Knowledge (XXG)

Midsphere

Source đź“ť

22: 963: 769: 679: 1113:, one of whose two opposite faces is combinatorially equivalent to any given three-dimensional polyhedron. It is unknown whether every three-dimensional polyhedron can be used directly as a face of a four-dimensional antiprism, without replacing it by its canonical polyhedron, but it is not always possible to do so using both an arbitrary three-dimensional polyhedron and its polar dual. 692:
the centers of four spheres that are all externally tangent to each other. In this case, the six edge lengths of the tetrahedron are the pairwise sums of the four radii of these spheres. The midsphere of such a tetrahedron touches its edges at the points where two of the four generating spheres are tangent to each other, and is perpendicular to all four generating spheres.
1125:. Given such a body, every polyhedron has a combinatorially equivalent realization whose edges are tangent to this body. This has been described as "caging an egg": the smooth body is the egg and the polyhedral realization is its cage. Moreover, fixing three edges of the cage to have three specified points of tangency on the egg causes this realization to become unique. 1080:
in the Euclidean plane, applying a stereographic projection to transform it into a pair of circle packings on a sphere, searching numerically for a Möbius transformation that brings the centroid of the crossing points to the center of the sphere, and placing the vertices of the polyhedron at points
992:
is the given graph: its circles do not cross each other and are tangent to each other exactly when the vertices they correspond to are adjacent. Although every polyhedron has a combinatorially equivalent form with a midsphere, some polyhedra do not have any equivalent form with an inscribed sphere,
827:
of the vertex with respect to the midsphere) that equals the distance from that vertex to the point of tangency of each edge that touches it. For each edge, the sum of the two numbers assigned to its endpoints is just the edge's length. For instance, Crelle's tetrahedra can be parameterized by the
691:
has a midsphere. The tetrahedra that have a midsphere have been called "Crelle's tetrahedra"; they form a four-dimensional subfamily of the six-dimensional space of all tetrahedra (as parameterized by their six edge lengths). More precisely, Crelle's tetrahedra are exactly the tetrahedra formed by
979:
can be represented by the vertices and edges of a polyhedron with a midsphere. Equivalently, any convex polyhedron can be transformed into a combinatorially equivalent form, with corresponding vertices, edges, and faces, that has a midsphere. The horizon circles of the resulting polyhedron can be
1100:
works directly with the coordinates of the polyhedron vertices, adjusting their positions in an attempt to make the edges have equal distance from the origin, to make the points of minimum distance from the origin have the origin as their centroid, and to make the faces of the polyhedron remain
966:
A circle packing in the plane (blue) obtained by stereographically projecting the horizon circles on the midsphere of an octahedron. The yellow vertices and red edges represent the octahedron itself, centrally projected onto the midsphere and then stereographically projected onto the
954:, the sum of the lengths of the edges in the cycle can be subdivided in the same way into twice the sum of the powers of the vertices. Because this sum of powers of vertices does not depend on the choice of edges in the cycle, all Hamiltonian cycles have equal lengths. 922:
for the origin. These four numbers (three equal and one smaller) are the four numbers that parameterize this tetrahedron. Three of the tetrahedron edges connect two points that both have the larger radius; the length of these edges is the sum of these equal radii,
831:
As an example, the four points (0,0,0), (1,0,0), (0,1,0), and (0,0,1) form one of Crelle's tetrahedra, with three isosceles right triangles and one equilateral triangle for a face. These four points are the centers of four pairwise tangent spheres, with radii
1101:
planar. Unlike the circle packing method, this has not been proven to converge to the canonical polyhedron, and it is not even guaranteed to produce a polyhedron combinatorially equivalent to the given one, but it appears to work well on small examples.
682:
The centers of four pairwise tangent spheres form the vertices of a Crelle's tetrahedron. Here, four equal spheres form a regular tetrahedron. The midsphere passes through the six points of tangency of these spheres, which in this case form a regular
254: 1031:
among all combinatorially equivalent forms of the same polyhedron. For polyhedra with a non-cyclic group of orientation-preserving symmetries, the two choices of transformation coincide. For example, the canonical polyhedron of a
143:
is defined to be a sphere that is tangent to every edge of the polyhedron. That is to say, each edge must touch it, at an interior point of the edge, without crossing it. Equivalently, it is a sphere that contains the
148:
of every face of the polyhedron. When a midsphere exists, it is unique. Not every convex polyhedron has a midsphere; to have a midsphere, every face must have an inscribed circle (that is, it must be a
725:
has an inscribed circle, and these circles are tangent to each other exactly when the faces they lie in share an edge. (Not all systems of circles with these properties come from midspheres, however.)
920: 872: 641: 460: 538: 572: 1238: 289: 1270: 498: 324: 1020:. A different choice of transformation takes any polyhedron with a midsphere into one that maximizes the minimum distance of a vertex from the midsphere. It can be found in 1004:
of three-dimensional space that leaves the midsphere in the same position. This transformation leaves the sphere in place, but moves points within the sphere according to a
760:
of the midsphere, as viewed from the vertex. The circles formed in this way are tangent to each other exactly when the vertices they correspond to are connected by an edge.
