Knowledge (XXG)

Modular lattice

Source 📝

1383: 1111: 1099: 500: 1165: 24: 1141:. The example shows that this inequality can be strict in general. In a modular lattice, however, equality holds. Since the dual of a modular lattice is again modular, φψ is also the identity on , and therefore the two maps φ and ψ are isomorphisms between these two intervals. This result is sometimes called the 1413:
In another paper in 1897, Dedekind studied the lattice of divisors with gcd and lcm as operations, so that the lattice order is given by divisibility. In a digression he introduced and studied lattices formally in a general context. He observed that the lattice of submodules of a module satisfies the
868: 1277:. Thus, in an M-symmetric lattice, every right modular element is also left modular, and vice-versa. Since a lattice is modular if and only if all pairs of elements are modular, clearly every modular lattice is M-symmetric. In the lattice 1791: 1335:
if its dual is M-symmetric. It can be shown that a finite lattice is modular if and only if it is M-symmetric and M-symmetric. The same equivalence holds for infinite lattices which satisfy the
745: 1472:
A paper published by Dedekind in 1900 had lattices as its central topic: He described the free modular lattice generated by three elements, a lattice with 28 elements (see picture).
1098: 1354:) is dually modular. Cross-symmetry implies M-symmetry but not M-symmetry. Therefore, cross-symmetry is not equivalent to dual cross-symmetry. A lattice with a least element 0 is 1835: 2208: 699:
proved that, in every finite modular lattice, the number of join-irreducible elements equals the number of meet-irreducible elements. More generally, for every
1686: 1410:" and observed that ideals satisfy what we now call the modular law. He also observed that for lattices in general, the modular law is equivalent to its dual. 1110: 2114: 131:
respectively) are the operations of the lattice. This phrasing emphasizes an interpretation in terms of projection onto the sublattice , a fact known as the
2165: 2015: 2023:
Festschrift der Herzogl. Technischen Hochschule Carolo-Wilhelmina bei Gelegenheit der 69. Versammlung Deutscher Naturforscher und Ärzte in Braunschweig
1837:, is true for any lattice. Substituting this for the second conjunct of the right-hand side of the former equation yields the Modular Identity. 2302: 2276: 2086: 1904: 1668: 1631: 2255: 1394:, who published most of the relevant papers after his retirement. In a paper published in 1894 he studied lattices, which he called 1427:
In the same paper, Dedekind also investigated the following stronger form of the modular identity, which is also self-dual:
1145:
for modular lattices. A lattice is modular if and only if the diamond isomorphism theorem holds for every pair of elements.
875:
Sketch of proof: Let G be modular, and let the premise of the implication hold. Then using absorption and modular identity:
863:{\displaystyle {\Big (}(c\leq a){\text{ and }}(a\wedge b=c\wedge b){\text{ and }}(a\vee b=c\vee b){\Big )}\Rightarrow (a=c)} 2196: 2106: 1887:
Bogart, Kenneth P.; Freese, Ralph; Kung, Joseph P. S., eds. (1990), "Proof of a Conjecture on Finite Modular Lattices",
1487: 1382: 2191: 2101: 582:
of a group is not modular. For an example, the lattice of subgroups of the dihedral group of order 8 is not modular.
484: 136: 135:. An alternative but equivalent condition stated as an equation (see below) emphasizes that modular lattices form a 2294: 1121:
The composition ψφ is an order-preserving map from the interval to itself which also satisfies the inequality ψ(φ(
289:. In other words, no lattice with more than one element satisfies the unrestricted consequent of the modular law. 151: 1336: 2359: 1988:
and the converse holds for lattices of finite length, this can only lead to confusion for infinite lattices.
2096: 1328: 59: 1796: 2346:
An open-source browser-based web application that can generate and visualize some free modular lattices.
1852: 1498: 1469:. He gave examples of a lattice that is not modular and of a modular lattice that is not of ideal type. 1053:
of a modular lattice, one can consider the intervals and . They are connected by order-preserving maps
2186: 1493: 1466: 1407: 690: 579: 2271:, IAS/Park City Mathematics Series, vol. 13, American Mathematical Society, pp. 389–496, 1985: 1149: 575: 212: 2264: 2217: 2057: 1869: 1847: 1104:
In a modular lattice, the maps φ and ψ indicated by the arrows are mutually inverse isomorphisms.
