Knowledge (XXG)

Modular origami

Source đź“ť

117: 105: 79: 22: 313: 97: 125: 160: 192: 150:
technique in which several, or sometimes many, sheets of paper are first folded into individual modules or units and then assembled into an integrated flat shape or three-dimensional structure, usually by inserting flaps into pockets created by the folding process. These insertions create tension or
175:
The additional restrictions that distinguish modular origami from other forms of multi-piece origami are using many identical copies of any folded unit, and linking them together in a symmetrical or repeating fashion to complete the model. There is a common misconception that treats all multi-piece
171:
Modular origami can be classified as a sub-set of multi-piece origami, since the rule of restriction to one sheet of paper is abandoned. However, all the other rules of origami still apply, so the use of glue, thread, or any other fastening that is not a part of the sheet of paper is not generally
427:
Each module joins others at the vertices of a polyhedron to form a polygonal face. The tabs form angles on opposite sides of an edge. For example, a subassembly of three triangle corners forms a triangle, the most stable configuration. As the internal angle increases for squares, pentagons and so
261:
in Japan. The 1970s saw a sudden period of interest and development in modular origami as its own distinct field, leading to its present status in origami folding. One notable figure is Steve Krimball, who discovered the potential in
455:
The Mukhopadhyay module can form any equilateral polyhedron. Each unit has a middle crease that forms an edge, and triangular wings that form adjacent stellated faces. For example, a cuboctahedral assembly has 24 units, since the
391:
angles. Each module has two pockets and two tabs, on opposite sides. The angle of each tab can be changed independently of the other tab. Each pocket can receive tabs of any angle. The most common angles form polygonal faces:
435:
has one square face and four triangular faces. This requires hybrid modules, or modules having different angles. A pyramid consists of eight modules, four modules as square-triangle, and four as triangle-triangle.
209:. It contains a print that shows a group of traditional origami models, one of which is a modular cube. The cube is pictured twice (from slightly different angles) and is identified in the accompanying text as a 222:(published in 1965) appears to have the same model, where it is called a "cubical box". The six modules required for this design were developed from the traditional Japanese paperfold commonly known as the 362:. Macro-modular origami is a form of modular origami in which finished assemblies are themselves used as the building blocks to create larger integrated structures. Such structures are described in 253:
Most traditional designs are however single-piece and the possibilities inherent in the modular origami idea were not explored further until the 1960s when the technique was re-invented by
183:
of module can still be used. Typically this means using separate linking units hidden from sight to hold parts of the construction together. Any other usage is generally discouraged.
866: 269:
Since then, the modular origami technique has been popularized and developed extensively, and now there have been thousands of designs developed in this repertoire.
