: 2620: 2619: 2617: 2615: 2589: 2583: 2582: 2580: 2560: 2554: 2553: 2548:. Archived from 2542: 2536: 2535: 2533: 2531: 2516: 2510: 2509: 2495: 2489: 2488: 2477: 2471: 2470: 2458: 2452: 2451: 2449: 2447: 2427: 2421: 2420: 2418: 2416: 2407:. Archived from 2400: 2394: 2391: 2385: 2384: 2382: 2380: 2365: 2359: 2358: 2356: 2354: 2338: 2332: 2331: 2311: 2305: 2304: 2296: 2290: 2289: 2287: 2286: 2271: 2265: 2264: 2262: 2261: 2247: 2241: 2240: 2238: 2237: 2223: 2217: 2216: 2196: 2190: 2189: 2187: 2185: 2169: 2163: 2162: 2160: 2159: 2145: 2139: 2138: 2136: 2135: 2120: 2111: 2110: 2108: 2102:. Archived from 2101: 2095:Schauer, Bryan. 2092: 2086: 2085: 2083: 2081: 2065: 2042: 2020: 1734:Sun Microsystems 1654:, an eight-core 1596:Charles H. Moore 1320:Hewlett-Packard 1302:hx3100 Processor 1067:Aeroflex Gaisler 1047: 1044: 1038: 1010: 1009: 1002: 677:entropy encoding 662:Software effects 587:power management 552:operating system 362:microelectronics 293:system on a chip 133:are multi-core. 107:CPU instructions 21: 6057: 6056: 6052: 6051: 6050: 6048: 6047: 6046: 6037:Microprocessors 6012: 6011: 6010: 6005: 5986: 5930: 5836:Coarray Fortran 5792: 5776:Beowulf cluster 5632: 5582: 5573:Synchronization 5558:Cache coherence 5548:Multiprocessing 5536: 5500: 5481:Cost efficiency 5476:Gustafson's law 5444: 5388: 5337: 5313:Multiprocessing 5303:Cloud computing 5276: 5271: 5241: 5236: 5222:Tick–tock model 5180: 5136: 5125: 5065: 5049:Address decoder 5003: 4957: 4953:Program counter 4928:Status register 4909: 4864: 4824:Load–store unit 4791: 4784: 4711: 4680: 4581: 4538:Image processor 4513: 4506: 4476: 4470: 4446:Microcontroller 4436:Embedded system 4424: 4324: 4257: 4246: 4184: 4134: 4032: 4009: 3993:Re-order buffer 3964: 3945:Data dependency 3931: 3890: 3720: 3714: 3613: 3612:Instruction set 3606: 3592:Multiprocessing 3560:Cache hierarchy 3553:Register/memory 3477: 3377:Queue automaton 3333: 3328: 3264: 3243: 3226: 3223: 3221:Further reading 3218: 3209: 3208: 3204: 3184: 3183: 3179: 3169: 3167: 3163: 3156: 3155: 3151: 3141: 3140: 3136: 3127: 3125: 3117: 3116: 3112: 3103: 3101: 3093: 3092: 3088: 3079: 3077: 3069:PDF, Download. 3068: 3067: 3063: 3054: 3052: 3043: 3042: 3038: 3025: 3024: 3020: 3007: 3006: 3002: 2985: 2984: 2980: 2966: 2965: 2961: 2952: 2950: 2940: 2939: 2935: 2926: 2924: 2916: 2915: 2911: 2902: 2900: 2892: 2891: 2887: 2878: 2876: 2868: 2867: 2863: 2854: 2852: 2844: 2843: 2839: 2830: 2828: 2820: 2819: 2815: 2806: 2804: 2796: 2795: 2791: 2782: 2780: 2772: 2771: 2767: 2757: 2755: 2746: 2745: 2741: 2732: 2730: 2722: 2721: 2717: 2708: 2706: 2698: 2697: 2693: 2683: 2681: 2668: 2667: 2663: 2654: 2653: 2649: 2640: 2638: 2629: 2627: 2623: 2613: 2611: 2591: 2590: 2586: 2562: 2561: 2557: 2544: 2543: 2539: 2529: 2527: 2518: 2517: 2513: 2497: 2496: 2492: 2479: 2478: 2474: 2460: 2459: 2455: 2445: 2443: 2429: 2428: 2424: 2414: 2412: 2402: 2401: 2397: 2392: 2388: 2378: 2376: 2367: 2366: 2362: 2352: 2350: 2340: 2339: 2335: 2328: 2313: 2312: 2308: 2298: 2297: 2293: 2284: 2282: 2273: 2272: 2268: 2259: 2257: 2249: 2248: 2244: 2235: 2233: 2225: 2224: 2220: 2198: 2197: 2193: 2183: 2181: 2180:on May 29, 2011 2171: 2170: 2166: 2157: 2155: 2147: 2146: 2142: 2133: 2131: 2122: 2121: 2114: 2106: 2099: 2094: 2093: 2089: 2079: 2077: 2067: 2066: 2062: 2058: 2039: 2017: 2014: 2009: 1963:Hyper-threading 1943: 1934: 1855: 1843: 1688:microcontroller 1656:microcontroller 1286:Cavium Networks 1197:Analog Devices 1089:, a multi-core 1072:, a multi-core 1057: 1048: 1042: 1039: 1028: 1011: 1007: 1000: 977: 949: 924:Cavium Networks 912: 889:embedded system 881: 862:SQL Server 2014 842: 664: 618: 578:"heterogeneous" 569: 564: 548: 504:cache coherency 500: 418: 389: 354: 273: 244:run in parallel 209:general-purpose 182:instruction set 146:message passing 138:multiprocessing 89:(CPUs), called 63:Athlon X2 6400+ 35: 28: 23: 22: 15: 12: 11: 5: 6055: 6053: 6045: 6044: 6039: 6034: 6029: 6024: 6014: 6013: 6007: 6006: 6004: 6003: 5991: 5988: 5987: 5985: 5984: 5979: 5974: 5969: 5967:Race condition 5964: 5959: 5954: 5949: 5944: 5938: 5936: 5932: 5931: 5929: 5928: 5923: 5918: 5913: 5908: 5903: 5898: 5893: 5888: 5883: 5878: 5873: 5868: 5863: 5858: 5853: 5848: 5843: 5838: 5833: 5828: 5823: 5818: 