Knowledge (XXG)

Training, validation, and test data sets

Source đź“ť

1096: 1120: 1344: 2936: 2916: 1154:. The goal is to produce a trained (fitted) model that generalizes well to new, unknown data. The fitted model is evaluated using “new” examples from the held-out data sets (validation and test data sets) to estimate the model’s accuracy in classifying new data. To reduce the risk of issues such as over-fitting, the examples in the validation and test data sets should not be used to train the model. 1312:
unseen data (validation set). "The literature on machine learning often reverses the meaning of 'validation' and 'test' sets. This is the most blatant example of the terminological confusion that pervades artificial intelligence research." Nevertheless, the important concept that must be kept is that the final set, whether called test or validation, should only be used in the final experiment.
1284: 1268:
In a scenario where both validation and test data sets are used, the test data set is typically used to assess the final model that is selected during the validation process. In the case where the original data set is partitioned into two subsets (training and test data sets), the test data set might
1125:
Subsequent run of the network on an input image (left): The network correctly detects the starfish. However, the weakly weighted association between ringed texture and sea urchin also confers a weak signal to the latter from one of two intermediate nodes. In addition, a shell that was not included in
1195:
parameter needs to be adjusted, it is necessary to have a validation data set in addition to the training and test data sets. For example, if the most suitable classifier for the problem is sought, the training data set is used to train the different candidate classifiers, the validation data set is
1059:
to the training data set). This simple procedure is complicated in practice by the fact that the validation data set's error may fluctuate during training, producing multiple local minima. This complication has led to the creation of many ad-hoc rules for deciding when over-fitting has truly begun.
1311:
is the one here described. However, in both industry and academia, they are sometimes used interchanged, by considering that the internal process is testing different models to improve (test set as a development set) and the final model is the one that needs to be validated before real use with an
1302:
Testing is trying something to find out about it ("To put to the proof; to prove the truth, genuineness, or quality of by experiment" according to the Collaborative International Dictionary of English) and to validate is to prove that something is valid ("To confirm; to render valid" Collaborative
1292:
of the fit shown in orange is 4 whereas the MSE for the fit shown in green is 9. In the test set, the MSE for the fit shown in orange is 15 and the MSE for the fit shown in green is 13. The orange curve severely overfits the training data, since its MSE increases by almost a factor of four when
1264:
A test set is therefore a set of examples used only to assess the performance (i.e. generalization) of a fully specified classifier. To do this, the final model is used to predict classifications of examples in the test set. Those predictions are compared to the examples' true classifications to
1224:
error function defined with respect to a training data set. The performance of the networks is then compared by evaluating the error function using an independent validation set, and the network having the smallest error with respect to the validation set is selected. This approach is called the
1223:
Since our goal is to find the network having the best performance on new data, the simplest approach to the comparison of different networks is to evaluate the error function using data which is independent of that used for training. Various networks are trained by minimization of an appropriate
1378:
An example of an omission of particular circumstances is a case where a boy was able to unlock the phone because his mother registered her face under indoor, nighttime lighting, a condition which was not appropriately included in the training of the system.
1287:
A training set (left) and a test set (right) from the same statistical population are shown as blue points. Two predictive models are fit to the training data. Both fitted models are plotted with both the training and test sets. In the training set, the
1479:
Pattern recognition has its origins in engineering, whereas machine learning grew out of computer science. However, these activities can be viewed as two facets of the same field, and together they have undergone substantial development over the past ten
1113:. The starfish match with a ringed texture and a star outline, whereas most sea urchins match with a striped texture and oval shape. However, the instance of a ring textured sea urchin creates a weakly weighted association between them. 1228:
method. Since this procedure can itself lead to some overfitting to the validation set, the performance of the selected network should be confirmed by measuring its performance on a third independent set of data called a test
1079:. The term "validation set" is sometimes used instead of "test set" in some literature (e.g., if the original data set was partitioned into only two subsets, the test set might be referred to as the validation set). 1028:, for each input vector in the training data set. Based on the result of the comparison and the specific learning algorithm being used, the parameters of the model are adjusted. The model fitting can include both 1237:, where the candidate models are successive iterations of the same network, and training stops when the error on the validation set grows, choosing the previous model (the one with minimum error). 2810: 879: 1798:"On Splitting Training and Validation Set: A Comparative Study of Cross-Validation, Bootstrap and Systematic Sampling for Estimating the Generalization Performance of Supervised Learning" 917: 1977: 1320:
In order to get more stable results and use all valuable data for training, a data set can be repeatedly split into several training and a validation data sets. This is known as
1212:, and so on. The validation data set functions as a hybrid: it is training data used for testing, but neither as part of the low-level training nor as part of the final testing. 1188:
includes the number of hidden units in each layer. It, as well as the testing set (as mentioned below), should follow the same probability distribution as the training data set.
1150:
For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good
874: 864: 2652: 705: 2058: 1687: 1277:, two partitions can be sufficient and effective since results are averaged after repeated rounds of model training and testing to help reduce bias and variability. 1354:, from a previous definition of "extra hot"). This can be classified as both a failure in logic and a failure to include various relevant environmental conditions. 1400: 912: 1638: 1386:, such as being trained by pictures of sheep on grasslands, leading to a risk that a different object will be interpreted as a sheep if located on a grassland. 869: 720: 451: 1196:
used to compare their performances and decide which one to take and, finally, the test data set is used to obtain the performance characteristics such as
952: 755: 1293:
comparing the test set to the training set. The green curve overfits the training data much less, as its MSE increases by less than a factor of 2.