560: 378:
The modular law can be expressed as an equation that is required to hold unconditionally. Since
159: 150:
and in many other areas of mathematics. In these scenarios, modularity is an abstraction of the
17: 1971:, Definition 4.12)). These notions are equivalent in a semimodular lattice, but not in general. 1320:, it follows that the M-symmetric lattices do not form a subvariety of the variety of lattices. 1037:
must hold. The rest of the proof is routine manipulation with infima, suprema and inequalities.
499: 2298: 2272: 2251: 2174: 2082: 1900: 1664: 1627: 480: 242:
that connects the two lattice operations similarly to the way in which the associative law λ(μ
140: 2037: 2243: 2227: 2142: 2049: 2011: 1892: 1861: 1656: 1619: 1391: 1164: 223: 1881: 2153: 1919: 1877: 1399: 1153: 571: 55: 36: 28: 1786:{\displaystyle (a\wedge b)\vee (x\wedge b)=((a\wedge b)\vee x)\wedge ((a\wedge b)\vee b)} 2287: 2353: 2134: 2061: 1951:
Modular element has been varying defined by different authors to mean right modular (
1503: 1481: 1230:, i.e. if one half of the diamond isomorphism theorem holds for the pair. An element 564: 239: 128: 124: 32: 2242:, de Gruyter Expositions in Mathematics, vol. 14, Walter de Gruyter & Co., 211:, and there are various generalizations of modularity related to this notion and to 2157: 1648: 1611: 674:
holds, contradicting the modular law. Every non-modular lattice contains a copy of
155: 47: 2231: 250:
for vector spaces connects multiplication in the field and scalar multiplication.
23: 2141:, Grundlehren der mathematischen Wissenschaften, vol. 300, Springer-Verlag, 1896: 2203: 2130: 1148:
The diamond isomorphism theorem for modular lattices is analogous to the second
2323: 2146: 488: 2178: 1660: 1623: 937:
For the other direction, let the implication of the theorem hold in G. Let
2247: 1959:, Definition 2.25)), both left and right modular (or dual right modular) ( 1522: 1424:). He also proved that the modular identity and its dual are equivalent. 2318: 1484:, a class of graphs that includes the Hasse diagrams of modular lattices 2053: 1873: 714:
A useful property to show that a lattice is not modular is as follows:
147: 2343: 2335:
sequence A006981 (Number of unlabeled modular lattices with
1490:, an infinite modular lattice defined on strings of the digits 1 and 2 1342:
Several less important notions are also closely related. A lattice is
169:
for which the modular law holds in connection with arbitrary elements
2222: 2016:"Über Zerlegungen von Zahlen durch ihre grössten gemeinsamen Theiler" 1891:, Contemporary Mathematicians, Boston: Birkhäuser, pp. 219–224, 1865: 1116:
Failure of the diamond isomorphism theorem in a non-modular lattice.
328:
in every lattice. Therefore, the modular law can also be stated as
1381: 1163: 498: 165:
In a not necessarily modular lattice, there may still be elements
22: 2331: 1465:). In modern literature, they are more commonly referred to as 563:
is modular. As a special case, the lattice of subgroups of an
1980:
Some authors, e.g. Fofanova (2001), refer to such lattices as
707:
other elements equals the number that are covered by exactly
2115:"On the symmetry of the modular relation in atomic lattices" 1889:
The Dilworth Theorems: Selected Papers of Robert P. Dilworth
1850:(1954), "Proof of a conjecture on finite modular lattices", 123:
are arbitrary elements in the lattice,  ≤  is the
2334: 703:, the number of elements of the lattice that cover exactly 585:
The smallest non-modular lattice is the "pentagon" lattice
491:
and direct products of modular lattices are again modular.