108:, which has the same midsphere. The length of each polyhedron edge is the sum of the distances from its two endpoints to their corresponding circles in this circle packing. 1058: 945: 392: 596: 1293: 416: 1081:
in space having the dual circles of the transformed packing as their horizons. However, the coordinates and radii of the circles in the circle packing step can be
175: 1638: 356: 807:
as their apexes. The edges of the polar polyhedron have the same points of tangency with the midsphere, at which they are perpendicular to the edges of
1036:, defined in either of these two ways, is a cube, with the distance from its centroid to its edge midpoints equal to one and its edge length equal to 1012:
of the points of tangency is at the center of the sphere. The result of this transformation is an equivalent form of the given polyhedron, called the
1636:(2015), "The Galois complexity of graph drawing: why numerical solutions are ubiquitous for force-directed, spectral, and circle packing drawings", 1008:. Any polyhedron with a midsphere, scaled so that the midsphere is the unit sphere, can be transformed in this way into a polyhedron for which the 1832: 104:
on the midsphere, one corresponding to the adjacencies between vertices of the polyhedron, and the other corresponding in the same way to its
157:
has a midsphere only when it is a cube, because otherwise it has non-square rectangles as faces, and these do not have inscribed circles.
721:
is a circle that lies within the face, and is tangent to its edges at the same points where the midsphere is tangent. Thus, each face of
1696:, WADS 2001, 8-10 August, Providence, Rhode Island, Lecture Notes in Computer Science, vol. 2125, Springer-Verlag, pp. 14–25, 2441: 2153: 1814: 1016:, with the property that all combinatorially equivalent polyhedra will produce the same canonical polyhedra as each other, up to 1915: 1576: 877: 772: 2477:, IAS/Park City Mathematics Series, vol. 13, Providence, Rhode Island: American Mathematical Society, pp. 617–691, 2183: 2104: 1796: 835: 1426: 671:
all have midspheres. In the regular polyhedra, the inscribed sphere, midsphere, and circumscribed sphere all exist and are
169: 607: 424: 2278:
Springborn, Boris A. (2005), "A unique representation of polyhedral types: Centering via Möbius transformations",
509: 2280: 1692: 1419:, but that Koebe only proved this result for polyhedra with triangular faces. Schramm credits the full result to 1001: 545: 1203: 2385: 2226: 2037: 1805: 981: 768: 1005: 2535: 828:
four numbers assigned in this way to their four vertices, showing that they form a four-dimensional family.
660: 259: 120: 74: 1339:: it is not true that only the regular polyhedra have all three of a midsphere, insphere, and circumsphere. 127:. Any canonical polyhedron and its polar dual can be used to form two opposite faces of a four-dimensional 1243: 1086: 1077: 972: 664: 471: 124: 101: 78: 1017: 753: 294: 30: 1109:
The canonical polyhedron and its polar dual can be used to construct a four-dimensional analogue of an
678: 2466: 2421: 2235: 2056: 1859: 1744: 1082: 359: 165: 962: 2339: 1633: 2525: 2478: 2410: 2402: 2372: 2315: 2289: 2259: 2080: 2046: 1892: 1876: 1777: 1761: 1697: 1647: 1609: 1593: 1039: 989: 926: 672: 656: 652: 154: 150: 145: 70: 66: 1911: 1415:. Schramm states that the existence of an equivalent polyhedron with a midsphere was claimed by 1096:
Alternatively, a simpler numerical method for constructing the canonical polyhedron proposed by
291:
from the origin. Therefore, for this cube, the midsphere is centered at the origin, with radius
1597: 365: 123:
can construct the canonical polyhedron, but its coordinates cannot be represented exactly as a
2437: 2149: 1810: 1335:. The irregular tetrahedra with a midsphere provide a counterexample to an incorrect claim of 951: 581: 140: 50: 1800: 2530: 2504: 2488: 2455: 2429: 2394: 2356: 2348: 2323: 2299: 2267: 2243: 2210: 2192: 2167: 2143: 2131: 2113: 2088: 2064: 2024: 1989: 1981: 1938: 1900: 1868: 1846: 1785: 1753: 1735: 1723: 1707: 1675: 1657: 1617: 1585: 1420: 1275: 1134: 1121:
The midsphere in the construction of the canonical polyhedron can be replaced by any smooth
1069: 976: 824: 327: 249:{\textstyle {\bigl (}{\pm {\tfrac {1}{2}}},\pm {\tfrac {1}{2}},\pm {\tfrac {1}{2}}{\bigr )}} 2500: 2451: 2368: 2311: 2255: 2206: 2163: 2127: 2076: 2020: 1934: 1888: 1842: 1824: 1773: 1719: 1671: 1605: 401: 303: 268: 2508: 2496: 2459: 2447: 2364: 2360: 2327: 2307: 2271: 2251: 2214: 2202: 2171: 2159: 2135: 2123: 2092: 2072: 2028: 2016: 1993: 1985: 1942: 1930: 1904: 1884: 1850: 1838: 1820: 1789: 1769: 1727: 1715: 1679: 1667: 1621: 1601: 1574:
Aravind, P. K. (March 2011), "How spherical are the Archimedean solids and their duals?",
1430: 1025: 985: 788: 737: 668: 105: 82: 62: 1880: 1765: 2239: 2060: 2334: 1953: 1949: 1687: 1629: 1097: 395: 799:
as its midsphere. The face planes of the polar polyhedron pass through the circles on
2519: 2414: 2376: 2263: 2197: 2118: 2084: 1896: 1781: 1613: 749: 333: 153:), and all of these inscribed circles must belong to a single sphere. For example, a 86: 26: 1690:(2001), "Optimal Möbius transformations for information visualization and meshing", 1589: 2428:, Graduate Texts in Mathematics, vol. 152, Springer-Verlag, pp. 117–118, 2319: 2221: 997: 644: 599: 975:, on representing planar graphs by systems of tangent circles, states that every 2178: 2099: 2001: 1424: 1122: 1021: 947:. The other three edges connect two points with different radii summing to one. 820: 688: 575: 463: 2433: 2352: 2303: 2068: 1969: 1872: 1757: 1073: 501: 2009:
Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae
1137:, a hyperbolic polyhedron in which each vertex lies on the sphere at infinity 2492: 1711: 1110: 161: 128: 2473:-vector shapes", in Miller, Ezra; Reiner, Victor; Sturmfels, Bernd (eds.), 2383:
Wheeler, Roger F. (December 1958), "25. Quadrilaterals", Classroom Notes,
1028: 1009: 116: 111:
Every convex polyhedron has a combinatorially equivalent polyhedron, the
38: 2406: 2247: 1662: 1272:
is Coxeter's notation for the midradius, noting also that Coxeter uses
757: 58: 2002:"An inequality and some equalities for the midradius of a tetrahedron" 1702: 25:
A polyhedron and its midsphere. The red circles are the boundaries of
21: 2483: 2294: 1033: 54: 2398: 1433:
again only states the result explicitly for triangulated polyhedra.