5813: 5808: 5802: 5800: 5794: 5793: 5791: 5790: 5785: 5780: 5779: 5778: 5768: 5762: 5761: 5760: 5755: 5750: 5745: 5740: 5735: 5725: 5724: 5723: 5718: 5711:Multiprocessor 5708: 5703: 5698: 5693: 5688: 5687: 5686: 5681: 5676: 5675: 5674: 5669: 5664: 5653: 5642: 5640: 5634: 5633: 5631: 5630: 5625: 5624: 5623: 5618: 5613: 5603: 5598: 5592: 5590: 5584: 5583: 5581: 5580: 5575: 5570: 5565: 5560: 5555: 5550: 5544: 5542: 5538: 5537: 5535: 5534: 5529: 5524: 5519: 5514: 5508: 5506: 5502: 5501: 5499: 5498: 5493: 5488: 5483: 5478: 5473: 5468: 5463: 5458: 5452: 5450: 5446: 5445: 5443: 5442: 5440:Hardware scout 5437: 5431: 5426: 5421: 5415: 5410: 5404: 5398: 5396: 5394:Multithreading 5390: 5389: 5387: 5386: 5381: 5376: 5371: 5366: 5361: 5356: 5351: 5345: 5343: 5339: 5338: 5336: 5335: 5333:Systolic array 5330: 5325: 5320: 5315: 5310: 5305: 5300: 5295: 5290: 5284: 5282: 5278: 5277: 5272: 5270: 5269: 5262: 5255: 5247: 5238: 5237: 5235: 5234: 5229: 5227:Pin grid array 5224: 5219: 5214: 5209: 5204: 5199: 5194: 5188: 5186: 5182: 5181: 5179: 5178: 5172: 5167: 5162: 5157: 5152: 5147: 5141: 5139: 5131: 5130: 5127: 5126: 5124: 5123: 5118: 5113: 5108: 5103: 5098: 5097: 5096: 5091: 5086: 5075: 5073: 5067: 5066: 5064: 5063: 5061:Barrel shifter 5058: 5057: 5056: 5051: 5044:Binary decoder 5041: 5040: 5039: 5029: 5024: 5019: 5013: 5011: 5005: 5004: 5002: 5001: 4996: 4988: 4983: 4978: 4973: 4967: 4965: 4959: 4958: 4956: 4955: 4950: 4945: 4940: 4935: 4933:Stack register 4930: 4925: 4919: 4917: 4911: 4910: 4908: 4907: 4906: 4905: 4900: 4890: 4885: 4880: 4874: 4872: 4866: 4865: 4863: 4862: 4857: 4856: 4855: 4844: 4839: 4834: 4833: 4832: 4826: 4815: 4809: 4803: 4796: 4794: 4783: 4782: 4777: 4772: 4767: 4762: 4761: 4760: 4755: 4750: 4745: 4740: 4735: 4725: 4719: 4717: 4713: 4712: 4710: 4709: 4704: 4699: 4694: 4688: 4686: 4682: 4681: 4679: 4678: 4677: 4676: 4666: 4661: 4656: 4651: 4646: 4641: 4636: 4631: 4626: 4621: 4616: 4611: 4606: 4601: 4595: 4593: 4587: 4586: 4583: 4582: 4580: 4579: 4574: 4569: 4564: 4558: 4552: 4546: 4540: 4535: 4529: 4527:AI accelerator 4524: 4518: 4516: 4508: 4507: 4505: 4504: 4498: 4493: 4490:Multiprocessor 4487: 4480: 4478: 4472: 4471: 4469: 4468: 4463: 4458: 4453: 4448: 4443: 4441:Microprocessor 4438: 4432: 4430: 4429:By application 4423: 4422: 4416: 4410: 4404: 4399: 4394: 4389: 4384: 4379: 4374: 4372:Tile processor 4369: 4364: 4359: 4354: 4353: 4352: 4341: 4334: 4332: 4326: 4325: 4323: 4322: 4317: 4312: 4306: 4300: 4294: 4288: 4282: 4281: 4280: 4268: 4262: 4260: 4252: 4251: 4248: 4247: 4245: 4244: 4243: 4242: 4232: 4227: 4226: 4225: 4220: 4215: 4210: 4200: 4194: 4192: 4186: 4185: 4183: 4182: 4177: 4172: 4167: 4166: 4165: 4160: 4158:Hyperthreading 4150: 4144: 4142: 4140:Multithreading 4136: 4135: 4133: 4132: 4127: 4122: 4121: 4120: 4110: 4109: 4108: 4103: 4093: 4092: 4091: 4086: 4076: 4071: 4070: 4069: 4064: 4053: 4051: 4044: 4038: 4037: 4034: 4033: 4031: 4030: 4025: 4019: 4017: 4011: 4010: 4008: 4007: 4002: 3997: 3996: 3995: 3990: 3980: 3974: 3972: 3966: 3965: 3963: 3962: 3957: 3952: 3947: 3941: 3939: 3933: 3932: 3930: 3929: 3924: 3919: 3917:Pipeline stall 3913: 3911: 3902: 3896: 3895: 3892: 3891: 3889: 3888: 3883: 3878: 3873: 3870: 3869: 3868: 3866:z/Architecture 3863: 3858: 3853: 3845: 3840: 3835: 3830: 3825: 3820: 3815: 3810: 3805: 3800: 3795: 3790: 3785: 3784: 3783: 3778: 3773: 3765: 3760: 3755: 3750: 3745: 3740: 3735: 3730: 3724: 3722: 3716: 3715: 3713: 3712: 3711: 3710: 3700: 3695: 3690: 3685: 3680: 3675: 3670: 3669: 3668: 3658: 3657: 3656: 3646: 3641: 3636: 3631: 3625: 3623: 3616: 3608: 3607: 3605: 3604: 3599: 3594: 3589: 3584: 3579: 3578: 3577: 3572: 3570:Virtual memory 3562: 3557: 3556: 3555: 3550: 3545: 3540: 3530: 3525: 3520: 3515: 3510: 3509: 3508: 3498: 3493: 3487: 3485: 3479: 3478: 3476: 3475: 3474: 3473: 3468: 3463: 3458: 3448: 3443: 3438: 3437: 3436: 3431: 3426: 3421: 3416: 3411: 3406: 3401: 3394:Turing machine 3391: 3390: 3389: 3384: 3379: 3374: 3369: 3364: 3354: 3349: 3343: 3341: 3335: 3334: 3329: 3327: 3326: 3319: 3312: 3304: 3298: 3297: 3291: 3280: 3271: 3263: 3262:External links 3260: 3259: 3258: 3241: 3222: 3219: 3217: 3216: 3202: 3177: 3149: 3134: 3110: 3086: 3061: 3051:. 