1967:, p. 43)), or satisfying a modular rank condition ( 1386:
Free modular lattice generated by three elements {x,y,z}
989:). From the modular inequality immediately follows that 191:. Even more generally, the modular law may hold for any 1331:
lattice, and a lattice is called dually M-symmetric or
432:
in the defining equation of the modular law to obtain:
2267:(2007), "An Introduction to Hyperplane Arrangements", 2079:
Modern algebra and the rise of mathematical structures
2206:(1999), "Why the characteristic polynomial factors", 1799: 1689: 748: 2286: 1829: 1785: 862: 31:2. As with all finite 2-dimensional lattices, its 837: 751: 2006: 2004: 2002: 2000: 1998: 1996: 1994: 1683:In a distributive lattice, the following holds: 1299:is not M-symmetric. The centred hexagon lattice 487:of lattices. Therefore, all homomorphic images, 483:, the modular lattices form a subvariety of the 1618:. Universitext. London: Springer. Theorem 4.4. 2119:Journal of Science of the Hiroshima University 2038:"Über die von drei Moduln erzeugte Dualgruppe" 1655:. Universitext. London: Springer. p. 65. 1455:He called lattices that satisfy this identity 1152:in algebra, and it is a generalization of the 2209:Bulletin of the American Mathematical Society 127:, and  ∨  and  ∧ (called 8: 2166:Notices of the American Mathematical Society 1460: 1419: 263:is clearly necessary, since it follows from 238:The modular law can be seen as a restricted 1956: 1414:modular identity. He called such lattices 2221: 1798: 1688: 1653:Lattices and Ordered Algebraic Structures 1616:Lattices and Ordered Algebraic Structures 836: 835: 803: 771: 750: 749: 747: 226:, who discovered the modular identity in 1323:M-symmetry is not a self-dual notion. A 696: 479:This shows that, using terminology from 158:(and more generally the submodules of a 1968: 1964: 1545:The following is true for any lattice: 1514: 1390:The definition of modularity is due to 1094: 1306:is M-symmetric but not modular. Since 1273:) is also a modular pair is called an 218:Modular lattices are sometimes called 1984:. Since every M-symmetric lattice is 1960: 1952: 1523:"Why are modular lattices important?" 1339:(or the descending chain condition). 1265:A lattice with the property that if ( 1258:) is a modular pair for all elements 1242:) is a modular pair for all elements 7: 509:, the smallest non-modular lattice: 146:Modular lattices arise naturally in 46:In the branch of mathematics called 1830:{\displaystyle (a\wedge b)\vee b=b} 722:is modular if and only if, for any 154:. For example, the subspaces of a 2158:"The many lives of lattice theory" 2081:(2nd ed.), pp. 121–129, 1327:is a pair which is modular in the 592:consisting of five elements 0, 1, 58:that satisfies the following self- 14: 1182:, is M-symmetric but not modular. 