Knowledge

Möbius plane

Source 📝

95: 4240: 420: 5497: 3633: 2690: 1034: 1884: 3028: 2051: 62:
which fixes the points on the circle and exchanges the points in the interior and exterior, the center of the circle exchanged with the point at infinity. In inversive geometry a straight line is considered to be a generalized circle containing the point at infinity; inversion of the plane with
4215:
One should not expect that the axioms above define the classical real Möbius plane. There are many axiomatic Möbius planes which are different from the classical one (see below). Similar to the minimal model of an affine plane is the "minimal model" of a Möbius plane. It consists of
102:
Affine planes are systems of points and lines that satisfy, amongst others, the property that two points determine exactly one line. This concept can be generalized to systems of points and circles, with each circle being determined by three non-collinear points. However, three
2347: 4656: 4457:
The connection between the classical Möbius plane and the real affine plane is similar to that between the minimal model of a Möbius plane and the minimal model of an affine plane. This strong connection is typical for Möbius planes and affine planes (see below).
411:. All these miquelian Möbius planes can be described by space models. The classical real Möbius plane can be considered as the geometry of circles on the unit sphere. The essential advantage of the space model is that any cycle is just a circle (on the sphere). 4388: 921: 1740: 910: 1731: 341:. But the classical Möbius plane is not the only geometrical structure that satisfies the properties of an axiomatic Möbius plane. A simple further example of a Möbius plane can be achieved if one replaces the real numbers by 2807: 2430: 1896: 786: 6374:
and bears the same geometric properties as a sphere in a projective 3-space: 1) a line intersects an ovoid in none, one or two points and 2) at any point of the ovoid the set of the tangent lines form a plane, the
2224: 2137: 5123: 4957: 4515: 3694: 6379:. A simple ovoid in real 3-space can be constructed by glueing together two suitable halves of different ellipsoids, such that the result is not a quadric. Even in the finite case there exist ovoids (see 2644: 4775: 2791: 2745: 2588: 2534: 1526: 1141: 1088: 839: 2262: 4550: 4453: 460: 5312: 2468: 4888: 5888: 4694: 4269: 1608: 6303: 5746: 5688: 5646: 5544: 5491: 5247: 6251: 792:
The geometry of lines and circles of the euclidean plane can be homogenized (similarly to the projective completion of an affine plane) by embedding it into the incidence structure
6156: 524: 6020: 3337: 3227: 3180: 1650: 6526:
The only known finite values for the order of a Möbius plane are prime or prime powers. The only known finite Möbius planes are constructed within finite projective geometries.
5174: 4987: 4844: 4813: 4545: 4026: 1409: 5786: 3265: 2680: 2252: 2165: 5946: 5060: 3402: 557: 6498: 5600:
which can be assigned to the vertices of a cube such that the points in 5 faces correspond to concyclical quadruples than the sixth quadruple of points is concyclical, too.
5598: 6187: 6095: 6057: 3983: 3748: 3721: 2082: 1366: 1029:{\displaystyle {\mathcal {Z}}:=\{g\cup \{\infty \}\mid g{\text{ line of }}{\mathfrak {A}}(\mathbb {R} )\}\cup \{k\mid k{\text{ circle of }}{\mathfrak {A}}(\mathbb {R} )\}} 393: 5388: 4210: 3540: 2494: 5448: 3921: 3487: 1879:{\displaystyle {\mathcal {Z}}:=\{\{z\in \mathbb {C} \mid az+{\overline {az}}+b=0\ {\text{(line)}}\ \}\cup \{\infty \}\mid \ 0\neq a\in \mathbb {C} ,b\in \mathbb {R} \}} 1304: 5029: 3619: 5818: 4714: 4261: 4142: 4071: 3946: 3578: 3440: 3088: 1454: 1329: 265: 3895: 1561: 1278: 600: 5343: 3843: 3791: 3050: 2370: 1229: 1177: 3404:. That means the image of a circle is a plane section of the sphere and hence a circle (on the sphere) again. The corresponding planes do not contain the center, 626: 291: 3115: 850: 6518: 6441: 6421: 6333: 5408: 5366: 5194: 5143: 4234: 4166: 4094: 4046: 3869: 3811: 1670: 1477: 1429: 1252: 1197: 331: 311: 240: 220: 200: 180: 160: 4725:
This theorem allows to use the many results on affine planes for investigations on Möbius planes and gives rise to an equivalent definition of a Möbius plane:
1678: 3023:{\displaystyle \Phi :\ (x,y)\rightarrow \left({\frac {x}{1+x^{2}+y^{2}}},{\frac {y}{1+x^{2}+y^{2}}},{\frac {x^{2}+y^{2}}{1+x^{2}+y^{2}}}\right)=(u,v,w)\ .} 2046:{\displaystyle \cup \{\{z\in \mathbb {C} \mid (z-z_{0}){\overline {(z-z_{0})}}=d\ {\text{(circle)}}\mid z_{0}\in \mathbb {C} ,d\in \mathbb {R} ,d>0\}.} 2380: 638: 138:. Two completed lines touch if they have only the point at infinity in common, so they are parallel. The touching relation has the property 2175: 2091: 5072: 4906: 4464: 3643: 6611: 6597: 122:
In an affine plane the parallel relation between lines is essential. In the geometry of cycles, this relation is generalized to the
6575: 3629:
The incidence behavior of the classical real Möbius plane gives rise to the following definition of an axiomatic Möbius plane.
6523:
These finite block designs satisfy the axioms defining a Möbius plane, when a circle is interpreted as a block of the design.
2609: 2342:{\displaystyle z\rightarrow \displaystyle {\frac {1}{z}},\ z\neq 0,\ \ 0\rightarrow \infty ,\ \ \infty \rightarrow 0,\quad } 5450:
for describing the circles does not work in general. For details one should look into the lecture note below. So, only for
4651:{\displaystyle {\mathfrak {A}}_{P}:=({\mathcal {P}}\setminus \{P\},\{z\setminus \{P\}\mid P\in z\in {\mathcal {Z}}\},\in )} 6312: 5322:
Looking for further examples of Möbius planes it seems promising to generalize the classical construction starting with a
4734: 2750: 2704: 2547: 2499: 1485: 1100: 1047: 798: 4393: 6666: 6661: 6628: 6671: 430: 32: 5252: 4383:{\displaystyle {\mathcal {P}}:=\{A,B,C,D,\infty \},\quad {\mathcal {Z}}:=\{z\mid z\subset {\mathcal {P}},|z|=3\}.} 2439: 4853: 6263: 5823: 4668: 2798: 1566: 64: 59: 6540: 6269: 5712: 5654: 5612: 5510: 5457: 5199: 2747:
which omits the formal difference between cycles defined by lines and cycles defined by circles: The geometry
2541: 6192: 349:(instead of the real numbers) does not lead to a Möbius plane, because in the complex affine plane the curve 6100: 468: 5951: 5493:. They are (as the classical model) characterized by huge homogeneity and the following theorem of Miquel. 3272: 3185: 3120: 1613: 5148: 4962: 4818: 4788: 4520: 5751: 3232: 2649: 4716:
is the underlying real affine plane. The essential meaning of the residue shows the following theorem.
2229: 2142: 5896: 5038: 3342: 533: 6584: 6446: 5551: 6164: 6072: 6034: 3988: 3729: 3702: 2063: 1371: 6345: 5346: 408: 396: 352: 116: 71: 6643: 6558: 5371: 4171: 3492: 2477: 6535: 5413: 2698: 2603: 52: 48: 2060:
The advantage of this description is, that one checks easily that the following permutations of
3951: 3900: 3448: 1334: 1283: 6607: 6593: 4992: 3583: 108: 40: 5791: 4699: 4246: 4109: 3545: 3407: 3055: 3874: 2599: 1531: 1257: 570: 5328: 3816: 3764: 3035: 2352: 1202: 1150: 905:{\displaystyle {\mathcal {P}}:=\mathbb {R} ^{2}\cup \{\infty \},\infty \notin \mathbb {R} } 6349: 2471: 527: 342: 94: 83: 36: 605: 270: 6362:(see weblink below). The class which is most similar to miquelian Möbius planes are the 4051: 3926: 3097: 1434: 1309: 245: 6503: 6426: 6406: 6384: 6318: 5393: 5351: 5323: 5179: 5128: 4219: 4151: 4079: 4031: 3854: 3796: 2797:
to the geometry of circles on a sphere. The isomorphism can be performed by a suitable
1726:{\displaystyle {\mathcal {P}}:=\mathbb {C} \cup \{\infty \},\infty \notin \mathbb {C} } 1655: 1462: 1414: 1237: 1182: 463: 400: 346: 316: 296: 225: 205: 185: 165: 145: 79: 6560:
Planar Circle Geometries, an Introduction to Moebius-, Laguerre- and Minkowski Planes.
4239: 74:
with the same incidence relationships as the classical Möbius plane. It is one of the
6655: 6646:
Planar Circle Geometries', an Introduction to Möbius-, Laguerre- and Minkowski Planes
6380: 6371: 6367: 1097:
Within the new structure the completed lines play no special role anymore. Obviously
395:
is not a circle-like curve, but a hyperbola-like one. Fortunately there are a lot of
6400: 6396: 2595: 104: 2425:{\displaystyle z\rightarrow {\overline {z}},\ \ \infty \rightarrow \infty .\quad } 419: 781:{\displaystyle \rho (x-x_{0},y-y_{0})=(x-x_{0})^{2}+(y-y_{0})^{2}=r^{2},\ r>0} 5496: 107:
points determine a line, not a circle. This drawback can be removed by adding a
6623: 2794: 75: 17: 6634: 3632: 2689: 6589: 2537: 3542:. So, the image of a line is a circle (on the sphere) through the point 6344:
A proof of Miquel's theorem for the classical (real) case can be found
4777:
is a Möbius plane if and only if the following property is fulfilled:
135: 131: 130:
each other if they have just one point in common. This is true for two
6366:. An ovoidal Möbius plane is the geometry of the plane sections of an 4102:
Any cycle contains at least three points. There is at least one cycle.