1126:
the training gives a weak signal for the oval shape, also resulting in a weak signal for the sea urchin output. These weak signals may result in a
1082:
Deciding the sizes and strategies for data set division in training, test and validation sets is very dependent on the problem and data available.
2168: 831: 380: 2051: 1261:
has taken place (see figure below). A better fitting of the training data set as opposed to the test data set usually points to over-fitting.
1184:(i.e. the architecture) of a classifier. It is sometimes also called the development set or the "dev set". An example of a hyperparameter for 2970: 1767: 1622: 2841: 889: 652: 187: 985:. In particular, three data sets are commonly used in different stages of the creation of the model: training, validation, and test sets. 2942: 2493: 2230: 1101:
Simplified example of training a neural network in object detection: The network is trained by multiple images that are known to depict
907: 1382:
Usage of relatively irrelevant input can include situations where algorithms use the background rather than the object of interest for
1132:
In reality, textures and outlines would not be represented by single nodes, but rather by associated weight patterns of multiple nodes.
1542: 1506: 740: 715: 664: 2754: 2381: 2188: 2044: 1943: 1472: 1250: 1181: 1044: 788: 783: 436: 2709: 446: 84: 1161:
the data, meaning that they can identify and exploit apparent relationships in the training data that do not hold in general.
841: 2975: 2896: 2836: 2434: 1671: 945: 605: 426: 2022: 1043:. The validation data set provides an unbiased evaluation of a model fit on the training data set while tuning the model's 2429: 2118: 1321: 1274: 1144: 1072: 816: 518: 294: 2871: 2225: 2178: 2173: 1048: 773: 710: 620: 598: 441: 431: 2922: 2218: 2144: 1405: 1205: 1201: 1009: 924: 836: 821: 282: 104: 1071:
model fit on the training data set. If the data in the test data set has never been used in training (for example in
1039:
Successively, the fitted model is used to predict the responses for the observations in a second data set called the
811: 1047:(e.g. the number of hidden units—layers and layer widths—in a neural network). Validation data sets can be used for 2546: 2481: 2082: 1431: 1395: 1324:. To confirm the model's performance, an additional test data set held out from cross-validation is normally used. 1192: 1185: 993: 884: 561: 456: 244: 177: 137: 1143:
of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a
1095: 2947: 2805: 2444: 2275: 2098: 1358:
Omissions in the training of algorithms are a major cause of erroneous outputs. Types of such omissions include:
1110: 938: 544: 312: 182: 2846: 2103: 1254: 566: 486: 409: 327: 157: 119: 114: 74: 69: 1024:). The current model is run with the training data set and produces a result, which is then compared with the 1734: 1730: 1726: 1016:(or scalar) and the corresponding output vector (or scalar), where the answer key is commonly denoted as the 2891: 2876: 2529: 2524: 2424: 2292: 2073: 1639:"Machine learning - Is there a rule-of-thumb for how to divide a dataset into training and validation sets?" 1332: 1257:
as the training data set. If a model fit to the training data set also fits the test data set well, minimal
513: 362: 262: 89: 1331:
each training set have further cross-validation for a test set for hyperparameter tuning. This is known as
2851: 2611: 2330: 2325: 1594: 1570: 997: 693: 669: 571: 332: 307: 267: 79: 2881: 2866: 2831: 2519: 2419: 2287: 1907: 992:, which is a set of examples used to fit the parameters (e.g. weights of connections between neurons in 647: 469: 421: 277: 192: 64: 2749: 1119: 2901: 2856: 2302: 2247: 2093: 2088: 1351: 1209: 1165: 1151: 1013: 576: 526: 1343: 2476: 2454: 2203: 2198: 2156: 2108: 1593:
Prechelt, Lutz; Geneviève B. Orr (2012-01-01). "Early Stopping — But When?". In Grégoire Montavon;
1001: 679: 615: 586: 491: 317: 250: 236: 222: 197: 147: 99: 59: 2915: 2861: 2439: 2268: 1727:
Subject: What are the population, sample, training set, design set, validation set, and test set?