1160:Modular pairs and related notions 2185:Skornyakov, L. A. (2001) , 1793:. Moreover, the absorption law, 1194:) of elements such that for all 1109: 1097: 949:be any elements in G, such that 578:is modular. But in general the 559:The lattice of submodules of a 187:). Such an element is called a 2344:Free Modular Lattice Generator 2095:Fofanova, T. S. (2001) , 1955:, p. 74)), left modular ( 1812: 1800: 1780: 1771: 1759: 1756: 1750: 1741: 1729: 1726: 1720: 1708: 1702: 1690: 857: 845: 842: 832: 808: 800: 776: 768: 756: 1: 2232:10.1090/S0273-0979-99-00775-2 1406:) as part of his "algebra of 1897:10.1007/978-1-4899-3558-8_21 1288:) is modular, but the pair ( 1168:The centred hexagon lattice 1029:, then using the assumption 227: 2240:Subgroup lattices of groups 2192:Encyclopedia of Mathematics 2139:Arrangements of Hyperplanes 2102:Encyclopedia of Mathematics 2025:, Friedrich Vieweg und Sohn 1358:if for every modular pair ( 1346:if for every modular pair ( 1284:described above, the pair ( 1269:) is a modular pair, then ( 1143:diamond isomorphism theorem 1041:Diamond isomorphism theorem 228:several motivating examples 133:diamond isomorphism theorem 2376: 2295:Cambridge University Press 2036:Dedekind, Richard (1900), 1527:Mathematics Stack Exchange 1462:Dualgruppen vom Idealtypus 1421:Dualgruppen vom Modultypus 1416:dual groups of module type 207:. Such a pair is called a 162:) form a modular lattice. 15: 2147:10.1007/978-3-662-02772-1 2113:Maeda, Shûichirô (1965), 2077:Corry, Leo (2003-11-27), 1922:term for modular pair is 1457:dual groups of ideal type 1370: = 0 the pair ( 1337:ascending chain condition 1234:of a lattice is called a 2238:Schmidt, Roland (1994), 580:lattice of all subgroups 16:Not to be confused with 2285:Stern, Manfred (1999), 2269:Geometric combinatorics 1957:Orlik & Terao (1992 1661:10.1007/1-84628-127-X_4 1624:10.1007/1-84628-127-X_4 1488:Young–Fibonacci lattice 292:It is easy to see that 152:2nd Isomorphism Theorem 2097:"Semi-modular lattice" 1831: 1787: 1461: 1420: 1403: 1387: 1183: 1068:that are defined by φ( 864: 556: 43: 2248:10.1515/9783110868647 2042:Mathematische Annalen 1853:Annals of Mathematics 1832: 1788: 1647:Blyth, T. S. (2005). 1610:Blyth, T. S. (2005). 1499:Supersolvable lattice 1467:distributive lattices 1385: 1292:) is not. Therefore, 1236:right modular element 1167: 1045:For any two elements 865: 620:is not comparable to 502: 333:Modular law (variant) 189:right modular element 27:A modular lattice of 26: 2289:Semimodular lattices 1982:semimodular lattices 1942:) are modular pairs. 1797: 1687: 1494:Orthomodular lattice 1252:left modular element 746: 691:distributive lattice 628:. For this lattice, 2265:Stanley, Richard P. 1934:in French if both ( 1374:) is also modular. 1313:is a sublattice of 1275:M-symmetric lattice 1150:isomorphism theorem 2054:10.1007/BF01448979 1827: 1783: 1649:"Modular lattices" 1612:"Modular lattices" 1388: 1186:In any lattice, a 1184: 997:. If we show that 860: 561:module over a ring 557: 160:module over a ring 44: 18:unimodular lattice 2319:"Modular lattice" 2304:978-0-521-46105-4 2278:978-0-8218-3736-8 2187:"Modular lattice" 2173:(11): 1440–1445, 2088:978-3-7643-7002-2 2012:Dedekind, Richard 1906:978-1-4899-3560-1 1856:, Second Series, 1670:978-1-85233-905-0 1633:978-1-85233-905-0 1576:. Also, whenever 1325:dual modular pair 1246:, and an element 806: 774: 681:as a sublattice. 