1024:, and the canonical polyhedron defined in this alternative way has 2051: 2035:
Liu, Jinsong; Zhou, Ze (2016), "How many cages midscribe an egg",
1652: 1068:
A numerical approximation to the canonical polyhedron for a given
961: 767: 677: 100:
When a polyhedron has a midsphere, one can form two perpendicular
20: 2337:(1928), "Ăśber isoperimetrische Probleme bei konvexen Polyedern", 1693:
Proceedings of the 7th Workshop on Algorithms and Data Structures
89:) all have midspheres. The radius of the midsphere is called the 65:
of the polyhedron. Not every polyhedron has a midsphere, but the
1533: 1000:
and the same midsphere can be transformed into each other by a
819:
For a polyhedron with a midsphere, it is possible to assign a
874:
for the three nonzero points on the equilateral triangle and
1837:(2nd ed.), Oxford University Press, pp. 79, 117, 1857:
Fetter, Hans L. (2012), "A polyhedron full of surprises",
2181:(1994), "Coin graphs, polyhedra, and conformal mapping", 915:{\displaystyle 1-{\tfrac {1}{2}}{\sqrt {2}}\approx 0.293} 1423:, but the relevant portion of Thurston's lecture notes 867:{\displaystyle {\tfrac {1}{2}}{\sqrt {2}}\approx 0.707} 675:, and the midsphere touches each edge at its midpoint. 2469:(2007), "Convex polytopes: extremal constructions and 2102:(1993), "A polynomial time circle packing algorithm", 1154: 1152: 1150: 888: 840: 612: 550: 514: 476: 429: 368: 336: 297: 228: 210: 191: 178: 1278: 1246: 1206: 1169: 1167: 1072:
can be constructed by representing the graph and its
1042: 929: 880: 838: 610: 584: 548: 512: 474: 427: 404: 262: 1972:(1936), "Kontaktprobleme der Konformen Abbildung", 1916:"Are prisms and antiprisms really boring? (Part 3)" 1505: 1503: 1287: 1264: 1232: 1052: 939: 914: 866: 635: 590: 566: 532: 492: 454: 410: 386: 350: 318: 283: 248: 119:of the points of tangency of its edges. Numerical 1256: 1216: 803:that are tangent to cones having the vertices of 748:in a circle; this circle forms the boundary of a 308: 273: 1974:Ber. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Kl. 93:A polyhedron that has a midsphere is said to be 2340:Journal fĂĽr die reine und angewandte Mathematik 636:{\displaystyle {\tfrac {\varphi ^{2}}{2}}\ell } 455:{\displaystyle {\tfrac {1}{2{\sqrt {2}}}}\ell } 1639:Journal of Graph Algorithms & Applications 115:, that does have a midsphere, centered at the 2148:, University of California Press, p. 4, 256:, the midpoints of the edges are at distance 241: 181: 8: 1628:Bannister, Michael J.; Devanny, William E.; 1482: 1372: 1348: 1308: 756:from the vertex. That is, the circle is the 533:{\displaystyle {\tfrac {1}{\sqrt {2}}}\ell } 18:Sphere tangent to every edge of a polyhedron 567:{\displaystyle {\tfrac {\varphi }{2}}\ell } 1801:"2.1 Regular polyhedra; 2.2 Reciprocation" 1494: 1233:{\displaystyle {}_{1}\!\mathrm {R} /\ell } 2482: 2293: 2196: 2117: 2050: 1701: 1661: 1651: 1277: 1257: 1250: 1248: 1245: 1222: 1217: 1210: 1208: 1205: 1043: 1041: 950:When a polyhedron with a midsphere has a 930: 928: 899: 887: 879: 851: 839: 837: 618: 611: 609: 583: 549: 547: 513: 511: 475: 473: 438: 428: 426: 403: 374: 369: 367: 340: 335: 309: 302: 301: 296: 274: 267: 266: 261: 240: 239: 227: 209: 190: 186: 180: 179: 177: 1446: 1158: 709:is the midsphere of a convex polyhedron 326:. This is larger than the radius of the 1809:(3rd ed.), Dover, pp. 16–17, 1557: 1545: 1470: 1442: 1408: 1360: 1304: 1200:, Table I(i), pp. 292–293. See column " 1197: 1185: 1173: 1146: 996:Any two convex polyhedra with the same 29:within which the surface of the sphere 1396: 1384: 1332: 284:{\displaystyle 1{\big /}\!