1681: 1460: 1289: 978: 657: 581: 367: 162: 1534: 2927: 2719: 2371: 2242: 2235: 2003: 1949: 1939: 1837: 1819: 1773: 1763: 1667: 1618: 1606: 1538: 1502: 1468: 1303:
International Dictionary of English). With this perspective, the most common use of the terms
1033: 1029: 977:. Such algorithms function by making data-driven predictions or decisions, through building a 750: 593: 506: 302: 272: 217: 212: 167: 109: 1273:). Note that some sources advise against such a method. However, when using a method such as 1055:(stopping training when the error on the validation data set increases, as this is a sign of 2672: 2662: 2469: 2263: 2213: 2208: 2151: 2139: 1993: 1985: 1827: 1809: 1755: 1610: 1598: 1526: 1440: 1383: 1005: 981:
from input data. These input data used to build the model are usually divided into multiple
966: 778: 531: 481: 391: 375: 345: 207: 202: 152: 142: 40: 2785: 2729: 2551: 2193: 2113: 1920: 1216: 806: 610: 476: 416: 1855: 2759: 2724: 2714: 2539: 2297: 2123: 1998: 1896:"A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection" 1832: 1797: 1270: 1234: 1127: 1052: 826: 357: 94: 1157:
Most approaches that search through training data for empirical relationships tend to
2964: 2704: 2684: 2601: 2280: 1599: 1527: 745: 674: 556: 287: 172: 2790: 2621: 1895: 1880: 2886: 2657: 2566: 2561: 2183: 2161: 1614: 1426: 1347: 1258: 1158: 1056: 551: 45: 1989: 1350:
demonstrating a fictional erroneous computer output (making a coffee 5 million
2780: 2739: 2734: 2647: 2556: 2464: 2376: 2356: 1814: 1445: 1106: 700: 396: 322: 17: 1953: 1823: 1777: 2775: 2744: 2642: 2486: 2449: 2386: 2340: 2335: 2320: 1327:
It is possible to use cross-validation on training and validation sets, and
970: 859: 640: 2036: 2007: 1841: 1219:(as part of training data set, validation data set, and test data set) is: 1759: 1605:. Lecture Notes in Computer Science. Springer Berlin Heidelberg. pp.  2677: 2509: 1737:), comp.ai.neural-nets, Sarle, W.S., ed. (1997, last modified 2002-05-17) 1197: 1164:
When a training set is continuously expanded with new data, then this is
1102: 1012:. In practice, the training data set often consists of pairs of an input 982: 2800: 2637: 2591: 2514: 2414: 2409: 2361: 1374:
Inability to request help from a human or another AI system when needed
1246: 1177: 1140: 635: 1496: 1283: 2815: 2795: 2667: 2459: 386: 1752:
Discovering knowledge in data : an introduction to data mining
2616: 2596: 2586: 2581: 2576: 2571: 2534: 2366: 1282: 630: 625: 352: 2606: 974: 2040: 1498:
An Introduction to Statistical Learning: with Applications in R
1571:"What is the Difference Between Test and Validation Datasets?" 1701: 1699: 1697: 1109:, which are correlated with "nodes" that represent visual 1067:
is a data set used to provide an unbiased evaluation of a
1362:
Particular circumstances or variations were not included.
918:
List of datasets in computer vision and image processing
1978:"Omission and commission errors underlying AI failures" 1808:(3). Springer Science and Business Media LLC: 249–262. 1004:
method, for example using optimization methods such as
2023:"Watch a 10-Year-Old's Face Unlock His Mom's iPhone X" 1971: 1969: 1967: 1965: 1963: 1588: 1586: 1215:
The basic process of using a validation data set for
1253:
of the training data set, but that follows the same
2824: 2768: 2697: 2630: 2502: 2402: 2395: 2349: 2313: 2256: 2132: 2072: 1791: 1789: 1787: 1520: 1518: 969:, a common task is the study and construction of 1490: 1488: 1709:, Cambridge: Cambridge University Press, p. 354 1221: 1401:List of datasets for machine learning research 1000:) is trained on the training data set using a 913:List of datasets for machine-learning research 2052: 1745: 1743: 1731:Neural Network FAQ, part 1 of 7: Introduction 946: 8: 1686:: CS1 maint: multiple names: authors list ( 973:that can learn from and make predictions on 1934:Ripley, Brian D. (2008-01-10). "Glossary". 