2219:{\displaystyle z\rightarrow z+s,\ \ \infty \rightarrow \infty ,\quad } 5704:
of a Möbius plane is miquelian. It is isomorphic to the Möbius plane
2132:{\displaystyle z\rightarrow rz,\ \ \infty \rightarrow \infty ,\quad } 5118:{\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}},\in )} 4952:{\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}},\in )} 4510:{\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}},\in )} 3689:{\displaystyle {\mathfrak {M}}=({\mathcal {P}},{\mathcal {Z}},\in )} 4238: 58:
An inversion of the Möbius plane with respect to any circle is an
403:
that lead to Möbius planes (see below). Such examples are called
4894:
Any two cycles of a Möbius plane have the same number of points.
111:
to every line. If we call both circles and such completed lines
5368:
for defining circles. But, just to replace the real numbers
5263: 5210: 5101: 5091: 4974: 4935: 4925: 4864: 4800: 4753: 4743: 4631: 4576: 4532: 4493: 4483: 4404: 4347: 4322: 4275: 3735: 3708: 3672: 3662: 2769: 2759: 2723: 2713: 2566: 2556: 2496:
one recognizes that the mappings (1)-(3) generate the group
2069: 1746: 1684: 1504: 1494: 1119: 1109: 1066: 1056: 927: 856: 817: 807: 6399:
with the parameters of the one-point extension of a finite
119:
in which every three points determine exactly one cycle.
47:
because it is closed under inversion with respect to any
4243:
Möbius plane: minimal model (only the cycles containing
2639:{\displaystyle z\rightarrow {\tfrac {1}{\overline {z}}}} 2602:. Hence from (4) we get: For any cycle there exists an 3243: 3205: 2620: 6506: 6449: 6429: 6409: 6321: 6272: 6195: 6167: 6103: 6075: 6037: 5954: 5899: 5826: 5794: 5754: 5715: 5657: 5615: 5554: 5513: 5460: 5454:
of fields and quadratic forms one gets Möbius planes
5416: 5396: 5374: 5354: 5331: 5255: 5202: 5182: 5151: 5131: 5075: 5041: 4995: 4965: 4909: 4856: 4821: 4791: 4737: 4702: 4671: 4553: 4523: 4467: 4396: 4272: 4249: 4222: 4174: 4154: 4112: 4082: 4054: 4034: 3991: 3954: 3929: 3903: 3877: 3857: 3819: 3799: 3767: 3732: 3705: 3646: 3586: 3548: 3495: 3451: 3410: 3345: 3275: 3235: 3188: 3123: 3100: 3058: 3038: 2810: 2753: 2707: 2652: 2612: 2550: 2502: 2480: 2442: 2383: 2355: 2272: 2265: 2232: 2178: 2145: 2094: 2066: 1899: 1743: 1681: 1658: 1616: 1569: 1534: 1488: 1465: 1437: 1417: 1374: 1337: 1312: 1286: 1260: 1240: 1205: 1185: 1153: 1103: 1050: 924: 853: 801: 641: 608: 573: 536: 471: 433: 355: 319: 299: 273: 248: 228: 208: 188: 168: 148: 4770:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 2786:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 2740:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 2583:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 2529:{\displaystyle \operatorname {PGL} (2,\mathbb {C} )} 1521:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 1136:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 1083:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 834:{\displaystyle ({\mathcal {P}},{\mathcal {Z}},\in )} 6512: 6492: 6435: 6415: 6383:). Ovoidal Möbius planes are characterized by the 6348:. It is elementary and based on the theorem of an 6327: 6297: 6245: 6181: 6150: 6089: 6051: 6014: 5940: 5882: 5812: 5780: 5740: 5682: 5640: 5592: 5538: 5485: 5442: 5402: 5382: 5360: 5337: 5306: 5241: 5188: 5168: 5137: 5117: 5054: 5023: 4981: 4951: 4882: 4838: 4807: 4769: 4722:Any residue of a Möbius plane is an affine plane. 4708: 4688: 4650: 4539: 4509: 4448:{\displaystyle |{\mathcal {Z}}|={5 \choose 3}=10.} 4447: 4382: 4255: 4228: 4204: 4160: 4136: 4088: 4065: 4040: 4020: 3977: 3940: 3915: 3889: 3863: 3837: 3805: 3785: 3742: 3715: 3688: 3613: 3572: 3534: 3481: 3434: 3396: 3331: 3259: 3221: 3174: 3109: 3082: 3044: 3022: 2785: 2739: 2682:. This property gives rise to the alternate name 2674: 2638: 2582: 2528: 2488: 2462: 2424: 2364: 2341: 2246: 2218: 2159: 2131: 2076: 2045: 1878: 1725: 1664: 1644: 1602: 1555: 1520: 1471: 1448: 1423: 1403: 1360: 1323: 1298: 1272: 1246: 1223: 1191: 1171: 1135: 1082: 1028: 904: 833: 780: 620: 594: 551: 518: 454: 387: 325: 305: 285: 259: 234: 214: 194: 174: 154: 4433: 4420: 2432:(reflection or inversion through the real axis) 632:is a set of points that fulfills an equation 6315:of index 1) in projective 3-space over field 2646:is the inversion which fixes the unit circle 1528:can be described using the complex numbers. 455:{\displaystyle {\mathfrak {A}}(\mathbb {R} )} 8: 6009: 5955: 5807: 5795: 5307:{\displaystyle |{\mathcal {Z}}|=n(n^{2}+1).} 4636: 4611: 4605: 4596: 4590: 4584: 4374: 4330: 4313: 4283: 4015: 4009: 2701:there exists a space model for the geometry 2463:{\displaystyle \mathbb {C} \cup \{\infty \}} 2457: 2451: 2037: 1906: 1903: 1873: 1833: 1827: 1821: 1757: 1754: 1706: 1700: 1398: 1392: 1023: 988: 982: 950: 944: 935: 885: 879: 6305:is isomorphic to the geometry of the plane 5651:Because of the last Theorem a Möbius plane 4883:{\displaystyle |{\mathcal {P}}|<\infty } 4263:are drawn. Any set of 3 points is a cycle.) 6505: 6457: 6448: 6428: 6408: 6320: 6274: 6273: 6271: 6237: 6221: 6194: 6175: 6174: 6166: 6142: 6129: 6102: 6083: 6082: 6074: 6045: 6044: 6036: 5953: 5926: 5904: 5898: 5883:{\displaystyle \rho (x,y)=x^{2}+xy+y^{2}} 5874: 5852: 5825: 5793: 5761: 5753: 5717: 5716: 5714: 5659: 5658: 5656: 5617: 5616: 5614: 5584: 5559: 5553: 5515: 5514: 5512: 5462: 5461: 5459: 5434: 5421: 5415: 5410:and to keep the classical quadratic form 5395: 5376: 5375: 5373: 5353: 5330: 5286: 5268: 5262: 5261: 5256: 5254: 5227: 5215: 5209: 5208: 5203: 5201: 5181: 5160: 5154: 5153: 5150: 5130: 5100: 5099: 5090: 5089: 5077: 5076: 5074: 5043: 5042: 5040: 5010: 5002: 4994: 4973: 4972: 4964: 4934: 4933: 4924: 4923: 4911: 4910: 4908: 4869: 4863: 4862: 4857: 4855: 4830: 4824: 4823: 4820: 4799: 4798: 4790: 4752: 4751: 4742: 4741: 4736: 4701: 4689:{\displaystyle {\mathfrak {A}}_{\infty }} 4680: 4674: 4673: 4670: 4630: 4629: 4575: 4574: 4562: 4556: 4555: 4552: 4531: 4530: 4522: 4492: 4491: 4482: 4481: 4469: 4468: 4466: 4432: 4419: 4417: 4409: 4403: 4402: 4397: 4395: 4363: 4355: 4346: 4345: 4321: 4320: 4274: 4273: 4271: 4248: 4221: 4173: 4153: 4111: 4081: 4053: 4033: 3990: 3953: 3928: 3902: 3876: 3856: 3818: 3798: 3766: 3734: 3733: 3731: 3707: 3706: 3704: 3671: 3670: 3661: 3660: 3648: 3647: 3645: 3585: 3547: 3494: 3450: 3409: 3344: 3293: 3280: 3274: 3242: 3234: 3204: 3187: 3154: 3141: 3128: 3122: 3099: 3057: 3037: 2976: 2963: 2945: 2932: 2925: 2913: 2900: 2884: 2872: 2859: 2843: 2809: 2768: 2767: 2758: 2757: 2752: 2722: 2721: 2712: 2711: 2706: 2656: 2651: 2619: 2611: 