{\sqrt {2}}} 1958:Mathematica in Education and Research 1831:Cundy, H. M.; Rollett, A. P. (1961), 1738:(2015), "Mutually tangent spheres in 1521: 1458: 1416: 1412: 752:within which the sphere's surface is 358:, and smaller than the radius of the 7: 1509: 1336: 1320: 1265:{\displaystyle {}_{1}\!\mathrm {R} } 493:{\displaystyle {\tfrac {1}{2}}\ell } 172:, with vertices at the eight points 1307:states this for regular polyhedra; 319:{\textstyle 1{\big /}\!{\sqrt {2}}} 139:A midsphere of a three-dimensional 1258: 1218: 14: 1954:"Calculating canonical polyhedra" 993:or with a circumscribed sphere. 1598:10.4169/college.math.j.42.2.098 1590:10.4169/college.math.j.42.2.098 1577:The College Mathematics Journal 984:, into a circle packing in the 2224:(1992), "How to cage an egg", 1295:as the edge length (see p. 2). 1: 2198:10.1016/0012-365X(93)E0068-F 2145:Polyhedra: A Visual Approach 2119:10.1016/0012-365X(93)90340-Y 1053:{\displaystyle {\sqrt {2}}} 940:{\displaystyle {\sqrt {2}}} 713:, then the intersection of 170:Cartesian coordinate system 2552: 1483:Bern & Eppstein (2001) 1373:Cundy & Rollett (1961) 1349:Byer & Smeltzer (2015) 1311:for Archimedean polyhedra. 394:. More generally, for any 387:{\textstyle {\sqrt {3/4}}} 2434:10.1007/978-1-4613-8431-1 2353:10.1515/crll.1928.159.133 2304:10.1007/s00209-004-0713-5 2281:Mathematische Zeitschrift 2069:10.1007/s00222-015-0602-z 1881:10.4169/math.mag.85.5.334 1873:10.4169/math.mag.85.5.334 1766:10.4169/math.mag.88.2.146 1758:10.4169/math.mag.88.2.146 1083:non-constructible numbers 1002:projective transformation 971:One stronger form of the 2386:The Mathematical Gazette 2227:Inventiones Mathematicae 2038:Inventiones Mathematicae 1309:Cundy & Rollett 1961 982:stereographic projection 773:Cube and dual octahedron 591:{\displaystyle \varphi } 121:approximation algorithms 2475:Geometric Combinatorics 1712:10.1007/3-540-44634-6_3 1534:Bannister et al. (2015) 744:and that is tangent to 135:Definition and examples 2142:Pugh, Anthony (1976), 2000:LászlĂł, Lajos (2017), 1289: 1288:{\displaystyle 2\ell } 1266: 1234: 1087:closed-form expression 1054: 973:circle packing theorem 968: 941: 916: 868: 776: 684: 637: 592: 568: 534: 494: 456: 412: 388: 352: 320: 285: 250: 125:closed-form expression 34: 2426:Lectures on Polytopes 1558:Liu & Zhou (2016) 1290: 1267: 1235: 1089:using arithmetic and 1055: 1006:Möbius transformation 965: 942: 917: 869: 775:with common midsphere 771: 740:that has its apex at 681: 638: 593: 569: 535: 495: 457: 413: 411:{\displaystyle \ell } 389: 353: 321: 286: 251: 24: 2184:Discrete Mathematics 2105:Discrete Mathematics 1860:Mathematics Magazine 1745:Mathematics Magazine 1736:Smeltzer, Deirdre L. 1634:Goodrich, Michael T. 1276: 1244: 1204: 1093:th-root operations. 1040: 1014:canonical polyhedron 958:Canonical polyhedron 927: 878: 836: 823:to each vertex (the 687:Not every irregular 667:polyhedra and their 608: 582: 546: 510: 472: 425: 402: 366: 360:circumscribed sphere 334: 295: 260: 176: 113:canonical polyhedron 81:polyhedra and their 2493:10.1090/pcms/013/10 2240:1992InMat.107..543S 2061:2016InMat.203..655L 1834:Mathematical Models 1085:that have no exact 540:for a regular cube, 418:, the midradius is 97:about this sphere. 