604:such that 0 < 481:universal algebra 220:Dedekind lattices 195:and a fixed pair 141:universal algebra 2367: 2333: 2328: 2307: 2292: 2281: 2260: 2234: 2225: 2199: 2181: 2162: 2154:Rota, Gian-Carlo 2149: 2126: 2109: 2091: 2065: 2064: 2033: 2027: 2026: 2020: 2008: 1989: 1978: 1972: 1949: 1943: 1924:couple modulaire 1916: 1910: 1909: 1884: 1844: 1838: 1836: 1834: 1833: 1828: 1792: 1790: 1789: 1784: 1681: 1675: 1674: 1644: 1638: 1637: 1607: 1601: 1599: 1585: 1575: 1543: 1537: 1536: 1534: 1533: 1519: 1464: 1423: 1392:Richard Dedekind 1175:, also known as 1113: 1101: 869: 867: 866: 861: 841: 840: 807: 804: 775: 772: 755: 754: 739: 721: 711:other elements. 710: 706: 702: 572:normal subgroups 554: 523: 474: 437:Modular identity 431: 421: 415: 401: 387: 373: 345: 327: 301: 288: 262: 253:The restriction 224:Richard Dedekind 206: 194: 186: 176: 172: 168: 139:in the sense of 122: 105: 79: 2375: 2374: 2370: 2369: 2368: 2366: 2365: 2364: 2350: 2349: 2317: 2314: 2305: 2284: 2279: 2263: 2258: 2237: 2202: 2184: 2160: 2152: 2129: 2112: 2094: 2089: 2076: 2073: 2068: 2035: 2034: 2030: 2018: 2010: 2009: 1992: 1979: 1975: 1950: 1946: 1932:paire modulaire 1917: 1913: 1907: 1886: 1885:. Reprinted in 1866:10.2307/1969639 1848:Dilworth, R. P. 1846: 1845: 1841: 1795: 1794: 1685: 1684: 1682: 1678: 1671: 1646: 1645: 1641: 1634: 1609: 1608: 1604: 1587: 1577: 1546: 1544: 1540: 1531: 1529: 1521: 1520: 1516: 1512: 1478: 1380: 1344:cross-symmetric 1319: 1312: 1305: 1298: 1283: 1181: 1174: 1162: 1154:lattice theorem 1117: 1114: 1105: 1102: 1043: 805: and  773: and  744: 743: 723: 719: 708: 704: 700: 697:Dilworth (1954) 687: 680: 612:< 1, 0 < 591: 570:The lattice of 541: 510: 508: 497: 441: 423: 417: 403: 389: 379: 347: 337: 303: 293: 264: 254: 240:associative law 236: 196: 192: 178: 174: 170: 166: 110: 81: 71: 52:modular lattice 29:order dimension 21: 12: 11: 5: 2373: 2371: 2363: 2362: 2360:Lattice theory 2352: 2351: 2348: 2347: 2341: 2329: 2313: 2312:External links 2310: 2309: 2308: 2303: 2282: 2277: 2261: 2256: 2235: 2216:(2): 113–133, 2200: 2182: 2150: 2135:Terao, Hiroaki 2127: 2110: 2092: 2087: 2072: 2069: 2067: 2066: 2048:(3): 371–403, 2028: 1990: 1973: 1944: 1930:) is called a 1911: 1905: 1860:(2): 359–364, 1839: 1826: 1823: 1820: 1817: 1814: 1811: 1808: 1805: 1802: 1782: 1779: 1776: 1773: 1770: 1767: 1764: 1761: 1758: 1755: 1752: 1749: 1746: 1743: 1740: 1737: 1734: 1731: 1728: 1725: 1722: 1719: 1716: 1713: 1710: 1707: 1704: 1701: 1698: 1695: 1692: 1676: 1669: 1639: 1632: 1602: 1538: 1513: 1511: 1508: 1507: 1506: 1501: 1496: 1491: 1485: 1477: 1474: 1453: 1452: 1379: 1376: 1317: 1310: 1303: 1296: 1281: 1222:) ∧  1179: 1172: 1161: 1158: 1119: 1118: 1115: 1108: 1106: 1103: 1096: 1066: 1065: 1064: 1063: 1060: 1042: 1039: 935: 934: 873: 872: 871: 870: 859: 856: 853: 850: 847: 844: 839: 834: 831: 828: 825: 822: 819: 816: 813: 810: 802: 799: 796: 793: 790: 787: 784: 781: 778: 770: 767: 764: 761: 758: 753: 686: 683: 678: 672: 671: 589: 506: 496: 493: 477: 476: 439: 376: 375: 335: 235: 232: 213:semimodularity 107: 106: 69: 13: 10: 9: 6: 4: 3: 2: 2372: 2361: 2358: 2357: 2355: 2345: 2342: 2340: 2338: 2330: 2326: 2325: 2320: 2316: 2315: 2311: 2306: 2300: 2296: 2291: 2290: 2283: 2280: 2274: 2270: 2266: 2262: 2259: 2257:3-11-011213-2 2253: 2249: 2245: 2241: 2236: 2233: 2229: 2224: 2219: 2215: 2211: 2210: 2205: 2201: 2198: 2194: 2193: 2188: 2183: 2180: 2176: 2172: 2168: 2167: 2159: 2155: 2151: 2148: 2144: 2140: 2136: 2132: 2128: 2124: 2120: 2116: 2111: 2108: 2104: 