1721: 1719: 1717: 1715: 2399: 2059: 2045: 2037: 1564: 1562: 1560: 1558: 1556: 1554: 953: 939: 31: 1997: 1884:, Oxford: Oxford University Press, p. 372 1831: 1813: 1444: 1269:assess the model only once (e.g., in the 1465:Pattern Recognition and Machine Learning 1342: 1191:In order to avoid overfitting, when any 1936:Pattern recognition and neural networks 1881:Neural Networks for Pattern Recognition 1707:Pattern Recognition and Neural Networks 1529:Pattern Recognition and Neural Networks 1417: 1371:Inability to change to new environments 39: 1916: 1905: 1679: 1533:. Cambridge University Press. p.  1075:), the test data set is also called a 1750:Larose, D. T.; Larose, C. D. (2014). 1662:Ferrie, C., & Kaiser, S. (2019). 1233:An application of this process is in 7: 2897:Generative adversarial network (GAN) 1601:Neural Networks: Tricks of the Trade 1796:Xu, Yun; Goodacre, Royston (2018). 1467:. New York: Springer. p. vii. 1425:Ron Kohavi; Foster Provost (1998). 908:Glossary of artificial intelligence 996:) of the model. The model (e.g. a 25: 2935: 2934: 2914: 1118: 1094: 988:The model is initially fit on a 1976:Chanda SS, Banerjee DN (2022). 1802:Journal of Analysis and Testing 2847:Recurrent neural network (RNN) 2837:Differentiable neural computer 1938:. Cambridge University Press. 1569:Brownlee, Jason (2017-07-13). 328:Relevance vector machine (RVM) 1: 2892:Variational autoencoder (VAE) 2852:Long short-term memory (LSTM) 2119:Computational learning theory 1265:assess the model's accuracy. 1180:of examples used to tune the 817:Computational learning theory 381:Expectation–maximization (EM) 2971:Datasets in machine learning 2872:Convolutional neural network 774:Coefficient of determination 621:Convolutional neural network 333:Support vector machine (SVM) 2867:Multilayer perceptron (MLP) 1615:10.1007/978-3-642-35289-8_5 1406:Hierarchical classification 1368:Ambiguous input information 1176:A validation data set is a 1010:stochastic gradient descent 925:Outline of machine learning 822:Empirical risk minimization 2992: 2943:Artificial neural networks 2857:Gated recurrent unit (GRU) 2083:Differentiable programming 2021:Greenberg A (2017-11-14). 1990:10.1007/s00146-022-01585-x 1894:Kohavi, Ron (2001-03-03). 1664:Neural Networks for Babies 1396:Statistical classification 1186:artificial neural networks 994:artificial neural networks 562:Feedforward neural network 313:Artificial neural networks 2910: 2276:Artificial neural network 2099:Automatic differentiation 1815:10.1007/s41664-018-0068-2 1501:. Springer. p. 176. 1139:A training data set is a 545:Artificial neural network 29:Tasks in machine learning 2104:Neuromorphic engineering 2067:Differentiable computing 1298:Confusion in terminology 1255:probability distribution 854:Journals and conferences 801:Mathematical foundations 711:Temporal difference (TD) 567:Recurrent neural network 487:Conditional random field 410:Dimensionality reduction 158:Dimensionality reduction 120:Quantum machine learning 115:Neuromorphic engineering 75:Self-supervised learning 70:Semi-supervised learning 2877:Residual neural network 2293:Artificial Intelligence 1446:10.1023/A:1007411609915 1333:nested cross-validation 263:Apprenticeship learning 1915:Cite journal requires 1525:Ripley, Brian (1996). 1495:James, Gareth (2013). 1461:Bishop, Christopher M. 1355: 1294: 1231: 1130:result for sea urchin. 998:naive Bayes classifier 812:Bias–variance tradeoff 694:Reinforcement learning 670:Spiking neural network 80:Reinforcement learning 2976:Validity (statistics) 2832:Neural Turing machine 2420:Human image synthesis 1878:Bishop, C.M. (1995), 1760:10.1002/9781118874059 1346: 1286: 1245:A test data set is a 648:Neural radiance field 470:Structured prediction 193:Structured prediction 65:Unsupervised learning 2923:Computer programming 2902:Graph neural network 2477:Text-to-video models 2455:Text-to-image models 2303:Large language model 2288:Scientific computing 2094:Statistical manifold 2089:Information geometry 1705:Ripley, B.D. (1996) 1166:incremental learning 837:Statistical learning 735:Learning with humans 527:Local outlier factor 2269:In-context learning 2109:Pattern recognition 1595:Klaus-Robert MĂĽller 1427:"Glossary of terms" 1172:Validation data set 1041:validation data set 1002:supervised learning 680:Electrochemical RAM 587:reservoir computing 318:Logistic regression 237:Supervised learning 223:Multimodal learning 198:Feature engineering 143:Generative modeling 105:Rule-based learning 100:Curriculum learning 60:Supervised learning 35:Part of a series on 2862:Echo state network 2750:JĂĽrgen Schmidhuber 2445:Facial recognition 2440:Speech recognition 2350:Software libraries 1754:. Hoboken: Wiley. 