2467:Ziegler, GĂĽnter M. 2422:Ziegler, GĂĽnter M. 2248:10.1007/BF01231901 1663:10.7155/jgaa.00349 1429:2021-01-21 at the 1285: 1262: 1230: 1050: 990:intersection graph 969: 937: 912: 897: 864: 849: 777: 736:, then there is a 685: 633: 628: 588: 564: 559: 530: 525: 490: 485: 452: 447: 408: 384: 348: 316: 281: 246: 237: 219: 200: 155:rectangular cuboid 151:tangential polygon 35: 1806:Regular Polytopes 1797:Coxeter, H. S. M. 1495:Springborn (2005) 1076:as perpendicular 1048: 952:Hamiltonian cycle 935: 904: 896: 856: 848: 717:with any face of 653:uniform polyhedra 627: 558: 524: 523: 484: 446: 443: 382: 314: 279: 236: 218: 199: 141:convex polyhedron 67:uniform polyhedra 51:convex polyhedron 33:from each vertex. 2543: 2511: 2486: 2472: 2462: 2417: 2393:(342): 275–276, 2379: 2347:(159): 133–143, 2330: 2297: 2274: 2217: 2200: 2191:(1–3): 133–138, 2174: 2138: 2121: 2112:(1–3): 257–263, 2095: 2054: 2031: 2006: 1996: 1965: 1945: 1920: 1912:GrĂĽnbaum, Branko 1907: 1853: 1827: 1792: 1741: 1730: 1705: 1682: 1665: 1655: 1624: 1561: 1555: 1549: 1543: 1537: 1531: 1525: 1519: 1513: 1507: 1498: 1492: 1486: 1480: 1474: 1468: 1462: 1456: 1450: 1440: 1434: 1421:William Thurston 1406: 1400: 1394: 1388: 1382: 1376: 1370: 1364: 1358: 1352: 1346: 1340: 1330: 1324: 1318: 1312: 1302: 1296: 1294: 1292: 1291: 1286: 1271: 1269: 1268: 1263: 1261: 1255: 1254: 1249: 1239: 1237: 1236: 1231: 1226: 1221: 1215: 1214: 1209: 1195: 1189: 1183: 1177: 1171: 1162: 1156: 1135:Ideal polyhedron 1092: 1070:polyhedral graph 1059: 1057: 1056: 1051: 1049: 1044: 980:transformed, by 977:polyhedral graph 946: 944: 943: 938: 936: 931: 921: 919: 918: 913: 905: 900: 898: 889: 873: 871: 870: 865: 857: 852: 850: 841: 810: 806: 802: 798: 794: 791:with respect to 789:polar polyhedron 786: 783:has a midsphere 782: 779:If a polyhedron 747: 743: 735: 731: 724: 720: 716: 712: 708: 655:, including the 642: 640: 639: 634: 629: 623: 622: 613: 597: 595: 594: 589: 573: 571: 570: 565: 560: 551: 539: 537: 536: 531: 526: 519: 515: 499: 497: 496: 491: 486: 477: 461: 459: 458: 453: 448: 445: 444: 439: 430: 417: 415: 414: 409: 393: 391: 390: 385: 383: 378: 370: 357: 355: 354: 351:{\textstyle 1/2} 349: 344: 328:inscribed sphere 325: 323: 322: 317: 315: 310: 307: 306: 290: 288: 287: 282: 280: 275: 272: 271: 255: 253: 252: 247: 245: 244: 238: 229: 220: 211: 202: 201: 192: 185: 184: 164:centered at the 146:inscribed circle 106:polar polyhedron 69:, including the 2551: 2550: 2546: 2545: 2544: 2542: 2541: 2540: 2516: 2515: 2514: 2470: 2465: 2444: 2420: 2399:10.2307/3610439 2382: 2333: 2277: 2220: 2177: 2156: 2141: 2098: 2034: 2004: 1999: 1968: 1950:Hart, George W. 1948: 1918: 1910: 1856: 1830: 1817: 1795: 1739: 1734:Byer, Owen D.; 1733: 1685: 1630:Eppstein, David 1627: 1573: 1569: 1564: 1556: 1552: 1544: 1540: 1532: 1528: 1520: 1516: 1508: 1501: 1493: 1489: 1481: 1477: 1469: 1465: 1457: 1453: 1447:Steinitz (1928) 1441: 1437: 1431:Wayback Machine 1407: 1403: 1395: 1391: 1383: 1379: 1371: 1367: 1359: 1355: 1347: 1343: 1331: 1327: 1319: 1315: 1303: 1299: 1274: 1273: 1247: 1242: 1241: 1207: 1202: 1201: 1196: 1192: 1184: 1180: 1172: 1165: 1159:GrĂĽnbaum (2005) 1157: 1148: 1144: 1131: 1119: 1107: 1090: 1078:circle packings 1066: 1038: 1037: 986:Euclidean plane 960: 925: 924: 876: 875: 834: 833: 817: 808: 804: 800: 796: 792: 784: 780: 766: 745: 741: 733: 732:is a vertex of 729: 722: 718: 714: 710: 706: 703: 701:Tangent circles 698: 614: 606: 605: 580: 579: 544: 543: 508: 507: 470: 469: 434: 423: 422: 400: 399: 398:of edge length 364: 363: 332: 331: 293: 292: 258: 257: 174: 173: 137: 102:circle packings 19: 12: 11: 5: 2549: 2547: 2539: 2538: 2536:Circle packing 2533: 2528: 2518: 2517: 2513: 2512: 2463: 2442: 2418: 2380: 2331: 2288:(3): 513–517, 2275: 2234:(3): 543–560, 2218: 2175: 2154: 2139: 2096: 2045:(2): 655–673, 2032: 1997: 1966: 1946: 1923:Geombinatorics 