116: 859: 439:
Further polygonal faces are possible by altering the angle at each corner. The Neale modules can form any equilateral polyhedron including those having
468:
and other stellated polyhedra. The Mukhopadhyay module works best when glued together, especially for polyhedra having larger numbers of sides.
852: 687: 662: 582: 546: 1101: 43: 1122: 598: 331:
Modular origami techniques can be used to create a wide range of lidded boxes in many shapes. Many examples of such boxes are shown in
1022: 732: 703: 629: 65: 205:
The first historical evidence for a modular origami design comes from a Japanese book by Hayato Ohoka published in 1734 called
1163: 754: 1233: 929: 464:
are possible, by folding the central crease on each module outwards or convexly instead of inwards or concavely as for the
151:
friction that holds the model together. Some assemblies can be somewhat unstable because adhesives or string are not used.
960: 784: 1108: 875: 239:
is sometimes, rather inaccurately, used to describe any three-dimensional modular origami structure resembling a ball.
36: 30: 104: 1158: 273: 254: 899: 47: 1193: 1129: 285: 229:
There are several other traditional Japanese modular designs, including balls of folded paper flowers known as
235:, or medicine balls. These designs are not integrated and are commonly strung together with thread. The term 1035: 919: 819: 266:
and demonstrated that it could be used to make alternative polyhedral shapes, including a 30-piece ball.
798: 904: 78: 1079: 909: 889: 511: 444: 243: 211: 1264: 1046: 1027: 840:
Kusudama by Mikhail Puzakov & Ludmila Puzakova: models, folding instruction, history, geometry
1208: 1031: 1006: 697: 432: 839: 359: 1228: 1115: 986: 750: 728: 683: 658: 635: 625: 578: 552: 542: 484: 405: 388: 281: 1269: 1188: 1153: 1084: 1056: 1041: 924: 606: 324:(sometimes known as coasters), stars, rotors, and rings. Three-dimensional forms tend to be 312: 258: 96: 776: 120:
The page from Ranma zushiki 欄間図式 Volume 3 (1734) where modular origami models are depicted.
1168: 996: 788: 955: 1238: 1213: 1203: 1198: 1183: 1178: 1061: 894: 293: 1258: 991: 457: 124: 1243: 1173: 945: 808: 289: 814: 1223: 914: 742: 720: 465: 384: 363: 332: 277: 132: 109: 84: 844: 781: 320:
Modular origami forms may be flat or three-dimensional. Flat forms are usually
1218: 1051: 976: 461: 325: 247: 159: 556: 89: 1136: 639: 129: 824: 536: 830:
Kusudama Me! Kusudamas of Lukasheva Ekaterina, also diagrams and tutorials
246:
tradition, notably the pagoda (from Maying Soong) and the lotus made from
191: 950: 412: 398: 355: 231: 197: 794:
Photo Gallery and Folding Instructions For Many Polyhedra and Variations
440: 419: 321: 147: 1001: 682:(First ed.). Tokyo  ; Rutland, Vermont: Tuttle Publishing. 263: 164: 297: 431:
Many polyhedra call for unalike adjacent polygons. For example, a
311: 190: 158: 123: 115: 103: 95: 77: 803: 538:
Ornamental origami: exploring 3D geomentric [sic] designs
848: 163:
Examples of modular origami made up of different variations of
770: 108:
Modular origami hexagonal box with six-petal lid. Designed by
15: 834: 793: 354:
There are some modular origami that are approximations of
829: 301: 201:, the traditional Japanese precursor to modular origami 773:
Learn how to 3d Origami, tutorials and artist network.
815:
Mukhopadhyay's super simple isosceles triangle module