1356: 1295: 1030:variable selection 979:mathematical model 248: • 163:Density estimation 2958: 2957: 2720:Stephen Grossberg 2693: 2692: 1769:978-0-470-90874-7 1624:978-3-642-35289-8 1086:Training data set 990:training data set 963: 962: 768:Model diagnostics 751:Human-in-the-loop 594:Boltzmann machine 507:Anomaly detection 303:Linear regression 218:Ontology learning 213:Grammar induction 188:Semantic analysis 183:Association rules 168:Anomaly detection 110:Neuro-symbolic AI 16:(Redirected from 2983: 2948:Machine learning 2938: 2937: 2918: 2673:Action selection 2663:Self-driving car 2470:Stable Diffusion 2435:Speech synthesis 2400: 2264:Machine learning 2140:Gradient descent 2061: 2054: 2047: 2038: 2031: 2030: 2018: 2012: 2011: 2001: 1973: 1958: 1957: 1931: 1925: 1924: 1918: 1913: 1911: 1903: 1891: 1885: 1876: 1870: 1869: 1867: 1866: 1852: 1846: 1845: 1835: 1817: 1793: 1782: 1781: 1747: 1738: 1723: 1710: 1703: 1692: 1691: 1685: 1677: 1659: 1653: 1652: 1650: 1649: 1635: 1629: 1628: 1604: 1590: 1581: 1580: 1578: 1577: 1566: 1549: 1548: 1532: 1522: 1513: 1512: 1492: 1483: 1482: 1457: 1451: 1450: 1448: 1432:Machine Learning 1422: 1384:object detection 1322:cross-validation 1316:Cross-validation 1275:cross-validation 1152:predictive model 1122: 1098: 1077:holdout data set 1073:cross-validation 1006:gradient descent 967:machine learning 955: 948: 941: 902:Related articles 779:Confusion matrix 532:Isolation forest 477:Graphical models 256: 255: 208:Learning to rank 203:Feature learning 41:Machine learning 32: 21: 2991: 2990: 2986: 2985: 2984: 2982: 2981: 2980: 2961: 2960: 2959: 2954: 2906: 2820: 2786:Google DeepMind 2764: 2730:Geoffrey Hinton 2689: 2626: 2552:Project Debater 2498: 2396:Implementations 2391: 2345: 2309: 2252: 2194:Backpropagation 2128: 2114:Tensor calculus 2068: 2065: 2035: 2034: 2020: 2019: 2015: 1975: 1974: 1961: 1946: 1933: 1932: 1928: 1914: 1904: 1893: 1892: 1888: 1877: 1873: 1864: 1862: 1856:"Deep Learning" 1854: 1853: 1849: 1795: 1794: 1785: 1770: 1749: 1748: 1741: 1724: 1713: 1704: 1695: 1678: 1674: 1666:. Sourcebooks. 1661: 1660: 1656: 1647: 1645: 1637: 1636: 1632: 1625: 1592: 1591: 1584: 1575: 1573: 1568: 1567: 1552: 1545: 1524: 1523: 1516: 1509: 1494: 1493: 1486: 1475: 1459: 1458: 1454: 1424: 1423: 1419: 1414: 1392: 1341: 1339:Causes of error 1318: 1300: 1280: 1243: 1217:model selection 1182:hyperparameters 1174: 1137: 1136: 1135: 1134: 1133: 1131: 1123: 1115: 1114: 1099: 1088: 1045:hyperparameters 959: 930: 929: 903: 895: 894: 855: 847: 846: 807:Kernel machines 802: 794: 793: 769: 761: 760: 741:Active learning 736: 728: 727: 696: 686: 685: 611:Diffusion model 547: 537: 536: 509: 499: 498: 472: 462: 461: 417:Factor analysis 412: 402: 401: 385: 348: 338: 337: 258: 257: 241: 240: 239: 228: 227: 133: 125: 124: 90:Online learning 55: 43: 30: 23: 22: 15: 12: 11: 5: 2989: 2987: 2979: 2978: 2973: 2963: 2962: 2956: 2955: 2953: 2952: 2951: 2950: 2945: 2932: 2931: 2930: 2925: 2911: 2908: 2907: 2905: 2904: 2899: 2894: 2889: 2884: 2879: 2874: 2869: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2828: 2826: 2822: 2821: 2819: 2818: 2813: 2808: 2803: 2798: 2793: 2788: 2783: 2778: 2772: 2770: 2766: 2765: 2763: 2762: 2760:Ilya Sutskever 2757: 2752: 2747: 2742: 2737: 2732: 2727: 2725:Demis Hassabis 2722: 2717: 2715:Ian Goodfellow 2712: 2707: 2701: 2699: 2695: 2694: 2691: 2690: 2688: 2687: 2682: 2681: 2680: 2670: 2665: 2660: 2655: 2650: 2645: 2640: 2634: 2632: 2628: 2627: 2625: 2624: 2619: 2614: 2609: 2604: 2599: 2594: 2589: 2584: 2579: 2574: 2569: 2564: 2559: 2554: 2549: 2544: 2543: 2542: 2532: 2527: 2522: 2517: 2512: 2506: 2504: 2500: 2499: 2497: 2496: 2491: 2490: 2489: 2484: 2474: 2473: 2472: 2467: 2462: 2452: 2447: 2442: 2437: 2432: 2427: 2422: 2417: 2412: 2406: 2404: 2397: 2393: 2392: 2390: 2389: 2384: 2379: 2374: 2369: 2364: 2359: 2353: 2351: 2347: 2346: 2344: 2343: 2338: 2333: 2328: 2323: 2317: 2315: 2311: 2310: 2308: 2307: 2306: 2305: 2298:Language model 2295: 2290: 2285: 2284: 2283: 2273: 2272: 2271: 2260: 