2565: 2564: 2555: 2554: 2549: 2519: 2518: 2501: 2482: 2481: 2479: 2444: 2443: 2441: 2390: 2382: 2354: 2273: 2264: 2240: 2239: 2231: 2177: 2153: 2152: 2144: 2093: 2068: 2067: 2065: 2021: 2020: 2007: 2006: 1997: 1985: 1961: 1945: 1936: 1916: 1915: 1898: 1869: 1868: 1855: 1854: 1813: 1783: 1767: 1766: 1745: 1744: 1742: 1719: 1718: 1693: 1692: 1683: 1682: 1680: 1657: 1617: 1615: 1603:{\displaystyle (x,y)\in \mathbb {R} ^{2}} 1594: 1590: 1589: 1568: 1533: 1503: 1502: 1493: 1492: 1487: 1464: 1436: 1416: 1373: 1336: 1311: 1285: 1259: 1239: 1204: 1184: 1152: 1118: 1117: 1108: 1107: 1102: 1065: 1064: 1055: 1054: 1049: 1016: 1015: 1006: 1005: 1000: 975: 974: 965: 964: 959: 926: 925: 923: 898: 897: 870: 866: 865: 855: 854: 852: 816: 815: 806: 805: 800: 757: 744: 734: 712: 702: 677: 658: 640: 607: 572: 543: 539: 538: 535: 510: 497: 470: 445: 444: 435: 434: 432: 373: 360: 354: 318: 298: 272: 247: 227: 207: 187: 167: 147: 6298:{\displaystyle {\mathfrak {M}}(K,\rho )} 5741:{\displaystyle {\mathfrak {M}}(K,\rho )} 5683:{\displaystyle {\mathfrak {M}}(K,\rho )} 5641:{\displaystyle {\mathfrak {M}}(K,\rho )} 5539:{\displaystyle {\mathfrak {M}}(K,\rho )} 5495: 5486:{\displaystyle {\mathfrak {M}}(K,\rho )} 5242:{\displaystyle |{\mathcal {P}}|=n^{2}+1} 4898:This justifies the following definition: 3631: 2688: 418: 93: 51:, and thus a natural setting for planar 6572:Vorlesungen über Geometrie der Algebren 6551: 6358:There are many Möbius planes which are 6246:{\displaystyle \rho (x,y)=x^{2}-2y^{2}} 6059:the field of complex numbers, there is 4602: 4581: 337:These properties essentially define an 6391:Finite Möbius planes and block designs 6151:{\displaystyle \rho (x,y)=x^{2}+y^{2}} 519:{\displaystyle \rho (x,y)=x^{2}+y^{2}} 6015:{\displaystyle \{(0,1),(1,0),(1,1)\}} 3332:{\displaystyle x^{2}+y^{2}-ax-by-c=0} 3222:{\displaystyle (0,0,{\tfrac {1}{2}})} 3175:{\displaystyle u^{2}+v^{2}+w^{2}-w=0} 3117:-plane onto the sphere with equation 70:More generally, a Möbius plane is an 7: 6500:-design, is a Möbius plane of order 6311:sections on a sphere (nondegenerate 6189:(the field of rational numbers) and 6097:(the field of rational numbers) and 4665:For the classical model the residue 1645:{\displaystyle {\overline {z}}=x-iy} 427:We start from the real affine plane 6275: 5718: 5660: 5618: 5516: 5463: 5169:{\displaystyle {\mathfrak {A}}_{P}} 5155: 5078: 5044: 4982:{\displaystyle z\in {\mathcal {Z}}} 4912: 4890:, we have (as with affine planes): 4839:{\displaystyle {\mathfrak {A}}_{P}} 4825: 4808:{\displaystyle P\in {\mathcal {P}}} 4675: 4557: 4540:{\displaystyle P\in {\mathcal {P}}} 4470: 3649: 1007: 966: 436: 423:classical Moebius plane:2d/3d-model 5781:{\displaystyle K=\mathrm {GF} (2)} 5765: 5762: 4877: 4703: 4681: 4424: 4310: 4250: 3260:{\displaystyle r={\tfrac {1}{2}};} 3039: 2811: 2697:Similarly to the space model of a 2675:{\displaystyle z{\overline {z}}=1} 2454: 2415: 2409: 2325: 2313: 2209: 2203: 2122: 2116: 1830: 1712: 1703: 947: 891: 882: 25: 5648:satisfies the Theorem of Miquel. 2247:{\displaystyle s\in \mathbb {C} } 2160:{\displaystyle r\in \mathbb {C} } 399:(numbers) together with suitable 63:respect to a line is a Euclidean 5941:{\displaystyle x^{2}+xy+y^{2}=1} 5055:{\displaystyle {\mathfrak {M}}.} 3397:{\displaystyle au+bv-(1+c)w+c=0} 552:{\displaystyle \mathbb {R} ^{2}} 6563:(PDF; 891 kB), S. 60. 6493:{\displaystyle (n^{2}+1,n+1,1)} 5893:(For example, the unit circle 5593:{\displaystyle P_{1},...,P_{8}} 4850:For finite Möbius planes, i.e. 4319: 3923:there exists exactly one cycle 2421: 2337: 2215: 2128: 1306:there exists exactly one cycle 98:Möbius-plane: touching relation 6487: 6450: 6292: 6280: 6211: 6199: 6182:{\displaystyle K=\mathbb {Q} } 6119: 6107: 6090:{\displaystyle K=\mathbb {Q} } 6052:{\displaystyle K=\mathbb {C} } 6006: 5994: 5988: 5976: 5970: 5958: 5842: 5830: 5775: 5769: 5735: 5723: 5677: 5665: 5635: 5623: 5533: 5521: 5480: 5468: 5298: 5279: 5269: 5257: 5216: 5204: 5112: 5086: 5011: 5003: 4946: 4920: 4870: 4858: 4764: 4738: 4645: 4571: 4504: 4478: 4410: 4398: 4364: 4356: 4021:{\displaystyle z\cap z'=\{P\}} 3754:if the following axioms hold: 3743:{\displaystyle {\mathcal {Z}}} 3716:{\displaystyle {\mathcal {P}}} 3683: 3657: 3636:Möbius plane: axioms (A1),(A2) 3605: 3587: 3567: 3549: 3429: 3411: 3376: 3364: 3216: 3189: 3077: 3059: 3011: 2993: 2835: 2832: 2820: 2780: 2754: 2734: 2708: 2616: 2577: 2551: 2523: 2509: 2412: 2387: 2328: 2310: 2269: 2206: 2182: 2119: 2098: 2077:{\displaystyle {\mathcal {P}}} 1967: 1948: 1942: 1923: 1582: 1570: 1515: 1489: 1404:{\displaystyle z\cap z'=\{P\}} 1143:has the following properties. 1130: 1104: 1077: 1051: 1020: 1012: 979: 971: 828: 802: 741: 721: 709: 689: 683: 645: 487: 475: 449: 441: 27:In mathematics, the classical 1: 2699:desarguesian projective plane 388:{\displaystyle x^{2}+y^{2}=1} 5383:{\displaystyle \mathbb {R} } 5176:is an affine plane of order 4205:{\displaystyle A,B,C,D\in z} 3535:{\displaystyle au+bv-cw+c=0} 3052:is a projection with center 2661: 2629: 2590:is a homogeneous structure, 2489:{\displaystyle \mathbb {C} } 2395: 1971: 1793: 1652:is the complex conjugate of 1622: 1147:For any set of three points 6639:Encyclopedia of Mathematics 6629:Encyclopedia of Mathematics 5603:The converse is true, too. 5443:{\displaystyle x^{2}+y^{2}} 5125:be a Möbius plane of order 5065:From combinatorics we get: 3793:there is exactly one cycle 1179:there is exactly one cycle 1092:classical real Möbius plane 567:are described by equations 415:Classical real Möbius plane 242:there is exactly one cycle 6688: 5345:on an affine plane over a 4903:For a finite Möbius plane 6606:, Springer-Verlag (1968) 3978:{\displaystyle P,Q\in z'} 3916:{\displaystyle Q\notin z} 3482:{\displaystyle ax+by+c=0} 3269:the circle with equation 1361:{\displaystyle P,Q\in z'} 1299:{\displaystyle Q\notin z} 90:Relation to affine planes 39:supplemented by a single 6264:stereographic projection 5024:{\displaystyle n:=|z|-1} 3625:Axioms of a Möbius plane 3614:{\displaystyle (0,0,1).} 2799:stereographic projection 2693:stereographic projection 2084:map cycles onto cycles. 