2 April 2019 3036: 3018: 3000: 2978: 2959: 2933: 2909: 2885: 2861: 2837: 2813: 2789: 2765: 2739: 2715: 2691: 2661: 2647: 2621: 2584: 2578:10.1.1.37.4309 2555: 2552:on 2009-12-21. 2537: 2511: 2490: 2472: 2453: 2422: 2395: 2386: 2360: 2333: 2326: 2306: 2291: 2266: 2242: 2218: 2207:(2): 173–193. 2191: 2164: 2153:www.top500.org 2140: 2112: 2109:on 2011-11-25. 2087: 2059: 2057: 2054: 2053: 2052: 2037: 2028:CPU and a DSP 2013: 2010: 2008: 2007: 2002: 2000:Race condition 1997: 1991: 1986: 1980: 1975: 1970: 1965: 1960: 1955: 1950: 1944: 1942: 1939: 1933: 1930: 1929: 1928: 1922: 1916: 1906: 1896: 1895: 1894: 1888: 1872: 1862: 1854: 1851: 1850: 1849: 1842: 1839: 1838: 1837: 1830: 1829: 1828: 1822: 1811: 1810: 1809: 1806: 1795: 1794: 1793: 1786:Sunway SW26010 1780: 1779: 1778: 1772: 1766: 1760: 1754: 1748: 1742: 1731: 1705: 1704: 1703: 1695: 1689: 1686:ARM Cortex-M0+ 1678: 1671: 1665: 1659: 1649: 1648: 1647: 1632: 1631: 1630: 1627: 1624: 1614: 1613: 1612: 1601: 1600: 1599: 1592: 1586: 1585: 1584: 1578: 1572: 1566: 1560: 1554: 1528: 1522: 1516: 1510: 1504: 1498: 1475: 1474: 1473: 1466: 1456: 1455: 1454: 1448: 1442: 1436: 1430: 1424: 1418: 1415:z/Architecture 1413:, a quad-core 1408: 1394: 1384: 1378: 1372: 1366: 1360: 1354: 1348: 1343:, a dual-core 1333: 1318: 1305: 1299:Coherent Logix 1296: 1283: 1280: 1279: 1278: 1270: 1256: 1255: 1254: 1247: 1241: 1240: 1239: 1236: 1233: 1225: 1219: 1202: 1195: 1194: 1193: 1179: 1173: 1167: 1161: 1155: 1149: 1143: 1137: 1131: 1125: 1115: 1104: 1094: 1081: 1064: 1056: 1053: 1050: 1049: 1014: 1012: 1005: 999: 996: 994:architecture. 992:ARM big.LITTLE 976: 973: 948: 945: 911: 908: 880: 877: 876: 875: 869: 841: 838: 822: 821: 817: 813: 812: 808: 804: 803: 799: 795: 794: 790: 663: 660: 631:True Octa-core 617: 614: 601:computers and 568: 565: 563: 560: 547: 544: 536:front-side bus 510:(alternative: 499: 496: 483: 482: 481: 480: 457: 446: 432: 427:Additionally: 417: 414: 412:architecture. 388: 385: 353: 350: 272: 269: 229:supercomputers 202:multithreading 111:multithreading 79:microprocessor 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 6054: 6043: 6040: 6038: 6035: 6033: 6030: 6028: 6025: 6023: 6020: 6019: 6017: 6002: 5993: 5992: 5989: 5983: 5980: 5978: 5975: 5973: 5970: 5968: 5965: 5963: 5960: 5958: 5955: 5953: 5950: 5948: 5945: 5943: 5940: 5939: 5937: 5933: 5927: 5924: 5922: 5919: 5917: 5914: 5912: 5909: 5907: 5904: 5902: 5899: 5897: 5894: 5892: 5889: 5887: 5884: 5882: 5879: 5877: 5874: 5872: 5869: 5867: 5864: 5862: 5859: 5857: 5856:Global Arrays 5854: 5852: 5849: 5847: 5844: 5842: 5839: 5837: 5834: 5832: 5829: 5827: 5824: 5822: 5819: 5817: 5814: 5812: 5809: 5807: 5804: 5803: 5801: 5799: 5795: 5789: 5786: 5784: 5783:Grid computer 5781: 5777: 5774: 5773: 5772: 5769: 5766: 5763: 5759: 5756: 5754: 5751: 5749: 5746: 5744: 5741: 5739: 5736: 5734: 5731: 5730: 5729: 5726: 5722: 5719: 5717: 5714: 5713: 5712: 5709: 5707: 5704: 5702: 5699: 5697: 5694: 5692: 5689: 5685: 5682: 5680: 5677: 5673: 5670: 5668: 5665: 5662: 5659: 5658: 5657: 5654: 5652: 5649: 5648: 5647: 5644: 5643: 5641: 5639: 5635: 5629: 5626: 5622: 5619: 5617: 5614: 5612: 5609: 5608: 5607: 5604: 5602: 5599: 5597: 5594: 5593: 5591: 5589: 5585: 5579: 5576: 5574: 5571: 5569: 5566: 5564: 5561: 5559: 5556: 5554: 5551: 5549: 5546: 5545: 5543: 5539: 5533: 5530: 5528: 5525: 5523: 5520: 5518: 5515: 5513: 5510: 5509: 5507: 5503: 5497: 5494: 5492: 5489: 5487: 5484: 5482: 5479: 5477: 5474: 5472: 5469: 5467: 5464: 5462: 5459: 5457: 5454: 5453: 5451: 5447: 5441: 5438: 5435: 5432: 5430: 5427: 5425: 5422: 5419: 5416: 5414: 5411: 5408: 5405: 5403: 5400: 5399: 5397: 5395: 5391: 5385: 5382: 5380: 5377: 5375: 5372: 5370: 5367: 5365: 5362: 5360: 5357: 5355: 5352: 5350: 5347: 5346: 5344: 5340: 5334: 5331: 5329: 5326: 5324: 5321: 5319: 5316: 5314: 5311: 5309: 5306: 5304: 5301: 5299: 5296: 5294: 5291: 5289: 5286: 5285: 5283: 5279: 5275: 5268: 5263: 5261: 5256: 5254: 5249: 5248: 5245: 5233: 5230: 5228: 5225: 5223: 5220: 5218: 5215: 5213: 5210: 5208: 5205: 5203: 5200: 5198: 5195: 5193: 5190: 5189: 5187: 5183: 5176: 5173: 5171: 5168: 5166: 5163: 5161: 5158: 5156: 5153: 5151: 5148: 5146: 5143: 5142: 5140: 5138: 5132: 5122: 5119: 5117: 5114: 5112: 5109: 5107: 5104: 5102: 5099: 5095: 5092: 5090: 5087: 5085: 5082: 5081: 5080: 