2103: 2098: 2093: 2090: 2084: 2080: 2075: 2074: 2070: 2063: 2059: 2055: 2051: 2047: 2043: 2039: 2032: 2029: 2024: 2017: 2013: 2007: 2005: 2003: 2001: 1999: 1997: 1995: 1991: 1987: 1983: 1977: 1974: 1970: 1969:Stanley (2007 1966: 1965:Schmidt (1994 1962: 1958: 1954: 1948: 1945: 1941: 1937: 1933: 1929: 1925: 1921: 1915: 1912: 1908: 1902: 1898: 1894: 1890: 1883: 1879: 1875: 1871: 1867: 1863: 1859: 1855: 1854: 1849: 1843: 1840: 1824: 1821: 1818: 1815: 1809: 1806: 1803: 1777: 1774: 1768: 1765: 1762: 1753: 1747: 1744: 1738: 1735: 1732: 1723: 1717: 1714: 1711: 1705: 1699: 1696: 1693: 1680: 1677: 1672: 1666: 1662: 1658: 1654: 1650: 1643: 1640: 1635: 1629: 1625: 1621: 1617: 1613: 1606: 1603: 1598: 1594: 1590: 1584: 1580: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1539: 1528: 1524: 1518: 1515: 1509: 1505: 1504:Iwasawa group 1502: 1500: 1497: 1495: 1492: 1489: 1486: 1483: 1482:Modular graph 1480: 1479: 1475: 1473: 1470: 1468: 1463: 1458: 1450: 1446: 1442: 1438: 1434: 1430: 1429: 1428: 1425: 1422: 1417: 1411: 1409: 1405: 1401: 1397: 1393: 1384: 1377: 1375: 1373: 1369: 1366: ∧  1365: 1362:) satisfying 1361: 1357: 1353: 1349: 1345: 1340: 1338: 1334: 1330: 1326: 1321: 1316: 1309: 1302: 1295: 1291: 1287: 1280: 1276: 1272: 1268: 1263: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1226: =  1225: 1221: 1218: ∨  1217: 1213: 1210: ≤  1209: 1205: 1202: ∧  1201: 1197: 1193: 1189: 1178: 1171: 1166: 1159: 1157: 1155: 1151: 1146: 1144: 1140: 1136: 1132: 1128: 1124: 1112: 1107: 1100: 1095: 1093: 1091: 1087: 1083: 1079: 1075: 1071: 1061: 1058: 1057: 1056: 1055: 1054: 1052: 1048: 1040: 1038: 1036: 1032: 1028: 1024: 1020: 1016: 1012: 1008: 1004: 1000: 996: 992: 988: 984: 980: 976: 972: 968: 964: 960: 956: 952: 948: 944: 940: 933: 929: 925: 921: 917: 913: 909: 905: 901: 897: 893: 889: 885: 881: 878: 877: 876: 854: 851: 848: 829: 826: 823: 820: 817: 814: 811: 797: 794: 791: 788: 785: 782: 779: 765: 762: 759: 742: 741: 738: 734: 730: 726: 717: 716: 715: 712: 698: 694: 692: 684: 682: 677: 670: 666: 662: 658: 654: 650: 646: 642: 638: 634: 631: 630: 629: 627: 623: 619: 615: 611: 607: 603: 599: 595: 588: 583: 581: 577: 573: 568: 566: 565:abelian group 562: 553: 549: 545: 539: 535: 531: 527: 521: 517: 513: 505: 501: 494: 492: 490: 486: 482: 473: 469: 465: 461: 457: 453: 449: 445: 440: 438: 435: 434: 433: 430: 426: 420: 414: 410: 406: 400: 396: 392: 386: 382: 371: 367: 363: 359: 355: 351: 344: 340: 336: 334: 331: 330: 329: 326: 322: 318: 314: 310: 306: 300: 296: 290: 287: 283: 279: 275: 271: 267: 261: 257: 251: 249: 245: 241: 233: 231: 229: 225: 221: 216: 214: 210: 204: 200: 190: 185: 181: 163: 161: 157: 153: 149: 144: 142: 138: 134: 130: 129:join and meet 126: 125:partial order 121: 117: 113: 104: 100: 96: 92: 88: 84: 78: 74: 70: 68: 65: 64: 63: 61: 57: 53: 49: 41: 40:-planar graph 39: 34: 33:Hasse diagram 30: 25: 19: 2336: 2322: 2288: 2268: 2239: 2223:math/9812136 2213: 2207: 2204:Sagan, Bruce 2190: 2170: 2164: 2138: 2131:Orlik, Peter 2122: 2118: 2100: 2078: 2045: 2041: 2031: 2022: 1981: 1976: 1961:Sagan (1999) 1947: 1939: 1935: 1931: 1927: 1923: 1914: 1888: 1857: 1851: 1842: 1679: 1652: 1642: 1615: 1605: 1596: 1592: 1588: 1582: 1578: 1571: 1567: 1563: 1559: 1555: 1551: 1547: 1541: 