43:. It is also called the 6063:quadratic form at all. 5813:{\displaystyle \{0,1\}} 5318:Miquelian Möbius planes 4731:An incidence structure 4709:{\displaystyle \infty } 4256:{\displaystyle \infty } 4137:{\displaystyle A,B,C,D} 3640:An incidence structure 3580:but omitting the point 3573:{\displaystyle (0,0,1)} 3435:{\displaystyle (0,0,1)} 3083:{\displaystyle (0,0,1)} 2167:(rotation + dilatation) 407:, because they fulfill 33:August Ferdinand Möbius 6514: 6494: 6437: 6417: 6329: 6299: 6247: 6183: 6152: 6091: 6053: 6016: 5942: 5884: 5814: 5782: 5742: 5692:miquelian Möbius plane 5684: 5642: 5594: 5546:the following is true: 5540: 5501: 5487: 5444: 5404: 5384: 5362: 5339: 5308: 5243: 5190: 5170: 5145:. Then a) any residue 5139: 5119: 5056: 5025: 4983: 4953: 4884: 4840: 4809: 4771: 4710: 4690: 4652: 4541: 4511: 4449: 4384: 4264: 4257: 4230: 4206: 4162: 4138: 4090: 4067: 4042: 4022: 3979: 3942: 3917: 3891: 3890:{\displaystyle P\in z} 3865: 3839: 3807: 3787: 3744: 3717: 3690: 3637: 3615: 3574: 3536: 3483: 3436: 3398: 3333: 3261: 3223: 3176: 3111: 3084: 3046: 3024: 2787: 2741: 2694: 2676: 2640: 2584: 2530: 2490: 2464: 2426: 2366: 2343: 2248: 2220: 2161: 2133: 2078: 2047: 1880: 1727: 1666: 1646: 1604: 1557: 1556:{\displaystyle z=x+iy} 1522: 1473: 1450: 1425: 1405: 1362: 1325: 1300: 1274: 1273:{\displaystyle P\in z} 1248: 1225: 1193: 1173: 1137: 1084: 1030: 906: 835: 782: 622: 596: 595:{\displaystyle y=mx+b} 553: 520: 456: 424: 389: 339:axiomatic Möbius plane 327: 307: 287: 261: 236: 216: 196: 176: 156: 99: 6581:F. Buekenhout (ed.), 6541:Möbius transformation 6515: 6495: 6438: 6418: 6364:ovoidal Möbius planes 6330: 6300: 6248: 6184: 6153: 6092: 6054: 6017: 5943: 5885: 5815: 5783: 5743: 5685: 5643: 5595: 5541: 5507:For the Möbius plane 5499: 5488: 5445: 5405: 5385: 5363: 5340: 5338:{\displaystyle \rho } 5309: 5244: 5191: 5171: 5140: 5120: 5057: 5026: 4984: 4954: 4885: 4841: 4810: 4772: 4711: 4691: 4653: 4542: 4512: 4450: 4385: 4258: 4242: 4231: 4207: 4163: 4139: 4091: 4068: 4043: 4023: 3980: 3943: 3918: 3892: 3866: 3840: 3838:{\displaystyle A,B,C} 3808: 3788: 3786:{\displaystyle A,B,C} 3761:For any three points 3745: 3718: 3691: 3635: 3616: 3575: 3537: 3484: 3437: 3399: 3334: 3262: 3224: 3177: 3112: 3085: 3047: 3045:{\displaystyle \Phi } 3025: 2788: 2742: 2692: 2677: 2641: 2585: 2542:Möbius transformation 2531: 2491: 2465: 2427: 2367: 2365:{\displaystyle \pm 1} 2344: 2249: 2221: 2162: 2134: 2079: 2048: 1881: 1728: 1667: 1647: 1605: 1558: 1523: 1474: 1451: 1426: 1406: 1363: 1326: 1301: 1275: 1249: 1226: 1224:{\displaystyle A,B,C} 1194: 1174: 1172:{\displaystyle A,B,C} 1138: 1085: 1031: 1002: circle of  907: 836: 783: 623: 597: 554: 521: 457: 422: 390: 328: 308: 288: 262: 237: 217: 197: 177: 157: 126:relation. Two cycles 97: 6504: 6447: 6427: 6407: 6319: 6270: 6193: 6165: 6101: 6073: 6035: 5952: 5897: 5824: 5792: 5752: 5713: 5655: 5613: 5609:Only a Möbius plane 5552: 5548:If for any 8 points 5511: 5458: 5414: 5394: 5372: 5352: 5329: 5253: 5200: 5180: 5149: 5129: 5073: 5039: 4993: 4963: 4907: 4854: 4819: 4789: 4735: 4700: 4669: 4551: 4547:we define structure 4521: 4465: 4394: 4270: 4247: 4220: 4172: 4152: 4148:if there is a cycle 4110: 4080: 4076:each other at point 4052: 4032: 3989: 3952: 3927: 3901: 3875: 3855: 3817: 3797: 3765: 3730: 3703: 3644: 3584: 3546: 3493: 3449: 3408: 3343: 3273: 3233: 3186: 3121: 3098: 3056: 3036: 2808: 2751: 2705: 2650: 2610: 2548: 2500: 2478: 2440: 2381: 2353: 2263: 2230: 2176: 2143: 2092: 2064: 1897: 1741: 1679: 1656: 1614: 1567: 1532: 1486: 1463: 1459:each other at point 1435: 1415: 1372: 1335: 1310: 1284: 1258: 1238: 1203: 1183: 1151: 1101: 1048: 922: 851: 799: 639: 606: 571: 534: 469: 431: 353: 317: 297: 271: 246: 226: 206: 186: 166: 146: 4846:is an affine plane. 4461:For a Möbius plane 961: line of  621:{\displaystyle x=c} 286:{\displaystyle P,Q} 136:tangent to a circle 117:incidence structure 72:incidence structure 6667:Incidence geometry 6662:Classical geometry 6585:Incidence Geometry 6536:Conformal geometry 6510: 6490: 6433: 6413: 6325: 6295: 6243: 6179: 6148: 6087: 6049: 6012: 5938: 5880: 5810: 5778: 5738: 5680: 5638: 5590: 5536: 5502: 5483: 5440: 5400: 5380: 5358: 5335: 5304: 5239: 5186: 5166: 5135: 5115: 5052: 5021: 4979: 4949: 4880: 4836: 4805: 4767: 4706: 4686: 4660:residue at point P 4648: 4537: 4507: 4445: 4380: 4265: 4253: 4226: 4202: 4158: 4134: 4086: 4066:{\displaystyle z'} 4063: 4038: 4018: 3975: 3941:{\displaystyle z'} 3938: 3913: 3887: 3861: 3835: 3803: 3783: 3740: 3713: 3686: 3638: 3611: 3570: 3532: 3479: 3432: 3394: 3329: 3257: 3252: 3219: 3214: 3172: 3110:{\displaystyle xy} 3107: 3080: 3042: 3020: 2783: 2737: 2695: 2672: 2636: 2634: 2596:automorphism group 2580: 2526: 2486: 2460: 2422: 2362: 2339: 2338: 2244: 2216: 2157: 2129: 2074: 2043: 1876: 1723: 1662: 1642: 1600: 1553: 1518: 1469: 1449:{\displaystyle z'} 1446: 1421: 1401: 1358: 1324:{\displaystyle z'} 1321: 1296: 1270: 1244: 1221: 1189: 1169: 1133: 1080: 1026: 902: 831: 778: 618: 592: 549: 516: 452: 425: 385: 323: 303: 283: 267:containing points 260:{\displaystyle z'} 257: 232: 212: 192: 172: 152: 134:or a line that is 100: 53:inversive geometry 49:generalized circle 6672:Planes (geometry) 6604:Finite Geometries 6513:{\displaystyle n} 6436:{\displaystyle 3} 6416:{\displaystyle n} 6328:{\displaystyle K} 6253:is suitable, too. 5948:is the point set 5505:Theorem (Miquel): 5500:Theorem of Miquel 5403:{\displaystyle K} 5361:{\displaystyle K} 5189:{\displaystyle n} 5138:{\displaystyle n} 4431: 4229:{\displaystyle 5} 4161:{\displaystyle z} 4089:{\displaystyle P} 4041:{\displaystyle z} 3864:{\displaystyle z} 3806:{\displaystyle z} 3251: 3213: 3016: 2983: 2920: 2879: 2819: 2664: 2633: 2632: 2408: 2405: 2398: 2324: 2321: 2306: 2303: 2288: 2281: 2202: 2199: 2115: 2112: 1988: 1984: 1974: 1841: 1820: 1816: 1812: 1796: 1665:{\displaystyle z} 1625: 1563:represents point 1472:{\displaystyle P} 1424:{\displaystyle z} 1247:{\displaystyle z} 1192:{\displaystyle z} 1003: 962: 768: 526:and get the real 326:{\displaystyle P} 306:{\displaystyle z} 235:{\displaystyle z} 215:{\displaystyle Q} 195:{\displaystyle z} 175:{\displaystyle P} 155:{\displaystyle z} 109:point at infinity 41:point at infinity 16:(Redirected from 6679: 6564: 6556: 6519: 6517: 6516: 6511: 6499: 6497: 6496: 6491: 6462: 6461: 6442: 6440: 6439: 6434: 6422: 6420: 6419: 6414: 6370:. An ovoid is a 6334: 6332: 6331: 6326: 6304: 6302: 6301: 6296: 6279: 6278: 6252: 6250: 6249: 6244: 6242: 6241: 6226: 6225: 6188: 6186: 6185: 6180: 6178: 6157: 6155: 6154: 6149: 6147: 6146: 6134: 6133: 6096: 6094: 6093: 6088: 6086: 6058: 6056: 6055: 6050: 6048: 6021: 6019: 6018: 6013: 5947: 5945: 5944: 5939: 5931: 5930: 5909: 5908: 5889: 5887: 5886: 5881: 5879: 5878: 5857: 5856: 5819: 5817: 5816: 5811: 5787: 5785: 5784: 5779: 5768: 5747: 5745: 5744: 5739: 5722: 5721: 5689: 5687: 5686: 5681: 5664: 5663: 5647: 5645: 5644: 5639: 5622: 5621: 5599: 5597: 5596: 5591: 5589: 5588: 