1908: 1867:(5): 334–342, 1854: 1828: 1815: 1793: 1752:(2): 146–150, 1731: 1683: 1646:(2): 619–656, 1625: 1570: 1568: 1565: 1563: 1562: 1550: 1546:Schramm (1992) 1538: 1526: 1514: 1499: 1487: 1475: 1471:Ziegler (1995) 1463: 1451: 1443:Schramm (1992) 1435: 1409:Schramm (1992) 1401: 1389: 1377: 1365: 1361:Ziegler (2007) 1353: 1341: 1325: 1313: 1305:Coxeter (1973) 1297: 1284: 1281: 1260: 1253: 1229: 1225: 1220: 1213: 1198:Coxeter (1973) 1190: 1186:Wheeler (1958) 1178: 1174:Coxeter (1973) 1163: 1145: 1143: 1140: 1139: 1138: 1130: 1127: 1118: 1115: 1106: 1103: 1098:George W. Hart 1065: 1062: 1047: 959: 956: 934: 911: 908: 903: 895: 892: 886: 883: 863: 860: 855: 847: 844: 816: 813: 765: 762: 702: 699: 697: 694: 649: 648: 643:for a regular 632: 626: 621: 617: 603: 587: 574:for a regular 563: 557: 554: 541: 529: 522: 518: 505: 500:for a regular 489: 483: 480: 467: 462:for a regular 451: 442: 437: 433: 407: 396:Platonic solid 381: 377: 373: 347: 343: 339: 313: 305: 300: 278: 270: 265: 243: 235: 232: 226: 223: 217: 214: 208: 205: 198: 195: 189: 183: 136: 133: 87:Catalan solids 27:spherical caps 17: 13: 10: 9: 6: 4: 3: 2: 2548: 2537: 2534: 2532: 2529: 2527: 2524: 2523: 2521: 2510: 2506: 2502: 2498: 2494: 2490: 2485: 2480: 2476: 2468: 2464: 2461: 2457: 2453: 2449: 2445: 2443:0-387-94365-X 2439: 2435: 2431: 2427: 2423: 2419: 2416: 2412: 2408: 2404: 2400: 2396: 2392: 2388: 2387: 2381: 2378: 2374: 2370: 2366: 2362: 2358: 2354: 2350: 2346: 2342: 2341: 2336: 2332: 2329: 2325: 2321: 2317: 2313: 2309: 2305: 2301: 2296: 2291: 2287: 2283: 2282: 2276: 2273: 2269: 2265: 2261: 2257: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2228: 2223: 2222:Schramm, Oded 2219: 2216: 2212: 2208: 2204: 2199: 2194: 2190: 2186: 2185: 2180: 2176: 2173: 2169: 2165: 2161: 2157: 2155:9780520030565 2151: 2147: 2146: 2140: 2137: 2133: 2129: 2125: 2120: 2115: 2111: 2107: 2106: 2101: 2097: 2094: 2090: 2086: 2082: 2078: 2074: 2070: 2066: 2062: 2058: 2053: 2048: 2044: 2040: 2039: 2033: 2030: 2026: 2022: 2018: 2014: 2010: 2003: 1998: 1995: 1991: 1987: 1983: 1979: 1975: 1971: 1967: 1963: 1959: 1955: 1951: 1947: 1944: 1940: 1936: 1932: 1928: 1924: 1917: 1913: 1909: 1906: 1902: 1898: 1894: 1890: 1886: 1882: 1878: 1874: 1870: 1866: 1862: 1861: 1855: 1852: 1848: 1844: 1840: 1836: 1835: 1829: 1826: 1822: 1818: 1816:0-486-61480-8 1812: 1808: 1807: 1802: 1798: 1794: 1791: 1787: 1783: 1779: 1775: 1771: 1767: 1763: 1759: 1755: 1751: 1747: 1746: 1737: 1732: 1729: 1725: 1721: 1717: 1713: 1709: 1704: 1703:cs.CG/0101006 1699: 1695: 1694: 1689: 1684: 1681: 1677: 1673: 1669: 1664: 1659: 1654: 1649: 1645: 1641: 1640: 1635: 1631: 1626: 1623: 1619: 1615: 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1584:(2): 98–107, 1583: 1579: 1578: 1572: 1571: 1566: 1559: 1554: 1551: 1547: 1542: 1539: 1535: 1530: 1527: 1523: 1518: 1515: 1511: 1506: 1504: 1500: 1496: 1491: 1488: 1484: 1479: 1476: 1472: 1467: 1464: 1460: 1455: 1452: 1448: 1444: 1439: 1436: 1432: 1428: 1425: 1422: 1418: 1414: 1410: 1405: 1402: 1398: 1397:Fetter (2012) 1393: 1390: 1386: 1385:LászlĂł (2017) 1381: 1378: 1374: 1369: 1366: 1362: 1357: 1354: 1350: 1345: 1342: 1338: 1334: 1333:LászlĂł (2017) 1329: 1326: 1322: 1317: 1314: 1310: 1306: 1301: 1298: 1282: 1279: 1251: 1227: 1223: 1211: 1199: 1194: 1191: 1187: 1182: 1179: 1175: 1170: 1168: 1164: 1160: 1155: 1153: 1151: 1147: 1141: 1136: 1133: 1132: 1128: 1126: 1124: 1117:Caging an egg 1116: 1114: 1112: 1104: 1102: 1099: 1094: 1088: 1084: 1079: 1075: 1071: 1063: 1061: 1045: 1035: 1030: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 