2258: 2254: 2253: 2251: 2250: 2248:Autoregression 2245: 2240: 2239: 2238: 2228: 2226:Regularization 2223: 2222: 2221: 2216: 2211: 2201: 2196: 2191: 2189:Loss functions 2186: 2181: 2176: 2171: 2166: 2165: 2164: 2154: 2149: 2148: 2147: 2136: 2134: 2130: 2129: 2127: 2126: 2124:Inductive bias 2121: 2116: 2111: 2106: 2101: 2096: 2091: 2086: 2078: 2076: 2070: 2069: 2066: 2064: 2063: 2056: 2049: 2041: 2033: 2032: 2013: 1959: 1944: 1926: 1917:|journal= 1886: 1871: 1847: 1783: 1768: 1739: 1711: 1693: 1672: 1654: 1643:Stack Overflow 1630: 1623: 1582: 1550: 1544:978-0521717700 1543: 1514: 1508:978-1461471370 1507: 1484: 1473: 1452: 1416: 1415: 1413: 1410: 1409: 1408: 1403: 1398: 1391: 1388: 1376: 1375: 1372: 1369: 1366: 1363: 1340: 1337: 1317: 1314: 1309:validation set 1299: 1296: 1271:holdout method 1242: 1239: 1235:early stopping 1193:classification 1173: 1170: 1128:false positive 1124: 1117: 1116: 1100: 1093: 1092: 1091: 1090: 1089: 1087: 1084: 1053:early stopping 1049:regularization 1032:and parameter 961: 960: 958: 957: 950: 943: 935: 932: 931: 928: 927: 922: 921: 920: 910: 904: 901: 900: 897: 896: 893: 892: 887: 882: 877: 872: 867: 862: 856: 853: 852: 849: 848: 845: 844: 839: 834: 829: 827:Occam learning 824: 819: 814: 809: 803: 800: 799: 796: 795: 792: 791: 786: 784:Learning curve 781: 776: 770: 767: 766: 763: 762: 759: 758: 753: 748: 743: 737: 734: 733: 730: 729: 726: 725: 724: 723: 713: 708: 703: 697: 692: 691: 688: 687: 684: 683: 677: 672: 667: 662: 661: 660: 650: 645: 644: 643: 638: 633: 628: 618: 613: 608: 603: 602: 601: 591: 590: 589: 584: 579: 574: 564: 559: 554: 548: 543: 542: 539: 538: 535: 534: 529: 524: 516: 510: 505: 504: 501: 500: 497: 496: 495: 494: 489: 484: 473: 468: 467: 464: 463: 460: 459: 454: 449: 444: 439: 434: 429: 424: 419: 413: 408: 407: 404: 403: 400: 399: 394: 389: 383: 378: 373: 365: 360: 355: 349: 344: 343: 340: 339: 336: 335: 330: 325: 320: 315: 310: 305: 300: 292: 291: 290: 285: 280: 270: 268:Decision trees 265: 259: 245:classification 235: 234: 233: 230: 229: 226: 225: 220: 215: 210: 205: 200: 195: 190: 185: 180: 175: 170: 165: 160: 155: 150: 145: 140: 138:Classification 134: 131: 130: 127: 126: 123: 122: 117: 112: 107: 102: 97: 95:Batch learning 92: 87: 82: 77: 72: 67: 62: 56: 53: 52: 49: 48: 37: 36: 28: 24: 18:Model training 14: 13: 10: 9: 6: 4: 3: 2: 2988: 2977: 2974: 2972: 2969: 2968: 2966: 2949: 2946: 2944: 2941: 2940: 2933: 2929: 2926: 2924: 2921: 2920: 2917: 2913: 2912: 2909: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2873: 2870: 2868: 2865: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2830: 2829: 2827: 2825:Architectures 2823: 2817: 2814: 2812: 2809: 2807: 2804: 2802: 2799: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2773: 2771: 2769:Organizations 2767: 2761: 2758: 2756: 2753: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2706: 2705:Yoshua Bengio 2703: 2702: 2700: 2696: 2686: 2685:Robot control 2683: 2679: 2676: 2675: 2674: 2671: 2669: 2666: 2664: 2661: 2659: 2656: 2654: 2651: 2649: 2646: 2644: 2641: 2639: 2636: 2635: 2633: 2629: 2623: 2620: 2618: 2615: 2613: 2610: 2608: 2605: 2603: 2602:Chinchilla AI 2600: 2598: 2595: 2593: 2590: 2588: 2585: 2583: 2580: 2578: 2575: 2573: 2570: 2568: 2565: 2563: 2560: 2558: 2555: 2553: 2550: 2548: 2545: 2541: 2538: 2537: 2536: 2533: 2531: 2528: 2526: 2523: 2521: 2518: 2516: 2513: 2511: 2508: 2507: 2505: 2501: 2495: 2492: 2488: 2485: 2483: 2480: 2479: 2478: 2475: 2471: 2468: 2466: 2463: 2461: 2458: 2457: 2456: 2453: 2451: 2448: 2446: 2443: 2441: 2438: 2436: 2433: 2431: 2428: 2426: 2423: 2421: 2418: 2416: 2413: 2411: 2408: 2407: 2405: 2401: 2398: 2394: 2388: 2385: 2383: 2380: 2378: 2375: 2373: 2370: 2368: 2365: 2363: 2360: 2358: 2355: 2354: 2352: 2348: 2342: 2339: 2337: 2334: 2332: 2329: 2327: 2324: 2322: 2319: 2318: 2316: 2312: 2304: 2301: 2300: 2299: 2296: 2294: 2291: 2289: 2286: 2282: 2281:Deep learning 2279: 2278: 2277: 2274: 2270: 2267: 2266: 2265: 2262: 2261: 2259: 2255: 2249: 2246: 2244: 2241: 2237: 2234: 2233: 2232: 2229: 2227: 2224: 2220: 2217: 2215: 2212: 2210: 2207: 2206: 2205: 2202: 2200: 2197: 2195: 2192: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2169:Hallucination 2167: 2163: 2160: 2159: 2158: 2155: 2153: 