1530:. Retrieved 1526: 1517: 1471: 1456: 1454: 1448: 1444: 1440: 1436: 1432: 1426: 1415: 1412: 1395: 1389: 1371: 1367: 1363: 1359: 1355: 1351: 1350:) the pair ( 1347: 1343: 1341: 1332: 1324: 1322: 1314: 1307: 1300: 1293: 1289: 1285: 1278: 1274: 1270: 1266: 1264: 1259: 1255: 1251: 1250:is called a 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1219: 1215: 1211: 1207: 1203: 1199: 1195: 1191: 1188:modular pair 1187: 1185: 1176: 1169: 1147: 1142: 1138: 1134: 1130: 1126: 1122: 1120: 1089: 1085: 1081: 1077: 1073: 1069: 1067: 1050: 1046: 1044: 1034: 1030: 1026: 1022: 1018: 1014: 1010: 1006: 1002: 998: 994: 990: 986: 982: 978: 974: 970: 966: 962: 958: 954: 950: 946: 942: 938: 936: 931: 927: 923: 919: 915: 911: 907: 903: 899: 895: 891: 887: 883: 879: 874: 736: 732: 728: 724: 713: 695: 693:is modular. 688: 675: 673: 668: 664: 660: 656: 652: 648: 644: 640: 636: 632: 625: 621: 617: 616:< 1, and 613: 609: 605: 601: 597: 593: 586: 584: 569: 567:is modular. 558: 551: 547: 543: 537: 533: 529: 525: 519: 515: 511: 503: 478: 471: 467: 463: 459: 455: 451: 447: 443: 436: 428: 424: 418: 412: 408: 404: 398: 394: 390: 384: 380: 377: 369: 365: 361: 357: 353: 349: 342: 338: 332: 324: 320: 316: 312: 308: 304: 298: 294: 291: 285: 281: 277: 273: 269: 265: 259: 255: 252: 247: 243: 237: 234:Introduction 219: 217: 209:modular pair 208: 202: 198: 188: 183: 179: 164: 156:vector space 145: 132: 119: 115: 111: 108: 102: 98: 94: 90: 86: 82: 76: 72: 66: 51: 48:order theory 45: 37: 1986:semimodular 1953:Stern (1999 1404:Dualgruppen 1396:dual groups 1356:⊥-symmetric 1333:M-symmetric 1214:, we have ( 1198:satisfying 1190:is a pair ( 489:sublattices 67:Modular law 62:condition, 2324:PlanetMath 2071:References 1926:. A pair ( 1532:2018-09-17 1059:φ: → and 718:A lattice 685:Properties 416:, replace 402:and since 2339:elements) 2197:EMS Press 2179:0002-9920 2125:: 165–170 2107:EMS Press 2062:122529830 1940:b, a 1936:a, b 1928:a, b 1816:∨ 1807:∧ 1775:∨ 1766:∧ 1754:∧ 1745:∨ 1736:∧ 1715:∧ 1706:∨ 1697:∧ 1372:b, a 1360:a, b 1352:b, a 1348:a, b 1290:a, b 1286:b, a 1271:b, a 1267:a, b 1256:a, b 1240:a, b 1192:a, b 843:⇒ 827:∨ 815:∨ 795:∧ 783:∧ 763:≤ 2354:Category 2156:(1997), 2137:(1992), 2014:(1897), 1476:See also 735:∈ 495:Examples 388:implies 346:implies 302:implies 246:) = (λμ) 80:implies 1938:) and ( 1882:0063348 1874:1969639 1586:, then 1447:) = ∧ 1408:modules 1378:History 485:variety 148:algebra 137:variety 56:lattice 2301:  2275:  2254:  2177:  2085:  2060:  1920:French 1903:  1880:  1872:  1667:  1630:  1400:German 1125:)) = ( 1080:and ψ( 1062:ψ: → 957:. Let 689:Every 655:= 1 ∧ 647:∨ 0 = 624:or to 458:) = (( 222:after 109:where 35:is an 2218:arXiv 2161:(PDF) 2058:S2CID 2019:(PDF) 1870:JSTOR 1566:) ∧ ( 1558:) ≤ ( 1510:Notes 1439:) ∨ ( 651:< 608:< 576:group 574:of a 528:∨0 = 450:) ∨ ( 422:with 315:) ≤ ( 276:) = ( 177:(for 93:) = ( 54:is a 2332:OEIS 2299:ISBN 2273:ISBN 2252:ISBN 2175:ISSN 2083:ISBN 1918:The 1901:ISBN 1665:ISBN 1628:ISBN 1329:dual 1254:if ( 1238:if ( 1133:) ∧ 1084:) = 1072:) = 969:) ∨ 930:) = 918:) = 902:) ∨ 890:) ∨ 667:) ∧ 643:) = 536:= 1∧ 470:) ∧ 466:) ∨ 356:) ∧ 323:) ∧ 284:) ∧ 173:and 101:) ∧ 60:dual 50:, a 2244:doi 2228:doi 2143:doi 2050:doi 1893:doi 1862:doi 1657:doi 1620:doi 1550:∨ ( 981:∧ ( 961:= ( 922:∧ ( 910:∧ ( 894:= ( 882:= ( 659:= ( 635:∨ ( 364:∨ ( 307:∨ ( 268:∨ ( 85:∨ ( 2356:: 2321:. 