226:. Each module forms one face of the finished cube. 88:
designed by Bennett Arnstein. Diagrammed in the book
1146: 1093: 1072: 1015: 969: 938: 882: 778:3D origami video tutorials by Arthur Vershigora. 835:Paper Structures by Krystyna and Wojtek Burczyk 725:Unit Origami: Multidimensional Transformations 599:"David Lister on Origins of the Sonobe Module" 577:(14. Pr ed.). Tokyo: Japan Publications. 575:Unit origami: multidimensional transformations 90:3-D Geometric Origami: Modular Polyhedra (1995 860: 368:Unit Origami-Multidimensional Transformations 8: 820:James S. Plank's Penultimate Modular Origami 242:There are also a few modular designs in the 867: 853: 845: 512:"illustrated book; print | British Museum" 66:Learn how and when to remove this message 657:. TĹŤkyĹŤ: Japan Publications Trading Co. 272:Notable modular origami artists include 29:This article includes a list of general 476: 695: 328:or tessellations of simple polyhedra. 485:"Golden Venture Folding | 3D Origami" 100:An example of golden venture folding. 7: 1102:Geometric Exercises in Paper Folding 624:. Tokyo, Japan: Japan Publications. 568: 566: 506: 504: 1123:A History of Folding in Mathematics 799:Image of Menger's Sponge in origami 383:Neale developed a system to model 378: 35:it lacks sufficient corresponding 14: 811:Paper model of a Geodesic Sphere. 379:Robert Neale's penultimate module 428:forth, the stability decreases. 387:based on a module with variable 20: 1023:Alexandrov's uniqueness theorem 172:acceptable in modular origami. 825:Oxi Module by MichaĹ‚ Kosmulski 749:. Japan Publications Trading. 541:. Wellesley, Mass: AK Peters. 1: 961:Regular paperfolding sequence 702:: CS1 maint: date and year ( 1109:Geometric Folding Algorithms 876:Mathematics of paper folding 460:has 24 edges. Additionally, 680:Tomoko Fuse's origami boxes 535:Mukerji, Meenakshi (2009). 349:Tomoko Fuse's Origami Boxes 155:Definition and restrictions 1286: 1159:Margherita Piazzola Beloch 316:Modules of modular origami 215:(magic treasure chest). 930:Yoshizawa–Randlett system 1130:Origami Polyhedra Design 603:www.britishorigami.info 489:Origami Resource Center 257:in the US and later by 135:made from custom papers 50:more precise citations. 920:Napkin folding problem 747:Fabulous Origami Boxes 727:. Japan Publications. 655:Fabulous origami boxes 341:Fabulous Origami Boxes 317: 202: 168: 136: 121: 113: 101: 93: 678:Fuse, Tomoko (2018). 653:Fuse, Tomoko (1998). 620:Fuse, Tomoko (1989). 573:Fusè, Tomoko (2009). 516:www.britishmuseum.org 385:equilateral polyhedra 315: 194: 162: 127: 119: 107: 99: 81: 1080:Fold-and-cut theorem 1036:Steffen's polyhedron 900:Huzita–Hatori axioms 890:Big-little-big lemma 804:Modular origami page 472:Notes and references 445:rhombic dodecahedron 276:, Mitsunobu Sonobe, 244:Chinese paperfolding 176:origami as modular. 1028:Flexible polyhedron 451:Mukhopadhyay module 302:Ekaterina Lukasheva 1209:Toshikazu Kawasaki 1032:Bricard octahedron 1007:Yoshimura buckling 905:Kawasaki's theorem 787:2012-06-09 at the 318: 264:Sonobe's cube unit 203: 169: 137: 122: 114: 102: 94: 1252: 1251: 1116:Geometric Origami 987:Paper bag problem 910:Maekawa's theorem 809:Origami Geosphere 782:Kusudama Pictures 689:978-0-8048-5006-3 664:978-0-87040-978-3 584:978-0-87040-852-6 548:978-1-56881-445-2 326:regular polyhedra 298:Meenakshi Mukerji 282:Kunihiko Kasahara 146:is a