2150: 2146: 2143: 2142: 2141: 2138: 2137: 2135: 2131: 2125: 2122: 2120: 2117: 2115: 2112: 2110: 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2084: 2080: 2079: 2077: 2075: 2071: 2062: 2057: 2055: 2050: 2048: 2043: 2042: 2039: 2028: 2024: 2017: 2014: 2009: 2005: 2000: 1995: 1991: 1987: 1983: 1979: 1972: 1970: 1968: 1966: 1964: 1960: 1955: 1951: 1947: 1945:9780521717700 1941: 1937: 1930: 1927: 1922: 1909: 1901: 1897: 1890: 1887: 1883: 1882: 1875: 1872: 1861: 1857: 1851: 1848: 1843: 1839: 1834: 1829: 1825: 1821: 1816: 1811: 1807: 1803: 1799: 1792: 1790: 1788: 1784: 1779: 1775: 1771: 1765: 1761: 1757: 1753: 1746: 1744: 1740: 1736: 1732: 1728: 1722: 1720: 1718: 1716: 1712: 1708: 1702: 1700: 1698: 1694: 1689: 1683: 1675: 1669: 1665: 1658: 1655: 1644: 1640: 1634: 1631: 1626: 1620: 1616: 1612: 1608: 1603: 1602: 1596: 1589: 1587: 1583: 1572: 1565: 1563: 1561: 1559: 1557: 1555: 1551: 1546: 1540: 1536: 1531: 1530: 1521: 1519: 1515: 1510: 1504: 1500: 1499: 1491: 1489: 1485: 1481: 1476: 1474:0-387-31073-8 1470: 1466: 1462: 1456: 1453: 1447: 1442: 1438: 1434: 1433: 1428: 1421: 1418: 1411: 1407: 1404: 1402: 1399: 1397: 1394: 1393: 1389: 1387: 1385: 1380: 1373: 1370: 1367: 1365:Obsolete data 1364: 1361: 1360: 1359: 1353: 1349: 1345: 1338: 1336: 1334: 1330: 1325: 1323: 1315: 1313: 1310: 1306: 1297: 1291: 1285: 1281: 1278: 1276: 1272: 1266: 1262: 1260: 1256: 1252: 1248: 1241:Test data set 1240: 1238: 1236: 1230: 1227: 1220: 1218: 1213: 1211: 1207: 1203: 1199: 1194: 1189: 1187: 1183: 1179: 1171: 1169: 1167: 1162: 1160: 1155: 1153: 1148: 1146: 1142: 1129: 1121: 1112: 1108: 1104: 1097: 1085: 1083: 1080: 1078: 1074: 1070: 1066: 1065:test data set 1063:Finally, the 1061: 1058: 1054: 1050: 1046: 1042: 1037: 1035: 1031: 1027: 1023: 1019: 1015: 1011: 1007: 1003: 999: 995: 991: 986: 984: 980: 976: 972: 968: 956: 951: 949: 944: 942: 937: 936: 934: 933: 926: 923: 919: 916: 915: 914: 911: 909: 906: 905: 899: 898: 891: 888: 886: 883: 881: 878: 876: 873: 871: 868: 866: 863: 861: 858: 857: 851: 850: 843: 840: 838: 835: 833: 830: 828: 825: 823: 820: 818: 815: 813: 810: 808: 805: 804: 798: 797: 790: 787: 785: 782: 780: 777: 775: 772: 771: 765: 764: 757: 754: 752: 749: 747: 746:Crowdsourcing 744: 742: 739: 738: 732: 731: 722: 719: 718: 717: 714: 712: 709: 707: 704: 702: 699: 698: 695: 690: 689: 681: 678: 676: 675:Memtransistor 673: 671: 668: 666: 663: 659: 656: 655: 654: 651: 649: 646: 642: 639: 637: 634: 632: 629: 627: 624: 623: 622: 619: 617: 614: 612: 609: 607: 604: 600: 597: 596: 595: 592: 588: 585: 583: 580: 578: 575: 573: 570: 569: 568: 565: 563: 560: 558: 557:Deep learning 555: 553: 550: 549: 546: 541: 540: 533: 530: 528: 525: 523: 521: 517: 515: 512: 511: 508: 503: 502: 493: 492:Hidden Markov 490: 488: 485: 483: 480: 479: 478: 475: 474: 471: 466: 465: 458: 455: 453: 450: 448: 445: 443: 440: 438: 435: 433: 430: 428: 425: 423: 420: 418: 415: 414: 411: 406: 405: 398: 395: 393: 390: 388: 384: 382: 379: 377: 374: 372: 370: 366: 364: 361: 359: 356: 354: 351: 350: 347: 342: 341: 334: 331: 329: 326: 324: 321: 319: 316: 314: 311: 309: 306: 304: 301: 299: 297: 293: 289: 288:Random forest 286: 284: 281: 279: 276: 275: 274: 271: 269: 266: 264: 261: 260: 253: 252: 247: 246: 238: 232: 231: 224: 221: 219: 216: 214: 211: 209: 206: 204: 201: 199: 196: 194: 191: 189: 186: 184: 181: 179: 176: 174: 173:Data cleaning 171: 169: 166: 164: 161: 159: 156: 154: 151: 149: 146: 144: 141: 139: 136: 135: 129: 128: 121: 118: 116: 113: 111: 108: 106: 103: 101: 98: 96: 93: 91: 88: 86: 85:Meta-learning 83: 81: 78: 76: 73: 71: 68: 66: 63: 61: 58: 57: 51: 50: 47: 42: 38: 34: 33: 27: 19: 2791:Hugging Face 2755:David Silver 2403:Audio–visual 2257:Applications 2236:Augmentation 2081: 2026: 2016: 1981: 1935: 1929: 1908:cite journal 1899: 1889: 1879: 1874: 1863:. Retrieved 1859: 1850: 1805: 1801: 1751: 1706: 1663: 1657: 1646:. Retrieved 1642: 1633: 1600: 1574:. Retrieved 1528: 1497: 1478: 1464: 1455: 1436: 1430: 1420: 1381: 1377: 1357: 1328: 1326: 1319: 1308: 1304: 1301: 1279: 1267: 1263: 1244: 1232: 1225: 1222: 1214: 1190: 1175: 1163: 1156: 1149: 1138: 1081: 1076: 1068: 1064: 1062: 1057:over-fitting 1040: 1038: 1025: 1021: 1017: 989: 987: 964: 832:PAC learning 519: 368: 363:Hierarchical 295: 249: 243: 26: 2939:Categories 2887:Autoencoder 2842:Transformer 2710:Alex Graves 2658:OpenAI Five 2562:IBM Watsonx 2184:Convolution 2162:Overfitting 1439:: 271–274. 