994: 991: 987: 983: 978: 974: 964: 957: 955: 953: 948: 932: 909: 906: 901: 893: 890: 884: 881: 861: 858: 853: 845: 842: 829: 826: 822: 814: 812: 790: 774: 770: 763: 761: 759: 755: 751: 750:spherical cap 739: 726: 700: 695: 693: 690: 680: 676: 674: 670: 666: 662: 658: 654: 646: 630: 624: 619: 615: 604: 601: 585: 577: 561: 555: 552: 542: 527: 520: 516: 506: 503: 487: 481: 478: 468: 465: 449: 440: 435: 431: 421: 420: 419: 405: 397: 379: 375: 371: 361: 345: 341: 337: 329: 311: 298: 276: 263: 233: 230: 224: 221: 215: 212: 206: 203: 196: 193: 187: 171: 167: 163: 158: 156: 152: 147: 142: 134: 132: 130: 126: 122: 118: 114: 109: 107: 103: 98: 96: 92: 88: 84: 80: 76: 72: 68: 64: 60: 56: 52: 48: 44: 40: 32: 28: 23: 16: 2484:math/0411400 2474: 2425: 2390: 2384: 2344: 2338: 2335:Steinitz, E. 2295:math/0401005 2285: 2279: 2231: 2225: 2188: 2182: 2179:Sachs, Horst 2144: 2109: 2103: 2100:Mohar, Bojan 2042: 2036: 2012: 2008: 1977: 1973: 1961: 1957: 1929:(2): 69–78, 1926: 1922: 1864: 1858: 1833: 1804: 1749: 1743: 1691: 1688:Eppstein, D. 1643: 1637: 1581: 1575: 1553: 1541: 1529: 1522:Mohar (1993) 1517: 1490: 1478: 1466: 1459:Sachs (1994) 1454: 1438: 1417:Koebe (1936) 1413:Sachs (1994) 1404: 1392: 1380: 1368: 1356: 1344: 1328: 1316: 1300: 1193: 1181: 1120: 1108: 1105:Applications 1095: 1067: 1064:Construction 1013: 998:face lattice 995: 970: 949: 830: 818: 815:Edge lengths 778: 727: 704: 686: 661:quasiregular 650: 645:dodecahedron 600:golden ratio 598:denotes the 159: 138: 112: 110: 99: 94: 90: 75:quasiregular 46: 42: 36: 15: 2015:: 165–176, 1980:: 141–164, 1970:Koebe, Paul 1510:Hart (1997) 1337:Pugh (1976) 1321:Pugh (1976) 1123:convex body 1022:linear time 821:real number 787:, then the 728:Dually, if 689:tetrahedron 683:octahedron. 665:semiregular 576:icosahedron 464:tetrahedron 79:semiregular 47:intersphere 31:can be seen 2520:Categories 2509:1134.52018 2460:0823.52002 2361:54.0527.04 2328:1068.52015 2272:0726.52003 2215:0808.05043 2172:0387.52006 2136:0785.52006 2093:1339.52010 2029:1399.51014 1994:0017.21701 1986:62.1217.04 1943:1094.52007 1905:1274.52018 1851:0095.38001 1790:1325.51011 1728:0997.68536 1686:Bern, M.; 1680:1328.05128 1622:1272.97023 1567:References 1074:dual graph 1018:congruence 696:Properties 673:concentric 502:octahedron 95:midscribed 91:midradius. 2526:Polyhedra 2415:250434576 2377:199546274 2264:189830473 2085:253741720 2052:1412.5430 1964:(3): 5–10 1897:118482074 1782:125524102 1742:-space", 1653:1408.1422 1614:116393034 1283:ℓ 1240:", where 1228:ℓ 1111:antiprism 907:≈ 885:− 859:≈ 795:also has 631:ℓ 616:φ 586:φ 562:ℓ 553:φ 528:ℓ 488:ℓ 450:ℓ 406:ℓ 225:± 207:± 188:± 162:unit cube 129:antiprism 61:to every 57:which is 43:midsphere 2424:(1995), 1952:(1997), 1914:(2005), 1799:(1973), 1427:Archived 1129:See also 1029:symmetry 1010:centroid 578:, where 117:centroid 39:geometry 2531:Spheres 2501:2383133 2452:1311028 2407:3610439 2369:1581158 2320:7624380 2312:2121737 2256:1150601 2236:Bibcode 2207:1303402 2164:0451161 2128:1226147 2077:3455159 2057:Bibcode 2021:3722672 1935:2298896 1889:3007214 1843:0124167 1825:0370327 1774:3359040 1720:1936397 1672:3430492 1606:2793141 1026:maximal 764:Duality 758:horizon 754:visible 657:regular 168:of the 71:regular 59:tangent 2507:  2499:  2458:  2450:  2440:  2413:  2405:  2375:  2367:  2359:  2326:  2318:  2310:  2270:  2262:  2254:  2213:  2205:  2170:  2162:  2152:  2134:  2126:  2091:  2083:  2075:  2027:  2019:  1992:  1984:  1941:  1933:  1903:  1895:  1887:  1879:  1849:  1841:  1823:  1813:  1788:  1780:  1772:  1764:  1726:  1718:  1678:  1670:  1620:  1612:  1604:  1596:  1034:cuboid 988:whose 967:plane. 