5077: 5076: 5074: 5072: 5068: 5062: 5059: 5055: 5052: 5050: 5047: 5046: 5045: 5042: 5038: 5035: 5034: 5033: 5030: 5028: 5025: 5023: 5022:Demultiplexer 5020: 5018: 5015: 5014: 5012: 5010: 5006: 5000: 4997: 4995: 4992: 4989: 4987: 4984: 4982: 4979: 4977: 4974: 4972: 4969: 4968: 4966: 4964: 4960: 4954: 4951: 4949: 4946: 4944: 4943:Memory buffer 4941: 4939: 4938:Register file 4936: 4934: 4931: 4929: 4926: 4924: 4921: 4920: 4918: 4916: 4912: 4904: 4901: 4899: 4896: 4895: 4894: 4891: 4889: 4886: 4884: 4881: 4879: 4878:Combinational 4876: 4875: 4873: 4871: 4867: 4861: 4858: 4854: 4851: 4850: 4848: 4845: 4843: 4840: 4838: 4835: 4830: 4827: 4825: 4822: 4821: 4819: 4816: 4813: 4810: 4807: 4804: 4801: 4798: 4797: 4795: 4793: 4787: 4781: 4778: 4776: 4773: 4771: 4768: 4766: 4763: 4759: 4756: 4754: 4751: 4749: 4746: 4744: 4741: 4739: 4736: 4734: 4731: 4730: 4729: 4726: 4724: 4721: 4720: 4718: 4714: 4708: 4705: 4703: 4700: 4698: 4695: 4693: 4690: 4689: 4687: 4683: 4675: 4672: 4671: 4670: 4667: 4665: 4662: 4660: 4657: 4655: 4652: 4650: 4647: 4645: 4642: 4640: 4637: 4635: 4632: 4630: 4627: 4625: 4622: 4620: 4617: 4615: 4612: 4610: 4607: 4605: 4602: 4600: 4597: 4596: 4594: 4592: 4588: 4578: 4575: 4573: 4570: 4568: 4565: 4562: 4559: 4556: 4553: 4550: 4547: 4544: 4541: 4539: 4536: 4533: 4530: 4528: 4525: 4523: 4520: 4519: 4517: 4515: 4509: 4502: 4499: 4497: 4494: 4491: 4488: 4485: 4482: 4481: 4479: 4473: 4467: 4464: 4462: 4459: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4437: 4434: 4433: 4431: 4427: 4420: 4417: 4414: 4411: 4408: 4405: 4403: 4400: 4398: 4395: 4393: 4390: 4388: 4385: 4383: 4380: 4378: 4375: 4373: 4370: 4368: 4365: 4363: 4360: 4358: 4355: 4351: 4348: 4347: 4345: 4342: 4339: 4336: 4335: 4333: 4331: 4327: 4321: 4318: 4316: 4313: 4310: 4307: 4304: 4301: 4298: 4295: 4292: 4289: 4286: 4283: 4278: 4275: 4274: 4272: 4269: 4267: 4264: 4263: 4261: 4259: 4253: 4241: 4238: 4237: 4236: 4233: 4231: 4228: 4224: 4221: 4219: 4216: 4214: 4211: 4209: 4206: 4205: 4204: 4201: 4199: 4196: 4195: 4193: 4191: 4187: 4181: 4178: 4176: 4173: 4171: 4168: 4164: 4161: 4159: 4156: 4155: 4154: 4151: 4149: 4146: 4145: 4143: 4141: 4137: 4131: 4128: 4126: 4123: 4119: 4116: 4115: 4114: 4111: 4107: 4104: 4102: 4099: 4098: 4097: 4094: 4090: 4087: 4085: 4082: 4081: 4080: 4077: 4075: 4072: 4068: 4065: 4063: 4060: 4059: 4058: 4055: 4054: 4052: 4048: 4045: 4043: 4039: 4029: 4026: 4024: 4021: 4020: 4018: 4016: 4012: 4006: 4003: 4001: 3998: 3994: 3991: 3989: 3986: 3985: 3984: 3981: 3979: 3978:Scoreboarding 3976: 3975: 3973: 3971: 3967: 3961: 3960:False sharing 3958: 3956: 3953: 3951: 3948: 3946: 3943: 3942: 3940: 3938: 3934: 3928: 3925: 3923: 3920: 3918: 3915: 3914: 3912: 3910: 3906: 3903: 3901: 3897: 3887: 3884: 3882: 3879: 3877: 3874: 3871: 3867: 3864: 3862: 3859: 3857: 3854: 3852: 3849: 3848: 3846: 3844: 3841: 3839: 3836: 3834: 3831: 3829: 3826: 3824: 3821: 3819: 3816: 3814: 3811: 3809: 3806: 3804: 3801: 3799: 3796: 3794: 3791: 3789: 3786: 3782: 3779: 3777: 3774: 3772: 3769: 3768: 3766: 3764: 3761: 3759: 3756: 3754: 3753:Stanford MIPS 3751: 3749: 3746: 3744: 3741: 3739: 3736: 3734: 3731: 3729: 3726: 3725: 3723: 3717: 3709: 3706: 3705: 3704: 3701: 3699: 3696: 3694: 3691: 3689: 3686: 3684: 3681: 3679: 3676: 3674: 3671: 3667: 3664: 3663: 3662: 3659: 3655: 3652: 3651: 3650: 3647: 3645: 3642: 3640: 3637: 3635: 3632: 3630: 3627: 3626: 3624: 3620: 3617: 3615: 3614:architectures 3609: 3603: 3600: 3598: 3595: 3593: 3590: 3588: 3585: 3583: 3582:Heterogeneous 3580: 3576: 3573: 3571: 3568: 3567: 3566: 3563: 3561: 3558: 3554: 3551: 3549: 3546: 3544: 3541: 3539: 3536: 3535: 3534: 3533:Memory access 3531: 3529: 3526: 3524: 3521: 3519: 3516: 3514: 3511: 3507: 3504: 3503: 3502: 3499: 3497: 3494: 3492: 3489: 3488: 3486: 3484: 3480: 3472: 3469: 3467: 3466:Random-access 3464: 3462: 3459: 3457: 3454: 3453: 3452: 3449: 3447: 3446:Stack machine 3444: 3442: 3439: 3435: 3432: 3430: 3427: 3425: 3422: 3420: 3417: 3415: 3412: 3410: 3407: 3405: 3402: 3400: 3397: 3396: 3395: 3392: 3388: 3385: 3383: 3380: 3378: 3375: 3373: 3370: 3368: 3365: 3363: 3362:with datapath 3360: 3359: 3358: 3355: 3353: 3350: 3348: 3345: 3344: 3342: 3340: 3336: 3332: 3325: 3320: 3318: 3313: 3311: 3306: 3305: 3302: 3295: 3292: 