1348:Comic strip 1259:overfitting 1251:independent 1206:specificity 1202:sensitivity 1107:sea urchins 716:Multi-agent 653:Transformer 552:Autoencoder 308:Naive Bayes 46:data mining 2965:Categories 2928:Technology 2781:EleutherAI 2740:Fei-Fei Li 2735:Yann LeCun 2648:Q-learning 2631:Decisional 2557:IBM Watson 2465:Midjourney 2357:TensorFlow 2204:Activation 2157:Regression 2152:Clustering 1865:2021-05-18 1673:1492671207 1648:2021-08-12 1576:2017-10-12 1412:References 1145:classifier 1034:estimation 971:algorithms 701:Q-learning 599:Restricted 397:Mean shift 346:Clustering 323:Perceptron 251:regression 153:Clustering 148:Regression 2811:MIT CSAIL 2776:Anthropic 2745:Andrew Ng 2643:AlphaZero 2487:VideoPoet 2450:AlphaFold 2387:MindSpore 2341:SpiNNaker 2336:Memristor 2243:Diffusion 2219:Rectifier 2199:Batchnorm 2179:Attention 2174:Adversary 1954:601063414 1824:2096-241X 1778:869460667 1682:cite book 1210:F-measure 983:data sets 860:ECML PKDD 842:VC theory 789:ROC curve 721:Self-play 641:DeepDream 482:Bayes net 273:Ensembles 54:Paradigms 2919:Portals 2678:Auto-GPT 2510:Word2vec 2314:Hardware 2231:Datasets 2133:Concepts 2008:36415822 1984:: 1–24. 1860:Coursera 1842:30842888 1597:(eds.). 1463:(2006). 1390:See also 1305:test set 1249:that is 1247:data set 1226:hold out 1198:accuracy 1178:data set 1141:data set 1111:features 1103:starfish 283:Boosting 132:Problems 2801:Meta AI 2638:AlphaGo 2622:PanGu-ÎŁ 2592:ChatGPT 2567:Granite 2515:Seq2seq 2494:Whisper 2415:WaveNet 2410:AlexNet 2382:Flux.jl 2362:PyTorch 2214:Sigmoid 2209:Softmax 2074:General 1999:9669536 1833:6373628 1352:degrees 1159:overfit 865:NeurIPS 682:(ECRAM) 636:AlexNet 278:Bagging 2816:Huawei 2796:OpenAI 2698:People 2668:MuZero 2530:Gemini 2525:Claude 2460:DALL-E 2372:Theano 2006:  1996:  1982:AI Soc 1952:  1942:  1840:  1830:  1822:  1776:  1766:  1670:  1621:  1541:  1505:  1480:years. 1471:  1329:within 1026:target 1018:target 1014:vector 658:Vision 514:RANSAC 392:OPTICS 387:DBSCAN 371:-means 178:AutoML 2882:Mamba 2653:SARSA 2617:LLaMA 2612:BLOOM 2597:GPT-J 2587:GPT-4 2582:GPT-3 2577:GPT-2 2572:GPT-1 2535:LaMDA 2367:Keras 2027:Wired 1609:–67. 1069:final 1022:label 880:IJCAI 706:SARSA 665:Mamba 631:LeNet 626:U-Net 452:t-SNE 376:Fuzzy 353:BIRCH 2806:Mila 2607:PaLM 2540:Bard 2520:BERT 2503:Text 2482:Sora 2004:PMID 1950:OCLC 1940:ISBN 1921:help 1838:PMID 1820:ISSN 1774:OCLC 1764:ISBN 1688:link 1668:ISBN 1619:ISBN 1539:ISBN 1503:ISBN 1469:ISBN 1307:and 1229:set. 1105:and 1020:(or 975:data 890:JMLR 875:ICLR 870:ICML 756:RLHF 572:LSTM 358:CURE 44:and 2547:NMT 2430:OCR 2425:HWR 2377:JAX 2331:VPU 2326:TPU 2321:IPU 2145:SGD 1994:PMC 1986:doi 1828:PMC 1810:doi 1756:doi 1735:txt 1729:", 1611:doi 1535:354 1441:doi 1290:MSE 1051:by 1008:or 965:In 616:SOM 606:GAN 582:ESN 577:GRU 522:-NN 457:SDL 447:PGD 442:PCA 437:NMF 432:LDA 427:ICA 422:CCA 298:-NN 2967:: 2025:. 2002:. 1992:. 1980:. 1962:^ 1948:. 1912:: 1910:}} 1906:{{ 1900:14 1898:. 1858:. 1836:. 1826:. 1818:. 1804:. 1800:. 1786:^ 1772:. 1762:. 1742:^ 1714:^ 1696:^ 1684:}} 1680:{{ 1641:. 1617:. 1607:53 1585:^ 1553:^ 1537:. 1517:^ 1487:^ 1477:. 1437:30 1435:. 1429:. 1335:. 1208:, 1204:, 1200:, 1168:. 1147:. 1036:. 885:ML 2060:e 2053:t 2046:v 2029:. 2010:. 1988:: 1956:. 1923:) 1919:( 1902:. 1868:. 1844:. 1812:: 1806:2 1780:. 1758:: 1733:( 1725:" 1690:) 1676:. 1651:. 1627:. 1613:: 1579:. 1547:. 1511:. 1449:. 1443:: 954:e 947:t 940:v 520:k 369:k 296:k 254:) 242:( 20:)

Index

Model training
Machine learning
data mining
Supervised learning
Unsupervised learning
Semi-supervised learning
Self-supervised learning
Reinforcement learning
Meta-learning
Online learning
Batch learning
Curriculum learning
Rule-based learning
Neuro-symbolic AI
Neuromorphic engineering
Quantum machine learning
Classification
Generative modeling
Regression
Clustering
Dimensionality reduction
Density estimation
Anomaly detection
Data cleaning
AutoML
Association rules
Semantic analysis
Structured prediction
Feature engineering
Feature learning

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