5564: 5563: 5545: 5543: 5542: 5537: 5520: 5519: 5492: 5490: 5489: 5484: 5467: 5466: 5449: 5447: 5446: 5441: 5439: 5438: 5426: 5425: 5409: 5407: 5406: 5401: 5389: 5387: 5386: 5381: 5379: 5367: 5365: 5364: 5359: 5344: 5342: 5341: 5336: 5313: 5311: 5310: 5305: 5291: 5290: 5272: 5267: 5266: 5260: 5248: 5246: 5245: 5240: 5232: 5231: 5219: 5214: 5213: 5207: 5195: 5193: 5192: 5187: 5175: 5173: 5172: 5167: 5165: 5164: 5159: 5158: 5144: 5142: 5141: 5136: 5124: 5122: 5121: 5116: 5105: 5104: 5095: 5094: 5082: 5081: 5061: 5059: 5058: 5053: 5048: 5047: 5030: 5028: 5027: 5022: 5014: 5006: 4988: 4986: 4985: 4980: 4978: 4977: 4958: 4956: 4955: 4950: 4939: 4938: 4929: 4928: 4916: 4915: 4889: 4887: 4886: 4881: 4873: 4868: 4867: 4861: 4845: 4843: 4842: 4837: 4835: 4834: 4829: 4828: 4814: 4812: 4811: 4806: 4804: 4803: 4776: 4774: 4773: 4768: 4757: 4756: 4747: 4746: 4715: 4713: 4712: 4707: 4695: 4693: 4692: 4687: 4685: 4684: 4679: 4678: 4658:and call it the 4657: 4655: 4654: 4649: 4635: 4634: 4580: 4579: 4567: 4566: 4561: 4560: 4546: 4544: 4543: 4538: 4536: 4535: 4516: 4514: 4513: 4508: 4497: 4496: 4487: 4486: 4474: 4473: 4454: 4452: 4451: 4446: 4438: 4437: 4436: 4423: 4413: 4408: 4407: 4401: 4389: 4387: 4386: 4381: 4367: 4359: 4351: 4350: 4326: 4325: 4279: 4278: 4262: 4260: 4259: 4254: 4235: 4233: 4232: 4227: 4211: 4209: 4208: 4203: 4167: 4165: 4164: 4159: 4143: 4141: 4140: 4135: 4095: 4093: 4092: 4087: 4072: 4070: 4069: 4064: 4062: 4047: 4045: 4044: 4039: 4027: 4025: 4024: 4019: 4005: 3984: 3982: 3981: 3976: 3974: 3947: 3945: 3944: 3939: 3937: 3922: 3920: 3919: 3914: 3896: 3894: 3893: 3888: 3870: 3868: 3867: 3862: 3844: 3842: 3841: 3836: 3812: 3810: 3809: 3804: 3792: 3790: 3789: 3784: 3749: 3747: 3746: 3741: 3739: 3738: 3722: 3720: 3719: 3714: 3712: 3711: 3695: 3693: 3692: 3687: 3676: 3675: 3666: 3665: 3653: 3652: 3620: 3618: 3617: 3612: 3579: 3577: 3576: 3571: 3541: 3539: 3538: 3533: 3489:into the plane 3488: 3486: 3485: 3480: 3441: 3439: 3438: 3433: 3403: 3401: 3400: 3395: 3338: 3336: 3335: 3330: 3298: 3297: 3285: 3284: 3266: 3264: 3263: 3258: 3253: 3244: 3228: 3226: 3225: 3220: 3215: 3206: 3181: 3179: 3178: 3173: 3159: 3158: 3146: 3145: 3133: 3132: 3116: 3114: 3113: 3108: 3089: 3087: 3086: 3081: 3051: 3049: 3048: 3043: 3029: 3027: 3026: 3021: 3014: 2989: 2985: 2984: 2982: 2981: 2980: 2968: 2967: 2951: 2950: 2949: 2937: 2936: 2926: 2921: 2919: 2918: 2917: 2905: 2904: 2885: 2880: 2878: 2877: 2876: 2864: 2863: 2844: 2817: 2792: 2790: 2789: 2784: 2773: 2772: 2763: 2762: 2746: 2744: 2743: 2738: 2727: 2726: 2717: 2716: 2681: 2679: 2678: 2673: 2665: 2657: 2645: 2643: 2642: 2637: 2635: 2625: 2621: 2589: 2587: 2586: 2581: 2570: 2569: 2560: 2559: 2544:). The geometry 2535: 2533: 2532: 2527: 2522: 2495: 2493: 2492: 2487: 2485: 2469: 2467: 2466: 2461: 2447: 2431: 2429: 2428: 2423: 2406: 2403: 2399: 2391: 2371: 2369: 2368: 2363: 2348: 2346: 2345: 2340: 2322: 2319: 2304: 2301: 2286: 2282: 2274: 2253: 2251: 2250: 2245: 2243: 2225: 2223: 2222: 2217: 2200: 2197: 2166: 2164: 2163: 2158: 2156: 2138: 2136: 2135: 2130: 2113: 2110: 2083: 2081: 2080: 2075: 2073: 2072: 2052: 2050: 2049: 2044: 2024: 2010: 2002: 2001: 1989: 1986: 1982: 1975: 1970: 1966: 1965: 1946: 1941: 1940: 1919: 1885: 1883: 1882: 1877: 1872: 1858: 1839: 1818: 1817: 1814: 1810: 1797: 1792: 1784: 1770: 1750: 1749: 1732: 1730: 1729: 1724: 1722: 1696: 1688: 1687: 1671: 1669: 1668: 1663: 1651: 1649: 1648: 1643: 1626: 1618: 1609: 1607: 1606: 1601: 1599: 1598: 1593: 1562: 1560: 1559: 1554: 1527: 1525: 1524: 1519: 1508: 1507: 1498: 1497: 1478: 1476: 1475: 1470: 1455: 1453: 1452: 1447: 1445: 1430: 1428: 1427: 1422: 1410: 1408: 1407: 1402: 1388: 1367: 1365: 1364: 1359: 1357: 1330: 1328: 1327: 1322: 1320: 1305: 1303: 1302: 1297: 1279: 1277: 1276: 1271: 1253: 1251: 1250: 1245: 1230: 1228: 1227: 1222: 1198: 1196: 1195: 1190: 1178: 1176: 1175: 1170: 1142: 1140: 1139: 1134: 1123: 1122: 1113: 1112: 1089: 1087: 1086: 1081: 1070: 1069: 1060: 1059: 1035: 1033: 1032: 1027: 1019: 1011: 1010: 1004: 1001: 978: 970: 969: 963: 960: 931: 930: 911: 909: 908: 903: 901: 875: 874: 869: 860: 859: 840: 838: 837: 832: 821: 820: 811: 810: 787: 785: 784: 779: 766: 762: 761: 749: 748: 739: 738: 717: 716: 707: 706: 682: 681: 663: 662: 627: 625: 624: 619: 601: 599: 598: 593: 558: 556: 555: 550: 548: 547: 542: 525: 523: 522: 517: 515: 514: 502: 501: 461: 459: 458: 453: 448: 440: 439: 409:Miquel's theorem 394: 392: 391: 386: 378: 377: 365: 364: 343:rational numbers 332: 330: 329: 324: 312: 310: 309: 304: 292: 290: 289: 284: 266: 264: 263: 258: 256: 241: 239: 238: 233: 221: 219: 218: 213: 201: 199: 198: 193: 181: 179: 178: 173: 161: 159: 158: 153: 78:: Möbius plane, 21: 6687: 6686: 6682: 6681: 6680: 6678: 6677: 6676: 6652: 6651: 6620: 6567: 6557: 6553: 6549: 6532: 6502: 6501: 6453: 6445: 6444: 6425: 6424: 6405: 6404: 6393: 6350:inscribed angle 6317: 6316: 6268: 6267: 6233: 6217: 6191: 6190: 6163: 6162: 6138: 6125: 6099: 6098: 6071: 6070: 6033: 6032: 5950: 5949: 5922: 5900: 5895: 5894: 5870: 5848: 5822: 5821: 5790: 5789: 5750: 5749: 5711: 5710: 5653: 5652: 5611: 5610: 5607:Theorem (Chen): 5580: 5555: 5550: 5549: 5547: 5509: 5508: 5456: 5455: 5430: 5417: 5412: 5411: 5392: 5391: 5370: 5369: 5350: 5349: 5327: 5326: 5320: 5282: 5251: 5250: 5223: 5198: 5197: 5178: 5177: 5152: 5147: 5146: 5127: 5126: 5071: 5070: 5037: 5036: 4991: 4990: 4961: 4960: 4905: 4904: 4899: 4852: 4851: 4822: 4817: 4816: 4787: 4786: 4778: 4733: 4732: 4698: 4697: 4672: 4667: 4666: 4554: 4549: 4548: 4519: 4518: 4463: 4462: 4418: 4392: 4391: 4268: 4267: 4245: 4244: 4218: 4217: 4170: 4169: 4150: 4149: 4108: 4107: 4078: 4077: 4055: 4050: 4049: 4030: 4029: 3998: 3987: 3986: 3967: 3950: 3949: 3930: 3925: 3924: 3899: 3898: 3873: 3872: 3853: 3852: 3815: 3814: 3795: 3794: 3763: 3762: 3728: 3727: 3701: 3700: 3642: 3641: 3627: 3582: 3581: 3544: 3543: 3491: 3490: 3447: 3446: 3406: 3405: 3341: 3340: 3339:into the plane 3289: 3276: 3271: 3270: 3231: 3230: 3184: 3183: 3150: 3137: 3124: 3119: 3118: 3096: 3095: 3054: 3053: 3034: 3033: 2972: 2959: 2952: 2941: 2928: 2927: 2909: 2896: 2889: 2868: 2855: 2848: 2842: 2838: 2806: 2805: 2801:. For example: 2749: 2748: 2703: 2702: 2684:inversive plane 2648: 2647: 2608: 2607: 2606:. For example: 2546: 2545: 2498: 2497: 2476: 2475: 2472:projective line 2438: 2437: 2379: 2378: 2351: 2350: 2349:(reflection at 2261: 2260: 2228: 2227: 2174: 2173: 2141: 2140: 2090: 2089: 2062: 2061: 1993: 1957: 1947: 1932: 1895: 1894: 1785: 1739: 1738: 1677: 1676: 1654: 1653: 1612: 1611: 1588: 1565: 1564: 1530: 1529: 1484: 