166:origin 160:For a 55:sphere 41:, the 2479:arXiv 2411:S2CID 2403:JSTOR 2373:S2CID 2316:S2CID 2290:arXiv 2260:S2CID 2081:S2CID 2047:arXiv 2005:(PDF) 1919:(PDF) 1893:S2CID 1877:JSTOR 1778:S2CID 1762:JSTOR 1698:arXiv 1648:arXiv 1610:S2CID 1594:JSTOR 1142:Notes 910:0.293 862:0.707 825:power 669:duals 602:, and 83:duals 53:is a 49:of a 2438:ISBN 2345:1928 2150:ISBN 1811:ISBN 738:cone 663:and 651:The 77:and 63:edge 2505:Zbl 2489:doi 2456:Zbl 2430:doi 2395:doi 2357:JFM 2349:doi 2324:Zbl 2300:doi 2286:249 2268:Zbl 2244:doi 2232:107 2211:Zbl 2193:doi 2189:134 2168:Zbl 2132:Zbl 2114:doi 2110:117 2089:Zbl 2065:doi 2043:203 2025:Zbl 1990:Zbl 1982:JFM 1939:Zbl 1901:Zbl 1869:doi 1847:Zbl 1786:Zbl 1754:doi 1724:Zbl 1708:doi 1676:Zbl 1658:doi 1618:Zbl 1586:doi 705:If 45:or 37:In 2522:: 2503:, 2497:MR 2495:, 2487:, 2454:, 2448:MR 2446:, 2436:, 2409:, 2401:, 2391:42 2389:, 2371:, 2365:MR 2363:, 2355:, 2343:, 2322:, 2314:, 2308:MR 2306:, 2298:, 2284:, 2266:, 2258:, 2252:MR 2250:, 2242:, 2230:, 2209:, 2203:MR 2201:, 2187:, 2166:, 2160:MR 2158:, 2130:, 2124:MR 2122:, 2108:, 2087:, 2079:, 2073:MR 2071:, 2063:, 2055:, 2041:, 2023:, 2017:MR 2013:46 2011:, 2007:, 1988:, 1978:88 1976:, 1960:, 1956:, 1937:, 1931:MR 1927:15 1925:, 1921:, 1899:, 1891:, 1885:MR 1883:, 1875:, 1865:85 1863:, 1845:, 1839:MR 1821:MR 1819:, 1803:, 1784:, 1776:, 1770:MR 1768:, 1760:, 1750:88 1748:, 1722:, 1716:MR 1714:, 1706:, 1674:, 1668:MR 1666:, 1656:, 1644:19 1642:, 1632:; 1616:, 1608:, 1602:MR 1600:, 1592:, 1582:42 1580:, 1502:^ 1445:; 1411:; 1166:^ 1149:^ 1060:. 811:. 659:, 362:, 330:, 131:. 73:, 2491:: 2481:: 2471:f 2432:: 2397:: 2351:: 2302:: 2292:: 2246:: 2238:: 2195:: 2116:: 2067:: 2059:: 2049:: 1962:6 1871:: 1756:: 1740:n 1710:: 1700:: 1660:: 1650:: 1588:: 1560:. 1548:. 1536:. 1524:. 1512:. 1497:. 1485:. 1473:. 1461:. 1449:. 1399:. 1387:. 1375:. 1363:. 1351:. 1323:. 1280:2 1259:R 1252:1 1224:/ 1219:R 1212:1 1188:. 1176:. 1161:. 1091:n 1046:2 933:2 902:2 894:2 891:1 882:1 854:2 846:2 843:1 809:P 805:P 801:O 797:O 793:O 785:O 781:P 746:O 742:v 734:P 730:v 723:P 719:P 715:O 711:P 707:O 647:. 625:2 620:2 556:2 521:2 517:1 504:, 482:2 479:1 466:, 441:2 436:2 432:1 380:4 376:/ 372:3 346:2 342:/ 338:1 312:2 304:/ 299:1 277:2 269:/ 264:1 242:) 234:2 231:1 222:, 216:2 213:1 204:, 197:2 194:1 182:( 85:(

Index

An opaque white polyhedron with four triangular faces and four quadrilateral faces is crossed by a transparent blue sphere of approximately the same size, tangent to each edge of the polyhedron. The visible portions of the sphere, outside the polyhedron, form circular caps on each face of the polyhedron, of two sizes: smaller in the triangular faces, and larger in the quadrilateral faces. Red circles on the surface of the sphere, passing through these caps, mark the horizons visible from each polyhedron vertex. The red circles have the same two sizes as the circular caps: smaller circles surround the polyhedron vertices where three faces meet, and larger circles surround the vertices where four faces meet.
spherical caps
can be seen
geometry
convex polyhedron
sphere
tangent
edge
uniform polyhedra
regular
quasiregular
semiregular
duals
Catalan solids
circle packings
polar polyhedron
centroid
approximation algorithms
closed-form expression
antiprism
convex polyhedron
inscribed circle
tangential polygon
rectangular cuboid
unit cube
origin
Cartesian coordinate system
inscribed sphere
circumscribed sphere
Platonic solid

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