multi-stage 76: 75: 68: 1277: 1189:David A. Huffman 1154:Roger C. Alperin 1057:Source unfolding 925:Pureland origami 869: 862: 855: 846: 771:3dOrigamiArt.com 760: 738: 708: 707: 701: 693: 675: 669: 668: 650: 644: 643: 617: 611: 610: 605:. Archived from 595: 589: 588: 570: 561: 560: 532: 526: 525: 523: 522: 508: 499: 498: 496: 495: 481: 443:faces, like the 374:Modeling systems 259:Mitsunobu Sonobe 220:World of Origami 71: 64: 60: 57: 51: 46:this article by 37:inline citations 24: 23: 16: 1285: 1284: 1280: 1279: 1278: 1276: 1275: 1274: 1255: 1254: 1253: 1248: 1234:Joseph O'Rourke 1169:Robert Connelly 1142: 1089: 1068: 1011: 997:Schwarz lantern 982:Modular origami 965: 934: 878: 873: 789:Wayback Machine 767: 757: 741: 735: 719: 716: 711: 694: 690: 677: 676: 672: 665: 652: 651: 647: 632: 619: 618: 614: 597: 596: 592: 585: 572: 571: 564: 549: 534: 533: 529: 520: 518: 510: 509: 502: 493: 491: 483: 482: 478: 474: 453: 425: 381: 376: 360:Menger's sponge 310: 189: 157: 140:Modular origami 72: 61: 55: 52: 42:Please help to 41: 25: 21: 12: 11: 5: 1283: 1281: 1273: 1272: 1267: 1257: 1256: 1250: 1249: 1247: 1246: 1241: 1239:Tomohiro Tachi 1236: 1231: 1226: 1221: 1216: 1214:Robert J. Lang 1211: 1206: 1204:Humiaki Huzita 1201: 1196: 1191: 1186: 1184:Rona Gurkewitz 1181: 1179:Martin Demaine 1176: 1171: 1166: 1161: 1156: 1150: 1148: 1144: 1143: 1141: 1140: 1133: 1126: 1119: 1112: 1105: 1097: 1095: 1091: 1090: 1088: 1087: 1082: 1076: 1074: 1070: 1069: 1067: 1066: 1065: 1064: 1062:Star unfolding 1059: 1054: 1049: 1039: 1025: 1019: 1017: 1013: 1012: 1010: 1009: 1004: 999: 994: 989: 984: 979: 973: 971: 967: 966: 964: 963: 958: 953: 948: 942: 940: 936: 935: 933: 932: 927: 922: 917: 912: 907: 902: 897: 895:Crease pattern 892: 886: 884: 880: 879: 874: 872: 871: 864: 857: 849: 843: 842: 837: 832: 827: 822: 817: 812: 806: 801: 796: 791: 779: 774: 766: 765:External links 763: 762: 761: 755: 739: 733: 715: 712: 710: 709: 688: 670: 663: 645: 630: 612: 609:on 2009-06-05. 590: 583: 562: 547: 527: 500: 475: 473: 470: 452: 449: 424: 423: 416: 409: 402: 394: 380: 377: 375: 372: 309: 306: 294:Rona Gurkewitz 188: 185: 179:More than one 156: 153: 83:Triangle Edge 74: 73: 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 1282: 1271: 1268: 1266: 1263: 1262: 1260: 1245: 1242: 1240: 1237: 1235: 1232: 1230: 1227: 1225: 1222: 1220: 1217: 1215: 1212: 1210: 1207: 1205: 1202: 1200: 1197: 1195: 1192: 1190: 1187: 1185: 1182: 1180: 1177: 1175: 1172: 1170: 1167: 1165: 1162: 1160: 1157: 1155: 1152: 1151: 1149: 1145: 1139: 1138: 1134: 1132: 1131: 1127: 1125: 1124: 1120: 1118: 1117: 1113: 1111: 1110: 1106: 1104: 1103: 1099: 1098: 1096: 1092: 1086: 1085:Lill's method 1083: 1081: 1078: 1077: 1075: 1073:Miscellaneous 1071: 1063: 1060: 1058: 1055: 1053: 1050: 1048: 1045: 1044: 1043: 1040: 1037: 1033: 1029: 1026: 1024: 1021: 1020: 1018: 1014: 1008: 1005: 1003: 1000: 998: 995: 993: 992:Rigid origami 990: 988: 985: 983: 980: 978: 975: 974: 972: 970:3d structures 968: 962: 959: 957: 954: 952: 949: 947: 944: 943: 941: 939:Strip folding 937: 931: 928: 926: 923: 921: 918: 916: 913: 911: 908: 906: 903: 901: 898: 896: 893: 891: 888: 887: 885: 881: 877: 870: 865: 863: 858: 856: 851: 850: 847: 841: 838: 836: 833: 831: 828: 826: 823: 821: 818: 816: 813: 810: 807: 805: 802: 800: 797: 795: 792: 790: 786: 783: 780: 777: 775: 772: 769: 768: 764: 758: 752: 748: 744: 740: 736: 734:0-87040-852-6 