1483: 1461: 1460: 1438: 1433: 1432: 1413: 1412: 1381: 1370: 1369: 1350: 1333: 1332: 1313: 1308: 1307: 1282: 1281: 1256: 1255: 1236: 1235: 1201: 1200: 1199:which contains 1181: 1180: 1149: 1148: 1099: 1098: 1046: 1045: 920: 919: 864: 849: 848: 797: 796: 753: 740: 730: 708: 698: 673: 654: 637: 636: 604: 603: 569: 568: 537: 532: 531: 528:Euclidean plane 506: 493: 467: 466: 429: 428: 417: 401:quadratic forms 369: 356: 351: 350: 347:complex numbers 345:. The usage of 315: 314: 295: 294: 269: 268: 249: 244: 243: 224: 223: 204: 203: 202:and any point 184: 183: 164: 163: 144: 143: 132:tangent circles 92: 84:Minkowski plane 45:inversive plane 37:Euclidean plane 23: 22: 15: 12: 11: 5: 6685: 6683: 6675: 6674: 6669: 6664: 6654: 6653: 6650: 6649: 6641: 6632: 6619: 6618:External links 6616: 6615: 6614: 6602:P. Dembowski, 6600: 6579: 6566: 6565: 6550: 6548: 6545: 6544: 6543: 6538: 6531: 6528: 6509: 6489: 6486: 6483: 6480: 6477: 6474: 6471: 6468: 6465: 6460: 6456: 6452: 6432: 6412: 6392: 6389: 6385:bundle theorem 6339: 6338: 6337: 6336: 6324: 6294: 6291: 6288: 6285: 6282: 6277: 6257: 6256: 6255: 6254: 6240: 6236: 6232: 6229: 6224: 6220: 6216: 6213: 6210: 6207: 6204: 6201: 6198: 6177: 6173: 6170: 6159: 6145: 6141: 6137: 6132: 6128: 6124: 6121: 6118: 6115: 6112: 6109: 6106: 6085: 6081: 6078: 6047: 6043: 6040: 6031:If we choose 6026: 6025: 6024: 6023: 6011: 6008: 6005: 6002: 5999: 5996: 5993: 5990: 5987: 5984: 5981: 5978: 5975: 5972: 5969: 5966: 5963: 5960: 5957: 5937: 5934: 5929: 5925: 5921: 5918: 5915: 5912: 5907: 5903: 5891: 5877: 5873: 5869: 5866: 5863: 5860: 5855: 5851: 5847: 5844: 5841: 5838: 5835: 5832: 5829: 5809: 5806: 5803: 5800: 5797: 5777: 5774: 5771: 5767: 5764: 5760: 5757: 5737: 5734: 5731: 5728: 5725: 5720: 5679: 5676: 5673: 5670: 5667: 5662: 5637: 5634: 5631: 5628: 5625: 5620: 5587: 5583: 5579: 5576: 5573: 5570: 5567: 5562: 5558: 5535: 5532: 5529: 5526: 5523: 5518: 5482: 5479: 5476: 5473: 5470: 5465: 5452:suitable pairs 5437: 5433: 5429: 5424: 5420: 5399: 5378: 5357: 5334: 5324:quadratic form 5319: 5316: 5315: 5314: 5303: 5300: 5297: 5294: 5289: 5285: 5281: 5278: 5275: 5271: 5265: 5259: 5238: 5235: 5230: 5226: 5222: 5218: 5212: 5206: 5185: 5163: 5157: 5134: 5114: 5111: 5108: 5103: 5098: 5093: 5088: 5085: 5080: 5063: 5062: 5051: 5046: 5031:is called the 5020: 5017: 5013: 5009: 5005: 5001: 4998: 4976: 4971: 4968: 4948: 4945: 4942: 4937: 4932: 4927: 4922: 4919: 4914: 4896: 4895: 4879: 4876: 4872: 4866: 4860: 4848: 4847: 4833: 4827: 4802: 4797: 4794: 4785:For any point 4766: 4763: 4760: 4755: 4750: 4745: 4740: 4705: 4683: 4677: 4647: 4644: 4641: 4638: 4633: 4628: 4625: 4622: 4619: 4616: 4613: 4610: 4607: 4604: 4601: 4598: 4595: 4592: 4589: 4586: 4583: 4578: 4573: 4570: 4565: 4559: 4534: 4529: 4526: 4506: 4503: 4500: 4495: 4490: 4485: 4480: 4477: 4472: 4444: 4441: 4435: 4430: 4427: 4422: 4416: 4412: 4406: 4400: 4379: 4376: 4373: 4370: 4366: 4362: 4358: 4354: 4349: 4344: 4341: 4338: 4335: 4332: 4329: 4324: 4318: 4315: 4312: 4309: 4306: 4303: 4300: 4297: 4294: 4291: 4288: 4285: 4282: 4277: 4252: 4225: 4201: 4198: 4195: 4192: 4189: 4186: 4183: 4180: 4177: 4157: 4133: 4130: 4127: 4124: 4121: 4118: 4115: 4104: 4103: 4097: 4085: 4061: 4058: 4037: 4017: 4014: 4011: 4008: 4004: 4001: 3997: 3994: 3973: 3970: 3966: 3963: 3960: 3957: 3936: 3933: 3912: 3909: 3906: 3886: 3883: 3880: 3860: 3851:For any cycle 3846: 3834: 3831: 3828: 3825: 3822: 3813:that contains 3802: 3782: 3779: 3776: 3773: 3770: 3737: 3710: 3685: 3682: 3679: 3674: 3669: 3664: 3659: 3656: 3651: 3626: 3623: 3622: 3621: 3610: 3607: 3604: 3601: 3598: 3595: 3592: 3589: 3569: 3566: 3563: 3560: 3557: 3554: 3551: 3531: 3528: 3525: 3522: 3519: 3516: 3513: 3510: 3507: 3504: 3501: 3498: 3478: 3475: 3472: 3469: 3466: 3463: 3460: 3457: 3454: 3443: 3431: 3428: 3425: 3422: 3419: 3416: 3413: 3393: 3390: 3387: 3384: 3381: 3378: 3375: 3372: 3369: 3366: 3363: 3360: 3357: 3354: 3351: 3348: 3328: 3325: 3322: 3319: 3316: 3313: 3310: 3307: 3304: 3301: 3296: 3292: 3288: 3283: 3279: 3267: 3256: 3250: 3247: 3241: 3238: 3218: 3212: 3209: 3203: 3200: 3197: 3194: 3191: 3171: 3168: 3165: 3162: 3157: 3153: 3149: 3144: 3140: 3136: 3131: 3127: 3106: 3103: 3079: 3076: 3073: 3070: 3067: 3064: 3061: 3041: 3031: 3030: 3019: 3013: 3010: 3007: 3004: 3001: 2998: 2995: 2992: 2988: 2979: 2975: 2971: 2966: 2962: 2958: 2955: 2948: 2944: 2940: 2935: 2931: 2924: 2916: 2912: 2908: 2903: 2899: 2895: 2892: 2888: 2883: 2875: 2871: 2867: 2862: 2858: 2854: 2851: 2847: 2841: 2837: 2834: 2831: 2828: 2825: 2822: 2816: 2813: 2782: 2779: 2776: 2771: 2766: 2761: 2756: 2736: 2733: 2730: 2725: 2720: 2715: 2710: 2671: 2668: 2663: 2660: 2655: 2631: 2628: 2624: 2618: 2615: 2579: 2576: 2573: 2568: 2563: 2558: 2553: 2525: 2521: 2517: 2514: 2511: 2508: 2505: 2484: 2459: 2456: 2453: 2450: 2446: 2434: 2433: 2420: 2417: 2414: 2411: 2402: 2397: 2394: 2389: 2386: 2374: 2373: 2361: 2358: 2336: 2333: 2330: 2327: 2318: 2315: 2312: 2309: 2300: 2297: 2294: 2291: 2285: 2280: 2277: 2271: 2268: 2256: 2255: 2242: 2238: 2235: 2214: 2211: 2208: 2205: 2196: 2193: 2190: 2187: 2184: 2181: 2169: 2168: 2155: 2151: 2148: 2127: 2124: 2121: 2118: 2109: 2106: 2103: 2100: 2097: 2071: 2058: 2057: 2056: 2055: 2054: 2053: 2042: 2039: 2036: 2033: 2030: 2027: 2023: 2019: 2016: 2013: 2009: 2005: 2000: 1996: 1992: 1981: 1978: 1973: 1969: 1964: 1960: 1956: 1953: 1950: 1944: 1939: 1935: 1931: 1928: 1925: 1922: 1918: 1914: 1911: 1908: 1905: 1902: 1887: 1886: 1875: 1871: 1867: 1864: 1861: 1857: 1853: 1850: 1847: 1844: 1838: 1835: 1832: 1829: 1826: 1823: 1809: 1806: 1803: 1800: 1795: 1791: 1788: 1782: 1779: 1776: 1773: 1769: 1765: 1762: 1759: 1756: 1753: 1748: 1735: 1734: 1721: 1717: 1714: 1711: 1708: 1705: 1702: 1699: 1695: 1691: 1686: 1661: 1641: 1638: 1635: 1632: 1629: 1624: 1621: 1597: 1592: 1587: 1584: 1581: 1578: 1575: 1572: 1552: 1549: 1546: 1543: 1540: 1537: 1517: 1514: 1511: 1506: 1501: 1496: 1491: 1481: 1480: 1468: 1444: 1441: 1420: 1400: 1397: 1394: 1391: 1387: 1384: 1380: 1377: 1356: 1353: 1349: 1346: 1343: 1340: 1319: 1316: 1295: 1292: 1289: 1269: 1266: 1263: 1243: 1234:For any cycle 1232: 1220: 1217: 1214: 1211: 1208: 1188: 1168: 1165: 1162: 1159: 1156: 1132: 1129: 1126: 1121: 1116: 1111: 1106: 1090:is called the 1079: 1076: 1073: 1068: 1063: 1058: 1053: 1042: 1041: 1025: 1022: 1018: 1014: 1009: 999: 996: 993: 990: 987: 984: 981: 977: 973: 968: 958: 955: 952: 949: 946: 943: 940: 937: 934: 929: 917: 900: 896: 893: 890: 887: 884: 881: 878: 873: 868: 863: 858: 842: 841: 830: 827: 824: 819: 814: 809: 804: 790: 789: 777: 