2297:, 2293:, 2250:, 2226:, 2214:36 2212:, 2195:, 2189:, 2171:44 2169:, 2163:, 2133:; 2123:29 2121:, 2117:, 2105:, 2099:, 2056:, 2046:53 2044:, 2040:, 2021:, 1993:^ 1963:, 1899:, 1878:MR 1876:, 1868:, 1858:60 1663:. 1651:. 1626:. 1614:. 1595:= 1591:∨ 1581:≤ 1570:∨ 1562:∨ 1554:∧ 1525:. 1443:∧ 1435:∧ 1402:: 1262:. 1206:≤ 1156:. 1137:≥ 1129:∨ 1092:. 1088:∧ 1076:∨ 1033:= 1021:= 1013:, 1005:= 993:≤ 977:= 973:, 953:≤ 906:= 740:, 731:, 727:, 663:∨ 639:∧ 600:, 596:, 550:)∧ 532:≠ 524:= 514:∨( 462:∧ 454:∧ 446:∧ 427:∧ 411:≤ 407:∧ 397:∧ 393:= 383:≤ 368:∧ 360:≤ 352:∨ 341:≤ 319:∨ 311:∧ 297:≤ 280:∨ 272:∧ 258:≤ 230:. 215:. 201:, 182:≤ 143:. 118:, 114:, 97:∨ 89:∧ 75:≤ 38:st 2337:n 2327:. 2246:: 2230:: 2220:: 2145:: 2052:: 1895:: 1864:: 1825:b 1822:= 1819:b 1813:) 1810:b 1804:a 1801:( 1781:) 1778:b 1772:) 1769:b 1763:a 1760:( 1757:( 1751:) 1748:x 1742:) 1739:b 1733:a 1730:( 1727:( 1724:= 1721:) 1718:b 1712:x 1709:( 1703:) 1700:b 1694:a 1691:( 1673:. 1659:: 1636:. 1622:: 1600:. 1597:b 1593:b 1589:a 1583:b 1579:a 1574:) 1572:b 1568:a 1564:x 1560:a 1556:b 1552:x 1548:a 1535:. 1459:( 1451:. 1449:b 1445:b 1441:a 1437:b 1433:x 1431:( 1418:( 1398:( 1368:b 1364:a 1318:7 1315:S 1311:5 1308:N 1304:7 1301:S 1297:5 1294:N 1282:5 1279:N 1260:b 1248:a 1244:a 1232:b 1228:x 1224:b 1220:a 1216:x 1212:b 1208:x 1204:b 1200:a 1196:x 1180:2 1177:D 1173:7 1170:S 1139:x 1135:b 1131:a 1127:x 1123:x 1090:b 1086:y 1082:y 1078:a 1074:x 1070:x 1051:b 1049:, 1047:a 1035:y 1031:x 1027:b 1025:∨ 1023:y 1019:b 1017:∨ 1015:x 1011:b 1009:∧ 1007:y 1003:b 1001:∧ 999:x 995:y 991:x 987:c 985:∨ 983:b 979:a 975:y 971:c 967:b 965:∧ 963:a 959:x 955:a 951:c 947:c 945:, 943:b 941:, 939:a 932:a 928:a 926:∨ 924:b 920:a 916:c 914:∨ 912:b 908:a 904:c 900:b 898:∧ 896:a 892:c 888:b 886:∧ 884:c 880:c 858:) 855:c 852:= 849:a 846:( 838:) 833:) 830:b 824:c 821:= 818:b 812:a 809:( 801:) 798:b 792:c 789:= 786:b 780:a 777:( 769:) 766:a 760:c 757:( 752:( 737:G 733:c 729:b 725:a 720:G 709:k 705:k 701:k 679:5 676:N 669:b 665:a 661:x 657:b 653:b 649:x 645:x 641:b 637:a 633:x 626:b 622:x 618:a 614:a 610:b 606:x 602:b 598:a 594:x 590:5 587:N 555:. 552:b 548:a 546:∨ 544:x 542:( 540:= 538:b 534:b 530:x 526:x 522:) 520:b 518:∧ 516:a 512:x 507:5 504:N 475:. 472:b 468:x 464:b 460:a 456:b 452:x 448:b 444:a 442:( 429:b 425:a 419:a 413:b 409:b 405:a 399:b 395:a 391:a 385:b 381:a 374:. 372:) 370:b 366:x 362:a 358:b 354:x 350:a 348:( 343:b 339:a 325:b 321:x 317:a 313:b 309:x 305:a 299:b 295:a 286:b 282:x 278:a 274:b 270:x 266:a 260:b 256:a 248:x 244:x 205:) 203:b 199:x 197:( 193:a 184:b 180:a 175:a 171:x 167:b 120:b 116:a 112:x 103:b 99:x 95:a 91:b 87:x 83:a 77:b 73:a 42:. 20:.

Index

unimodular lattice

order dimension
Hasse diagram
st-planar graph
order theory
lattice
dual
partial order
join and meet
variety
universal algebra
algebra
2nd Isomorphism Theorem
vector space
module over a ring
semimodularity
Richard Dedekind
several motivating examples
associative law
universal algebra
variety
sublattices

module over a ring
abelian group
normal subgroups
group
lattice of all subgroups
distributive lattice

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.