730: 726: 722: 718: 717: 713: 705: 699: 691: 685: 681: 674: 671: 666: 660: 656: 649: 646: 641: 637: 633: 631:0-87040-821-6 627: 623: 622:Origami Boxes 616: 613: 608: 604: 600: 594: 591: 586: 580: 576: 569: 567: 563: 558: 554: 550: 544: 540: 539: 531: 528: 517: 513: 507: 505: 501: 490: 486: 480: 477: 471: 469: 467: 463: 459: 458:cuboctahedron 450: 448: 446: 442: 437: 434: 429: 421: 418:120 degrees ( 417: 414: 411:108 degrees ( 410: 407: 403: 400: 396: 395: 393: 390: 386: 373: 371: 369: 366:'s 1990 book 365: 361: 357: 352: 350: 346: 342: 338: 337:Origami Boxes 334: 329: 327: 323: 314: 307: 305: 303: 299: 295: 291: 287: 283: 279: 275: 270: 267: 265: 260: 256: 251: 249: 245: 240: 238: 234: 233: 227: 225: 221: 218:Isao Honda's 216: 214: 213: 208: 207:Ranma Zushiki 200: 199: 193: 186: 184: 182: 177: 173: 166: 161: 154: 152: 149: 148:paper folding 145: 141: 134: 131: 126: 118: 111: 106: 98: 91: 87: 86: 80: 70: 67: 59: 49: 45: 39: 38: 32: 27: 18: 17: 1244:Eve Torrence 1174:Erik Demaine 1135: 1128: 1121: 1114: 1107: 1100: 1094:Publications 981: 956:Möbius strip 946:Dragon curve 883:Flat folding 746: 724: 714:Bibliography 679: 673: 654: 648: 621: 615: 607:the original 602: 593: 574: 537: 530: 519:. Retrieved 515: 492:. Retrieved 488: 479: 454: 438: 430: 426: 404:90 degrees ( 397:60 degrees ( 382: 367: 353: 348: 344: 340: 336: 330: 319: 290:Heinz Strobl 274:Robert Neale 271: 268: 255:Robert Neale 252: 241: 236: 230: 228: 223: 219: 217: 210: 206: 204: 196: 180: 178: 174: 170: 144:unit origami 143: 139: 138: 82: 62: 53: 34: 1229:KĹŤryĹŤ Miura 1224:Jun Maekawa 1199:KĂ´di Husimi 915:Map folding 743:Tomoko Fuse 721:Tomoko Fuse 466:icosahedron 364:Tomoko Fuse 333:Tomoko Fuse 278:Tomoko Fuse 133:icosahedron 110:Tomoko Fuse 85:Icosahedron 48:introducing 1265:Modularity 1259:Categories 1219:Anna Lubiw 1052:Common net 977:Miura fold 756:0870409786 521:2024-07-15 494:2024-07-15 462:bipyramids 358:, such as 248:Joss paper 212:tamatebako 31:references 1137:Origamics 1016:Polyhedra 698:cite book 557:232922105 351:(2018). 335:'s books 130:stellated 1194:Tom Hull 1164:Yan Chen 1047:Blooming 951:Flexagon 785:Archived 745:(1998). 723:(1990). 640:20372390 413:pentagon 399:triangle 356:fractals 339:(1989), 322:polygons 286:Tom Hull 237:kusudama 232:kusudama 198:kusudama 56:May 2009 1270:Origami 441:rhombic 433:pyramid 420:hexagon 187:History 44:improve 1147:People 1002:Sonobe 753:  731:  686:  661:  638:  628:  581:  555:  545:  406:square 389:vertex 343:(1998) 300:, and 167:units. 165:Sonobe 33:, but 308:Types 224:menko 751:ISBN 729:ISBN 704:link 684:ISBN 659:ISBN 636:OCLC 626:ISBN 579:ISBN 553:OCLC 543:ISBN 347:and 181:type 1042:Net 142:or 1261:: 1034:, 700:}} 696:{{ 634:. 601:. 565:^ 551:. 514:. 503:^ 487:. 447:. 370:. 304:. 296:, 292:, 288:, 284:, 280:, 250:. 195:A 128:A 1038:) 1030:( 868:e 861:t 854:v 759:. 737:. 706:) 692:. 667:. 642:. 587:. 559:. 524:. 497:. 422:) 415:) 408:) 401:) 345:, 112:. 92:) 69:) 63:( 58:) 54:( 40:.

Index

references
inline citations
improve
introducing
Learn how and when to remove this message

Icosahedron
3-D Geometric Origami: Modular Polyhedra (1995


Tomoko Fuse


stellated
icosahedron
paper folding

Sonobe

kusudama
tamatebako
kusudama
Chinese paperfolding
Joss paper
Robert Neale
Mitsunobu Sonobe
Sonobe's cube unit
Robert Neale
Tomoko Fuse
Kunihiko Kasahara

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