774: 771: 765: 760: 756: 752: 747: 743: 737: 733: 729: 726: 723: 720: 715: 711: 705: 701: 697: 694: 691: 688: 685: 680: 676: 672: 669: 666: 661: 657: 653: 650: 647: 644: 617: 614: 611: 591: 588: 585: 582: 579: 576: 546: 541: 513: 509: 505: 500: 496: 492: 489: 486: 483: 480: 477: 474: 464:quadratic form 451: 447: 443: 438: 416: 413: 384: 381: 376: 372: 368: 363: 359: 335: 334: 322: 302: 282: 279: 276: 255: 252: 231: 211: 191: 171: 151: 142:for any cycle 91: 88: 80:Laguerre plane 24: 14: 13: 10: 9: 6: 4: 3: 2: 6684: 6673: 6670: 6668: 6665: 6663: 6660: 6659: 6657: 6648: 6647: 6644:Lecture Note 6642: 6640: 6636: 6633: 6631: 6630: 6625: 6622: 6621: 6617: 6613: 6612:3-540-61786-8 6609: 6605: 6601: 6599: 6598:0-444-88355-X 6595: 6591: 6587: 6586: 6580: 6577: 6573: 6569: 6568: 6562: 6561: 6555: 6552: 6546: 6542: 6539: 6537: 6534: 6533: 6529: 6527: 6524: 6521: 6507: 6484: 6481: 6478: 6475: 6472: 6469: 6466: 6463: 6458: 6454: 6430: 6410: 6402: 6398: 6390: 6388: 6386: 6382: 6381:quadratic set 6378: 6377:tangent plane 6373: 6372:quadratic set 6369: 6365: 6361: 6360:not miquelian 6357: 6353: 6351: 6347: 6343: 6322: 6314: 6310: 6309: 6308: 6307: 6306: 6289: 6286: 6283: 6265: 6261: 6238: 6234: 6230: 6227: 6222: 6218: 6214: 6208: 6205: 6202: 6196: 6171: 6168: 6160: 6143: 6139: 6135: 6130: 6126: 6122: 6116: 6113: 6110: 6104: 6079: 6076: 6068: 6067: 6066: 6065: 6064: 6062: 6041: 6038: 6030: 6003: 6000: 5997: 5991: 5985: 5982: 5979: 5973: 5967: 5964: 5961: 5935: 5932: 5927: 5923: 5919: 5916: 5913: 5910: 5905: 5901: 5892: 5875: 5871: 5867: 5864: 5861: 5858: 5853: 5849: 5845: 5839: 5836: 5833: 5827: 5804: 5801: 5798: 5772: 5758: 5755: 5732: 5729: 5726: 5709: 5708: 5707: 5706: 5705: 5703: 5702:minimal model 5699: 5695: 5693: 5674: 5671: 5668: 5649: 5632: 5629: 5626: 5608: 5604: 5601: 5585: 5581: 5577: 5574: 5571: 5568: 5565: 5560: 5556: 5530: 5527: 5524: 5506: 5498: 5494: 5477: 5474: 5471: 5453: 5435: 5431: 5427: 5422: 5418: 5397: 5390:by any field 5355: 5348: 5332: 5325: 5317: 5301: 5295: 5292: 5287: 5283: 5276: 5273: 5236: 5233: 5228: 5224: 5220: 5183: 5161: 5132: 5109: 5106: 5096: 5083: 5068: 5067: 5066: 5049: 5034: 5018: 5015: 5007: 4999: 4996: 4969: 4966: 4943: 4940: 4930: 4917: 4902: 4901: 4900: 4893: 4892: 4891: 4874: 4831: 4795: 4792: 4784: 4781: 4780: 4779: 4761: 4758: 4748: 4730: 4726: 4723: 4721: 4717: 4663: 4661: 4642: 4639: 4626: 4623: 4620: 4617: 4614: 4608: 4599: 4593: 4587: 4568: 4563: 4527: 4524: 4501: 4498: 4488: 4475: 4459: 4455: 4442: 4439: 4428: 4425: 4414: 4377: 4371: 4368: 4360: 4352: 4342: 4339: 4336: 4333: 4327: 4316: 4307: 4304: 4301: 4298: 4295: 4292: 4289: 4286: 4280: 4241: 4237: 4223: 4213: 4199: 4196: 4193: 4190: 4187: 4184: 4181: 4178: 4175: 4155: 4147: 4131: 4128: 4125: 4122: 4119: 4116: 4113: 4101: 4098: 4083: 4075: 4059: 4056: 4035: 4012: 4006: 4002: 3999: 3995: 3992: 3971: 3968: 3964: 3961: 3958: 3955: 3934: 3931: 3910: 3907: 3904: 3884: 3881: 3878: 3858: 3850: 3847: 3832: 3829: 3826: 3823: 3820: 3800: 3780: 3777: 3774: 3771: 3768: 3760: 3757: 3756: 3755: 3753: 3726: 3725:set of cycles 3699: 3680: 3677: 3667: 3654: 3634: 3630: 3624: 3608: 3602: 3599: 3596: 3593: 3590: 3564: 3561: 3558: 3555: 3552: 3529: 3526: 3523: 3520: 3517: 3514: 3511: 3508: 3505: 3502: 3499: 3496: 3476: 3473: 3470: 3467: 3464: 3461: 3458: 3455: 3452: 3444: 3426: 3423: 3420: 3417: 3414: 3391: 3388: 3385: 3382: 3379: 3373: 3370: 3367: 3361: 3358: 3355: 3352: 3349: 3346: 3326: 3323: 3320: 3317: 3314: 3311: 3308: 3305: 3302: 3299: 3294: 3290: 3286: 3281: 3277: 3268: 3254: 3248: 3245: 3239: 3236: 3210: 3207: 3201: 3198: 3195: 3192: 3169: 3166: 3163: 3160: 3155: 3151: 3147: 3142: 3138: 3134: 3129: 3125: 3104: 3101: 3093: 3092: 3091: 3074: 3071: 3068: 3065: 3062: 3017: 3008: 3005: 3002: 2999: 2996: 2990: 2986: 2977: 2973: 2969: 2964: 2960: 2956: 2953: 2946: 2942: 2938: 2933: 2929: 2922: 2914: 2910: 2906: 2901: 2897: 2893: 2890: 2886: 2881: 2873: 2869: 2865: 2860: 2856: 2852: 2849: 2845: 2839: 2829: 2826: 2823: 2814: 2804: 2803: 2802: 2800: 2796: 2777: 2774: 2764: 2731: 2728: 2718: 2700: 2691: 2687: 2685: 2669: 2666: 2658: 2653: 2626: 2622: 2613: 2605: 2601: 2597: 2593: 2574: 2571: 2561: 2543: 2539: 2515: 2512: 2506: 2503: 2473: 2448: 2418: 2400: 2392: 2384: 2376: 2375: 2359: 2356: 2334: 2331: 2316: 2307: 2298: 2295: 2292: 2289: 2283: 2278: 2275: 2266: 2258: 2257: 2254:(translation) 2236: 2233: 2212: 2194: 2191: 2188: 2185: 2179: 2171: 2170: 2149: 2146: 2125: 2107: 2104: 2101: 2095: 2087: 2086: 2085: 2040: 2034: 2031: 2028: 2025: 2017: 2014: 2011: 2003: 1998: 1994: 1990: 1979: 1976: 1962: 1958: 1954: 1951: 1937: 1933: 1929: 1926: 1920: 1912: 1909: 1900: 1893: 1892: 1891: 1890: 1889: 1888: 1865: 1862: 1859: 1851: 1848: 1845: 1842: 1836: 1824: 1807: 1804: 1801: 1798: 1789: 1786: 1780: 1777: 1774: 1771: 1763: 1760: 1751: 1737: 1736: 1715: 1709: 1697: 1689: 1675: 1674: 1673: 1659: 1639: 1636: 1633: 1630: 1627: 1619: 1595: 1585: 1579: 1576: 1573: 1550: 1547: 1544: 1541: 1538: 1535: 1512: 1509: 1499: 1466: 1458: 1442: 1439: 1418: 1395: 1389: 1385: 1382: 1378: 1375: 1354: 1351: 1347: 1344: 1341: 1338: 1317: 1314: 1293: 1290: 1287: 1267: 1264: 1261: 1241: 1233: 1218: 1215: 1212: 1209: 1206: 1186: 1166: 1163: 1160: 1157: 1154: 1146: 1145: 1144: 1127: 1124: 1114: 1095: 1093: 1074: 1071: 1061: 1039: 1038:set of cycles 997: 994: 991: 985: 956: 953: 941: 938: 932: 918: 915: 914:set of points 894: 888: 876: 871: 861: 847: 846: 845: 825: 822: 812: 795: 794: 793: 775: 772: 769: 763: 758: 754: 750: 745: 735: 731: 727: 724: 718: 713: 703: 699: 695: 692: 686: 678: 674: 670: 667: 664: 659: 655: 651: 648: 642: 635: 634: 633: 631: 615: 612: 609: 589: 586: 583: 580: 577: 574: 566: 562: 544: 529: 511: 507: 503: 498: 494: 490: 484: 481: 478: 472: 465: 421: 414: 412: 410: 406: 402: 398: 382: 379: 374: 370: 366: 361: 357: 348: 344: 340: 320: 300: 293:and touching 280: 277: 274: 253: 250: 229: 209: 189: 169: 149: 141: 140: 139: 137: 133: 129: 125: 120: 118: 114: 110: 106: 96: 89: 87: 85: 81: 77: 73: 68: 66: 61: 56: 54: 50: 46: 42: 38: 34: 31:(named after 30: 19: 18:Moebius plane 6645: 6638: 6627: 6624:Möbius plane 6603: 6583:Handbook of 6582: 6571: 6559: 6554: 6525: 6522: 6401:affine plane 6397:block design 6394: 6376: 6363: 6359: 6355: 6354: 6341: 6340: 6259: 6258: 6158:is suitable. 