3290: 3289: 3288:IEEE Spectrum 3284: 3281: 3279: 3275: 3272: 3269: 3266: 3265: 3261: 3255: 3251: 3247: 3242: 3238: 3234: 3230: 3225: 3224: 3220: 3212: 3206: 3203: 3198: 3194: 3193: 3188: 3181: 3178: 3162: 3161: 3153: 3150: 3145: 3138: 3135: 3124: 3123:ark.intel.com 3120: 3114: 3111: 3100: 3099:ark.intel.com 3096: 3090: 3087: 3076: 3072: 3065: 3062: 3050: 3046: 3040: 3037: 3032: 3028: 3022: 3019: 3014: 3010: 3004: 3001: 2996: 2992: 2988: 2982: 2979: 2974: 2970: 2963: 2960: 2949:on 2006-11-09 2948: 2944: 2937: 2934: 2923: 2922:ark.intel.com 2919: 2913: 2910: 2899: 2898:ark.intel.com 2895: 2889: 2886: 2875: 2874:ark.intel.com 2871: 2865: 2862: 2851: 2850:ark.intel.com 2847: 2841: 2838: 2827: 2826:ark.intel.com 2823: 2817: 2814: 2803: 2802:ark.intel.com 2799: 2793: 2790: 2779: 2778:ark.intel.com 2775: 2769: 2766: 2753: 2749: 2743: 2740: 2729: 2728:ark.intel.com 2725: 2719: 2716: 2705: 2704:ark.intel.com 2701: 2695: 2692: 2679: 2675: 2671: 2665: 2662: 2657: 2651: 2648: 2636: 2632: 2625: 2622: 2609: 2605: 2601: 2600: 2595: 2588: 2585: 2579: 2574: 2570: 2566: 2559: 2556: 2551: 2547: 2541: 2538: 2526: 2522: 2515: 2512: 2508: 2504: 2500: 2494: 2491: 2486: 2482: 2476: 2473: 2468: 2464: 2457: 2454: 2441: 2437: 2433: 2430:Clark, Jack. 2426: 2423: 2410: 2406: 2399: 2396: 2390: 2387: 2374: 2370: 2364: 2361: 2348: 2344: 2337: 2334: 2329: 2323: 2319: 2318: 2310: 2307: 2302: 2295: 2292: 2281: 2277: 2270: 2267: 2256: 2252: 2246: 2243: 2232: 2228: 2222: 2219: 2214: 2210: 2206: 2202: 2195: 2192: 2179: 2175: 2168: 2165: 2154: 2150: 2144: 2141: 2130: 2126: 2123:Smith, Ryan. 2119: 2117: 2113: 2105: 2098: 2091: 2088: 2075: 2071: 2064: 2061: 2055: 2050: 2046: 2043:Two types of 2041: 2038: 2035: 2034:mobile phones 2031: 2027: 2023: 2019: 2016: 2015: 2011: 2006: 2003: 2001: 1998: 1995: 1992: 1990: 1987: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1959: 1956: 1954: 1951: 1949: 1948:CPU shielding 1946: 1945: 1940: 1938: 1931: 1926: 1923: 1920: 1917: 1914: 1910: 1907: 1904: 1900: 1897: 1893: 1889: 1887: 1883: 1882: 1880: 1876: 1873: 1870: 1866: 1863: 1860: 1857: 1856: 1852: 1848: 1845: 1844: 1840: 1835: 1831: 1826: 1823: 1820: 1817: 1816: 1815: 1812: 1807: 1804: 1803:TMS320C80 MVP 1801: 1800: 1799: 1796: 1791: 1787: 1784: 1783: 1781: 1776: 1773: 1770: 1767: 1764: 1763:UltraSPARC T3 1761: 1758: 1757:UltraSPARC T2 1755: 1752: 1751:UltraSPARC T1 1749: 1746: 1745:UltraSPARC IV 1743: 1740: 1737: 1736: 1735: 1732: 1729: 1728:PlayStation 3 1725: 1721: 1717: 1713: 1709: 1706: 1701: 1700: 1699: 1696: 1693: 1690: 1687: 1683: 1679: 1676: 1672: 1669: 1666: 1663: 1660: 1657: 1653: 1650: 1645: 1641: 1638: 1637: 1636: 1633: 1628: 1625: 1622: 1618: 1617: 1615: 1610: 1607: 1606: 1605: 1602: 1597: 1593: 1590: 1589: 1587: 1582: 1579: 1576: 1573: 1570: 1567: 1564: 1561: 1558: 1555: 1552: 1548: 1544: 1540: 1536: 1532: 1529: 1526: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1502: 1499: 1496: 1492: 1488: 1484: 1481: 1480: 1479: 1476: 1471: 1467: 1465: 1462: 1461: 1460: 1457: 1452: 1449: 1446: 1443: 1440: 1437: 1434: 1431: 1428: 1425: 1422: 1419: 1416: 1412: 1409: 1407:game console. 1406: 1402: 1398: 1395: 1392: 1388: 1385: 1382: 1379: 1376: 1373: 1370: 1367: 1364: 1361: 1358: 1355: 1352: 1349: 1346: 1342: 1339: 1338: 1337: 1334: 1331: 1327: 1323: 1319: 1316: 1313: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1287: 1284: 1281: 1276: 1275: 1274: 1271: 1269: 1265: 1261: 1257: 1252: 1248: 1245: 1244: 1242: 1237: 1234: 1231: 1230: 1229: 1226: 1223: 1220: 1217: 1213: 1209: 1206: 1203: 1200: 1196: 1191: 1187: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1150: 1147: 1144: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1119: 1116: 1113: 1110: 1109: 1108: 1105: 1102: 1098: 1095: 1092: 1088: 1085: 1082: 1079: 1075: 1071: 1068: 1065: 1062: 1059: 1058: 1054: 1046: 1036: 1032: 1026: 1024: 1020: 1015:This article 1013: 1004: 1003: 997: 995: 993: 988: 986: 982: 974: 972: 970: 966: 962: 958: 954: 946: 944: 942: 938: 933: 929: 925: 921: 917: 909: 907: 905: 900: 897: 890: 885: 878: 873: 870: 867: 863: 859: 855: 851: 847: 846: 845: 839: 837: 835: 831: 827: 818: 815: 814: 809: 807:Agglomeration 806: 805: 800: 798:Communication 797: 796: 791: 788: 787: 786: 784: 779: 776: 772: 768: 764: 760: 754: 752: 748: 744: 740: 736: 732: 728: 724: 720: 716: 712: 708: 704: 700: 698: 694: 688: 684: 682: 678: 674: 673:thread-safety 669: 661: 658: 656: 652: 651:Anant Agarwal 648: 646: 641: 637: 634: 632: 626: 624: 623:heterogeneous 615: 613: 611: 606: 604: 600: 596: 592: 588: 583: 579: 575: 566: 561: 559: 555: 553: 546:Disadvantages 545: 543: 539: 537: 532: 528: 523: 521: 517: 513: 509: 505: 497: 495: 492: 488: 478: 474: 470: 466: 462: 458: 455: 451: 447: 444: 440: 439: 437: 433: 430: 429: 428: 425: 423: 415: 413: 411: 407: 401: 399: 395: 386: 384: 382: 381: 376: 373: 369: 368: 363: 359: 358:semiconductor 351: 349: 347: 343: 339: 334: 332: 328: 327: 321: 319: 314: 312: 308: 307: 302: 298: 294: 290: 286: 282: 278: 270: 268: 264: 260: 258: 253: 249: 245: 241: 236: 234: 230: 226: 222: 218: 214: 210: 205: 203: 199: 195: 191: 187: 183: 179: 175: 174:heterogeneous 171: 167: 163: 159: 155: 151: 150:shared-memory 147: 143: 139: 134: 132: 128: 124: 121:, known as a 120: 116: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 64: 59: 52: 47: 39: 33: 19: 5541:Coordination 5471:Amdahl's law 5407:Simultaneous 5232:Chip carrier 5170:Clock gating 5089:Mixed-signal 4986:Write buffer 4963:Control unit 4775:Clock signal 4696: 4514:accelerators 4496:Cypress PSoC 4153:Simultaneous 3970:Out-of-order 3602:Neuromorphic 3483:Architecture 3441:Belt machine 3434:Zeno machine 3367:Hierarchical 3286: 3277: 3245: 3237:10657.1/2440 3228: 3205: 3190: 3180: 3168:. Retrieved 3159: 3152: 3137: 3126:. Retrieved 3122: 3113: 3102:. Retrieved 3098: 3089: 3078:. Retrieved 3074: 3064: 3053:. Retrieved 3048: 3039: 3021: 3003: 2981: 2962: 2951:. Retrieved 2947:the original 2936: 2925:. Retrieved 2921: 2912: 2901:. Retrieved 2897: 2888: 2877:. Retrieved 2873: 2864: 2853:. Retrieved 2849: 2840: 2829:. Retrieved 2825: 2816: 2805:. Retrieved 2801: 2792: 2781:. Retrieved 2777: 2768: 2756:. Retrieved 2752:the original 2742: 2731:. Retrieved 2727: 2718: 2707:. Retrieved 2703: 2694: 2682:. Retrieved 2673: 2664: 2650: 2639:. Retrieved 2624: 2612:. Retrieved 2599:Ars Technica 2597: 2587: 2571:(1): 13–23. 2568: 2564: 2558: 2550:the original 2540: 2528:. Retrieved 2514: 2506: 2503:the original 2493: 2485:the original 2475: 2466: 2456: 2444:. Retrieved 2435: 2425: 2413:. Retrieved 2409:the original 2398: 2389: 2377:. Retrieved 2363: 2351:. Retrieved 2336: 2316: 2309: 2294: 2283:. Retrieved 2279: 2269: 2258:. Retrieved 2254: 2245: 2234:. Retrieved 2230: 2221: 2204: 2200: 2194: 2182:. Retrieved 2178:the original 2167: 2156:. Retrieved 2152: 2143: 2132:. Retrieved 2128: 2104:the original 2090: 2078:. Retrieved 2074:the original 2063: 2040: 2018: 1978:Multitasking 1935: 1470:home gateway 1391:Power Mac G5 1328:, dual core 1251:Raspberry Pi 1228:Azul Systems 1212:ARM11 MPCore 1122:Athlon 64 X2 1118:Athlon 64 FX 1040: 1029:Please help 1017:may contain 1016: 989: 978: 950: 913: 901: 899:processors. 894: 888: 843: 823: 789:Partitioning 780: 755: 749:, and IBM's 725:, Skandium, 701: 689: 685: 681:video codecs 665: 649: 642: 639: 635: 630: 627: 619: 616:Architecture 607: 589:and dynamic 570: 556: 549: 540: 524: 512:Bus snooping 501: 484: 476: 472: 468: 460: 449: 442: 426: 419: 402: 390: 378: 365: 355: 335: 330: 324: 322: 317: 315: 310: 304: 296: 280: 276: 274: 265: 261: 248:Amdahl's law 237: 206: 135: 127:chip package 122: 98: 94: 90: 81:on a single 74: 70: 68: 5977:Scalability 5738:distributed 5621:Concurrency 5588:Programming 5429:Cooperative 5418:Speculative 5354:Instruction 5017:Multiplexer 4981:Data buffer 4692:Single-core 4664:bit slicing 4522:Coprocessor 4377:Coprocessor 4258:performance 4180:Cooperative 4170:Speculative 4130:Distributed 4089:Superscalar 4074:Instruction 4042:Parallelism 4015:Speculative 3847:System/3x0 3719:Instruction 3496:Von Neumann 3409:Post–Turing 3166:. Hot Chips 2758:12 November 2530:October 21, 2303:. WikiChip. 1588:IntellaSys 1551:Core 2 Quad 1525:Core 2 Quad 1387:PowerPC 970 1332:processors. 826:server side 820:scheduling. 783:concurrency 508:cache snoop 473:memory wall 443:memory wall 398:Clock rates 372:superscalar 352:Development 271:Terminology 257:refactoring 223:(DSP), and 194:superscalar 6016:Categories 5982:Starvation 5721:asymmetric 5456:PRAM model 5424:Preemptive 5137:management 5032:Multiplier 4893:Logic gate 4883:Sequential 4790:Functional 4770:Clock rate 4743:Data cache 4716:Components 4697:Multi-core 4685:Core count 4175:Preemptive 4079:Pipelining 4062:Bit-serial 4005:Wide-issue 3950:Structural 3872:Tilera ISA 3838:MicroBlaze 3808:ETRAX CRIS 3703:Comparison 3548:Load–store 3528:Endianness 3270:—MakeUseOf 3128:2019-05-04 3104:2019-05-04 3080:2019-05-04 3055:2019-05-04 2953:2006-09-28 2927:2019-05-04 2903:2019-05-04 2879:2019-05-04 2855:2019-05-04 2831:2019-05-04 2807:2019-05-04 2783:2019-05-04 2733:2019-05-04 2709:2019-05-04 2641:2014-03-04 2614:5 December 2604:CondĂ© Nast 2285:2024-05-22 2260:2023-10-27 2236:2023-10-27 2158:2020-09-15 2134:2020-09-15 2056:References 1932:Benchmarks 1903:Wavescalar 1867:, 16-core 1623:processor. 1547:Core 2 Duo 1519:Core 2 Duo 1472:processor. 1273:ClearSpeed 1186:FireStream 1055:Commercial 1023:irrelevant 834:throughput 582:big.LITTLE 498:Advantages 469:power wall 461:power wall 375:pipelining 323:The terms 291:(DSP) and 277:multi-core 275:The terms 178:big.LITTLE 51:Core 2 Duo 5716:symmetric 5461:PEM model 5071:Circuitry 4991:Microcode 4915:Registers 4758:coherence 4733:CPU cache 4591:Word size 4256:Processor 3900:Execution 3803:DEC Alpha 3781:Power ISA 3597:Cognitive 3404:Universal 3029:. Intel. 3011:. Intel. 2628:Compare: 2573:CiteSeerX 1915:processor 1905:processor 1871:processor 1847:OpenSPARC 1684:, a dual 1668:Plurality 1312:Power ISA 1260:Tensilica 1243:Broadcom 1152:Phenom II 1134:FX-Series 1128:Athlon II 1043:July 2016 1019:excessive 961:Freescale 850:Microsoft 840:Licensing 781:Managing 741:, Cray's 711:Cilk Plus 693:microcode 465:shrinking 326:many-core 318:multi-CPU 281:dual-core 113:or other 99:quad-core 95:dual-core 49:An Intel 5947:Deadlock 5935:Problems 5901:pthreads 5881:OpenHMPP 5806:Ateji PX 5767:computer 5638:Hardware 5505:Elements 5491:Slowdown 5402:Temporal 5384:Pipeline 5009:Datapath 4702:Manycore 4674:variable 4512:Hardware 4148:Temporal 3828:OpenRISC 3523:Cellular 3513:Dataflow 3506:modified 3197:Archived 3192:PC World 3049:TechSpot 3031:Archived 3013:Archived 2995:Archived 2973:Archived 2678:Archived 2635:Archived 2608:Archived 2525:EE Times 2446:6 August 2440:Archived 2415:March 6, 2379:March 6, 2373:Archived 2347:Archived 2280:PC Gamer 2184:March 6, 2080:March 6, 1968:Manycore 1941:See also 1925:UC Davis 1859:Stanford 1853:Academic 1775:SPARC T5 1769:SPARC T4 1692:SiCortex 1675:Kilocore 1673:Rapport 1662:picoChip 1640:RTX 3090 1609:MPPA-256 1581:Xeon Phi 1549:and the 1513:Core Duo 1487:netbooks 1459:Infineon 1405:Xbox 360 1199:Blackfin 1112:A-Series 1061:Adapteva 1025:examples 969:Picochip 932:Broadcom 928:Wintegra 793:problem. 747:Fortress 745:, Sun's 723:FastFlow 719:OpenHMPP 709:such as 697:picocode 625:" role. 610:manycore 562:Hardware 477:ILP wall 450:ILP wall 240:software 233:one case 225:graphics 213:embedded 184:, while 170:crossbar 5906:RaftLib 5886:OpenACC 5861:GPUOpen 5851:C++ AMP 5826:Charm++ 5568:Barrier 5512:Process 5496:Speedup 5281:General 5185:Related 5116:Quantum 5106:Digital 5101:Boolean 4999:Counter 4898:Quantum 4659:512-bit 4654:256-bit 4649:128-bit 4492:(MPSoC) 4477:on chip 4475:Systems 4293:(FLOPS) 4106:Process 3955:Control 3937:Hazards 3823:Itanium 3818:Unicore 3776:PowerPC 3501:Harvard 3461:Pointer 3456:Counter 3414:Quantum 3170:27 June 2467:Giz Bot 2353:May 17, 1881:(AsAP) 1825:TILE-Gx 1782:Sunway 1724:PowerPC 1716:Toshiba 1563:Pentium 1557:Itanium 1543:Core i9 1539:Core i7 1535:Core i5 1531:Core i3 1507:Celeron 1497:(MIDs). 1491:nettops 1381:Power10 1345:PowerPC 1330:PA-RISC 1326:PA-8900 1322:PA-8800 1253:models) 1158:Sempron 1140:Opteron 830:threads 816:Mapping 767:Fortran 645:Renesas 591:voltage 520:degrade 516:signals 360:-based 217:network 77:) is a 61:An AMD 5999:  5876:OpenCL 5871:OpenMP 5816:Chapel 5733:shared 5728:Memory 5663:(SIMT) 5606:Models 5517:Thread 5449:Theory 5420:(SpMT) 5374:Memory 5359:Thread 5342:Levels 5121:Switch 5111:Analog 4849:(IMC) 4820:(MMU) 4669:others 4644:64-bit 4639:48-bit 4634:32-bit 4629:24-bit 4624:16-bit 4619:15-bit 4614:12-bit 4451:Mobile 4367:Stream 4362:Barrel 4357:Vector 4346:(GPU) 4305:(SUPS) 4273:(IPC) 4125:Memory 4118:Vector 4101:Thread 4084:Scalar 3886:Others 3833:RISC-V 3798:SuperH 3767:Power 3763:MIPS-X 3738:PDP-11 3587:Fabric 3339:Models 2575:  2324:  2005:Thread 1996:(PGAS) 1983:OpenCL 1819:TILE64 1814:Tilera 1698:SiFive 1682:RP2040 1635:Nvidia 1621:MIPS64 1604:Kalray 1375:POWER9 1369:POWER8 1363:POWER7 1357:POWER6 1351:POWER5 1341:POWER4 1208:MPCore 1182:Radeon 1164:Turion 1146:Phenom 1103:(MPPA) 1097:Ambric 985:Xilinx 864:, and 854:socket 743:Chapel 731:Erlang 729:, and 715:OpenMP 655:Tilera 599:laptop 597:(i.e. 567:Trends 198:vector 168:, and 142:caches 5846:Dryad 5811:Boost 5532:Array 5522:Fiber 5436:(CMT) 5409:(SMT) 5323:GPGPU 5177:(PPW) 5135:Power 5027:Adder 4903:Array 4870:Logic 4831:(TLB) 4814:(FPU) 4808:(AGU) 4802:(ALU) 4792:units 4728:Cache 4609:8-bit 4604:4-bit 4599:1-bit 4563:(TPU) 4557:(DSP) 4551:(PPU) 4545:(VPU) 4534:(GPU) 4503:(NoC) 4486:(SoC) 4421:(PoP) 4415:(SiP) 4409:(MCM) 4350:GPGPU 4340:(CPU) 4330:Types 4311:(PPW) 4299:(TPS) 4287:(IPS) 4279:(CPI) 4050:Level 3861:S/390 3856:S/370 3851:S/360 3793:SPARC 3771:POWER 3654:TRIPS 3622:Types 3164:(PDF) 3075:Intel 2991:Intel 2684:5 May 2436:ZDNet 2255:ZDNET 2231:PCMAG 2107:(PDF) 2100:(PDF) 2012:Notes 1958:GPGPU 1913:TRIPS 1892:AsAP2 1832:XMOS 1644:GPGPU 1478:Intel 1464:AURIX 1451:Telum 1427:zEC12 1397:Xenon 1268:ESP32 1222:ASOCS 1190:GPGPU 1170:Ryzen 1087:PhysX 1084:Ageia 1074:SPARC 1070:LEON3 941:6WIND 487:Intel 406:Intel 200:, or 91:cores 5911:ROCm 5841:CUDA 5831:Cilk 5798:APIs 5758:COMA 5753:NUMA 5684:MIMD 5679:MISD 5656:SIMD 5651:SISD 5379:Loop 5369:Data 5364:Task 5155:ACPI 4888:Glue 4780:FIFO 4723:Core 4461:ASIP 4402:CPLD 4397:FPOA 4392:FPGA 4387:ASIC 4240:SPMD 4235:MIMD 4230:MISD 4223:SWAR 4203:SIMD 4198:SISD 4113:Data 4096:Task 4067:Word 3813:M32R 3758:MIPS 3721:sets 3688:ZISC 3683:NISC 3678:OISC 3673:MISC 3666:EPIC 3661:VLIW 3649:EDGE 3639:RISC 3634:CISC 3543:HUMA 3538:NUMA 3172:2023 2760:2007 2686:2019 2616:2015 2532:2023 2448:2015 2417:2013 2381:2013 2355:2015 2322:ISBN 2186:2013 2082:2013 2026:RISC 1953:CUDA 1886:AsAP 1841:Free 1739:MAJC 1720:Cell 1708:Sony 1575:Xeon 1541:and 1483:Atom 1421:z196 1324:and 1290:MIPS 1214:and 1188:GPU/ 1184:and 1176:Epyc 1120:and 930:and 775:ACML 765:and 593:and 489:and 475:and 459:The 448:The 441:The 342:FPGA 329:and 311:same 297:same 279:and 190:VLIW 166:mesh 162:ring 5926:ZPL 5921:TBB 5916:UPC 5896:PVM 5866:MPI 5821:HPX 5748:UMA 5349:Bit 5150:APM 5145:PMU 5037:CPU 4994:ROM 4765:Bus 4382:PAL 4057:Bit 3843:LMC 3748:ARM 3743:x86 3733:VAX 3250:doi 3233:hdl 2674:AMD 2209:doi 2030:MPU 1869:RAW 1865:MIT 1718:'s 1712:IBM 1445:z15 1439:z14 1433:z13 1411:z10 1401:SMT 1336:IBM 1315:MPU 1293:MPU 1266:'s 1205:ARM 1107:AMD 1021:or 979:In 951:In 887:An 751:X10 735:TBB 727:MPI 695:or 668:GUI 605:). 531:SMP 491:AMD 410:x86 301:die 158:bus 148:or 119:die 97:or 75:MCP 6018:: 5084:3D 3195:. 3189:. 3121:. 3097:. 3073:. 3047:. 2993:. 2989:. 2971:. 2920:. 2896:. 2872:. 2848:. 2824:. 2800:. 2776:. 2726:. 2702:. 2676:. 2672:. 2606:. 2602:. 2596:. 2567:. 2523:. 2465:. 2438:. 2434:. 2345:. 2278:. 2253:. 2229:. 2205:21 2203:. 2151:. 2127:. 2115:^ 1911:, 1901:, 1877:, 1537:, 1533:, 1489:, 926:, 922:, 860:, 836:. 771:C# 753:. 721:, 717:, 713:, 699:. 259:. 219:, 215:, 211:, 204:. 196:, 192:, 160:, 69:A 5266:e 5259:t 5252:v 3323:e 3316:t 3309:v 3285:— 3276:— 3256:. 3252:: 3239:. 3235:: 3213:. 3174:. 3146:. 3131:. 3107:. 3083:. 3058:. 2956:. 2930:. 2906:. 2882:. 2858:. 2834:. 2810:. 2786:. 2762:. 2736:. 2712:. 2688:. 2658:. 2644:. 2618:. 2581:. 2569:4 2534:. 2469:. 2450:. 2419:. 2383:. 2357:. 2330:. 2288:. 2263:. 2239:. 2215:. 2211:: 2188:. 2161:. 2137:. 2084:. 1792:. 1730:. 1714:/ 1710:/ 1658:. 1598:. 1553:. 1393:. 1317:. 1295:. 1192:. 1093:. 1080:. 1045:) 1041:( 1037:. 1027:. 763:C 621:" 479:. 73:( 34:. 20:)

Index

Microprocessor core
Dual Core (hip hop duo)


Core 2 Duo

Athlon X2 6400+
microprocessor
integrated circuit
central processing units
program instructions
CPU instructions
multithreading
parallel computing
die
chip package
personal computers
multiprocessing
caches
message passing
shared-memory
network topologies
bus
ring
mesh
crossbar
heterogeneous
big.LITTLE
instruction set
AMD Accelerated Processing Units

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