6060: 6028: 6027: 5701: 5697: 5696: 5691: 5690:is called a 5650: 5606: 5605: 5602: 5504: 5503: 5451: 5321: 5064: 5032: 4989:the integer 4959:and a cycle 4897: 4849: 4815:the residue 4782: 4728: 4727: 4724: 4719: 4718: 4664: 4659: 4460: 4456: 4266: 4214: 4145: 4106:Four points 4105: 4099: 4073: 3871:, any point 3848: 3758: 3752:Möbius plane 3751: 3750:is called a 3724: 3697: 3639: 3628: 3032: 2696: 2683: 2591: 2436:Considering 2435: 2059: 1482: 1456: 1254:, any point 1096: 1091: 1043: 1037: 913: 843: 791: 629: 564: 560: 426: 404: 338: 336: 127: 123: 121: 115:, we get an 112: 101: 69: 57: 44: 29:Möbius plane 28: 26: 6161:The choice 6069:The choice 6061:no suitable 3229:and radius 3182:, midpoint 3090:and maps 76:Benz planes 6656:Categories 6635:Benz plane 6547:References 2795:isomorphic 2600:transitive 313:(at point 65:reflection 60:involution 6570:W. Benz, 6423:, i.e. a 6403:of order 6290:ρ 6228:− 6197:ρ 6105:ρ 5828:ρ 5733:ρ 5675:ρ 5633:ρ 5531:ρ 5478:ρ 5333:ρ 5110:∈ 5016:− 4970:∈ 4944:∈ 4878:∞ 4796:∈ 4762:∈ 4704:∞ 4696:at point 4682:∞ 4643:∈ 4627:∈ 4621:∈ 4615:∣ 4603:∖ 4582:∖ 4528:∈ 4502:∈ 4343:⊂ 4337:∣ 4311:∞ 4251:∞ 4197:∈ 4146:concyclic 3996:∩ 3965:∈ 3908:∉ 3882:∈ 3698:point set 3681:∈ 3512:− 3445:the line 3362:− 3318:− 3309:− 3300:− 3161:− 3040:Φ 2836:→ 2812:Φ 2778:∈ 2732:∈ 2662:¯ 2630:¯ 2617:→ 2604:inversion 2575:∈ 2507:⁡ 2455:∞ 2449:∪ 2416:∞ 2413:→ 2410:∞ 2396:¯ 2388:→ 2357:± 2329:→ 2326:∞ 2314:∞ 2311:→ 2293:≠ 2270:→ 2237:∈ 2210:∞ 2207:→ 2204:∞ 2183:→ 2150:∈ 2123:∞ 2120:→ 2117:∞ 2099:→ 2018:∈ 2004:∈ 1991:∣ 1972:¯ 1955:− 1930:− 1921:∣ 1913:∈ 1901:∪ 1866:∈ 1852:∈ 1846:≠ 1837:∣ 1831:∞ 1825:∪ 1794:¯ 1772:∣ 1764:∈ 1716:∉ 1713:∞ 1704:∞ 1698:∪ 1634:− 1623:¯ 1586:∈ 1513:∈ 1379:∩ 1348:∈ 1291:∉ 1265:∈ 1128:∈ 1075:∈ 995:∣ 986:∪ 954:∣ 948:∞ 942:∪ 895:∉ 892:∞ 883:∞ 877:∪ 826:∈ 728:− 696:− 671:− 652:− 643:ρ 563:set, the 473:ρ 462:with the 405:miquelian 105:collinear 35:) is the 6590:Elsevier 6576:Springer 6530:See also 4729:Theorem: 4720:Theorem: 4236:points: 4060:′ 4003:′ 3972:′ 3935:′ 2538:PGL(2,C) 1987:(circle) 1443:′ 1386:′ 1355:′ 1318:′ 254:′ 162:, point 124:touching 6637:in the 6626:in the 6592:(1995) 6356:Remark: 6342:Remark: 6313:quadric 6266:shows: 6260:Remark: 6029:Remark: 5820:) and 5788:(field 5698:Remark: 4390:Hence: 2377:(4) 2259:(3) 2172:(2) 2088:(1) 1411:, i.e. 912:, the 559:is the 222:not on 6610:  6596:  6578:(1973) 5249:, c) 5196:, b) 3948:with: 3015:  2818:  2594:, its 2407:  2404:  2323:  2320:  2305:  2302:  2287:  2201:  2198:  2114:  2111:  1983:  1840:  1819:  1815:(line) 1811:  1733:, and 1331:with: 767:  630:circle 628:and a 397:fields 113:cycles 6368:ovoid 5748:with 5347:field 5033:order 4168:with 4074:touch 3696:with 2536:(see 2474:over 2226:with 2139:with 1457:touch 1044:Then 916:, and 844:with 565:lines 561:point 128:touch 6608:ISBN 6594:ISBN 6346:here 5700:The 5069:Let 4875:< 4517:and 4144:are 4048:and 3985:and 3897:and 3723:and 3094:the 2592:i.e. 2032:> 1610:and 1431:and 1368:and 1280:and 1036:the 773:> 82:and 6520:. 5035:of 4783:A': 4443:10. 4100:A3: 3849:A2: 3759:A1: 2793:is 2686:. 2598:is 2504:PGL 2470:as 602:or 182:on 6658:: 6588:, 6574:, 6395:A 6387:. 6352:. 6262:A 6022:.) 5694:. 5000::= 4662:. 4569::= 4328::= 4281::= 4212:. 4096:). 2540:, 1752::= 1690::= 1672:. 1094:. 933::= 862::= 530:: 333:). 86:. 67:. 55:. 6508:n 6488:) 6485:1 6482:, 6479:1 6476:+ 6473:n 6470:, 6467:1 6464:+ 6459:2 6455:n 6451:( 6443:- 6431:3 6411:n 6335:. 6323:K 6293:) 6287:, 6284:K 6281:( 6276:M 6239:2 6235:y 6231:2 6223:2 6219:x 6215:= 6212:) 6209:y 6206:, 6203:x 6200:( 6176:Q 6172:= 6169:K 6144:2 6140:y 6136:+ 6131:2 6127:x 6123:= 6120:) 6117:y 6114:, 6111:x 6108:( 6084:Q 6080:= 6077:K 6046:C 6042:= 6039:K 6010:} 6007:) 6004:1 6001:, 5998:1 5995:( 5992:, 5989:) 5986:0 5983:, 5980:1 5977:( 5974:, 5971:) 5968:1 5965:, 5962:0 5959:( 5956:{ 5936:1 5933:= 5928:2 5924:y 5920:+ 5917:y 5914:x 5911:+ 5906:2 5902:x 5890:. 5876:2 5872:y 5868:+ 5865:y 5862:x 5859:+ 5854:2 5850:x 5846:= 5843:) 5840:y 5837:, 5834:x 5831:( 5808:} 5805:1 5802:, 5799:0 5796:{ 5776:) 5773:2 5770:( 5766:F 5763:G 5759:= 5756:K 5736:) 5730:, 5727:K 5724:( 5719:M 5678:) 5672:, 5669:K 5666:( 5661:M 5636:) 5630:, 5627:K 5624:( 5619:M 5586:8 5582:P 5578:, 5575:. 5572:. 5569:. 5566:, 5561:1 5557:P 5534:) 5528:, 5525:K 5522:( 5517:M 5481:) 5475:, 5472:K 5469:( 5464:M 5436:2 5432:y 5428:+ 5423:2 5419:x 5398:K 5377:R 5356:K 5302:. 5299:) 5296:1 5293:+ 5288:2 5284:n 5280:( 5277:n 5274:= 5270:| 5264:Z 5258:| 5237:1 5234:+ 5229:2 5225:n 5221:= 5217:| 5211:P 5205:| 5184:n 5162:P 5156:A 5133:n 5113:) 5107:, 5102:Z 5097:, 5092:P 5087:( 5084:= 5079:M 5050:. 5045:M 5019:1 5012:| 5008:z 5004:| 4997:n 4975:Z 4967:z 4947:) 4941:, 4936:Z 4931:, 4926:P 4921:( 4918:= 4913:M 4871:| 4865:P 4859:| 4832:P 4826:A 4801:P 4793:P 4765:) 4759:, 4754:Z 4749:, 4744:P 4739:( 4676:A 4646:) 4640:, 4637:} 4632:Z 4624:z 4618:P 4612:} 4609:P 4606:{ 4600:z 4597:{ 4594:, 4591:} 4588:P 4585:{ 4577:P 4572:( 4564:P 4558:A 4533:P 4525:P 4505:) 4499:, 4494:Z 4489:, 4484:P 4479:( 4476:= 4471:M 4440:= 4434:) 4429:3 4426:5 4421:( 4415:= 4411:| 4405:Z 4399:| 4378:. 4375:} 4372:3 4369:= 4365:| 4361:z 4357:| 4353:, 4348:P 4340:z 4334:z 4331:{ 4323:Z 4317:, 4314:} 4308:, 4305:D 4302:, 4299:C 4296:, 4293:B 4290:, 4287:A 4284:{ 4276:P 4224:5 4200:z 4194:D 4191:, 4188:C 4185:, 4182:B 4179:, 4176:A 4156:z 4132:D 4129:, 4126:C 4123:, 4120:B 4117:, 4114:A 4084:P 4057:z 4036:z 4028:( 4016:} 4013:P 4010:{ 4007:= 4000:z 3993:z 3969:z 3962:Q 3959:, 3956:P 3932:z 3911:z 3905:Q 3885:z 3879:P 3859:z 3845:. 3833:C 3830:, 3827:B 3824:, 3821:A 3801:z 3781:C 3778:, 3775:B 3772:, 3769:A 3736:Z 3709:P 3684:) 3678:, 3673:Z 3668:, 3663:P 3658:( 3655:= 3650:M 3609:. 3606:) 3603:1 3600:, 3597:0 3594:, 3591:0 3588:( 3568:) 3565:1 3562:, 3559:0 3556:, 3553:0 3550:( 3530:0 3527:= 3524:c 3521:+ 3518:w 3515:c 3509:v 3506:b 3503:+ 3500:u 3497:a 3477:0 3474:= 3471:c 3468:+ 3465:y 3462:b 3459:+ 3456:x 3453:a 3442:; 3430:) 3427:1 3424:, 3421:0 3418:, 3415:0 3412:( 3392:0 3389:= 3386:c 3383:+ 3380:w 3377:) 3374:c 3371:+ 3368:1 3365:( 3359:v 3356:b 3353:+ 3350:u 3347:a 3327:0 3324:= 3321:c 3315:y 3312:b 3306:x 3303:a 3295:2 3291:y 3287:+ 3282:2 3278:x 3255:; 3249:2 3246:1 3240:= 3237:r 3217:) 3211:2 3208:1 3202:, 3199:0 3196:, 3193:0 3190:( 3170:0 3167:= 3164:w 3156:2 3152:w 3148:+ 3143:2 3139:v 3135:+ 3130:2 3126:u 3105:y 3102:x 3078:) 3075:1 3072:, 3069:0 3066:, 3063:0 3060:( 3018:. 3012:) 3009:w 3006:, 3003:v 3000:, 2997:u 2994:( 2991:= 2987:) 2978:2 2974:y 2970:+ 2965:2 2961:x 2957:+ 2954:1 2947:2 2943:y 2939:+ 2934:2 2930:x 2923:, 2915:2 2911:y 2907:+ 2902:2 2898:x 2894:+ 2891:1 2887:y 2882:, 2874:2 2870:y 2866:+ 2861:2 2857:x 2853:+ 2850:1 2846:x 2840:( 2833:) 2830:y 2827:, 2824:x 2821:( 2815:: 2781:) 2775:, 2770:Z 2765:, 2760:P 2755:( 2735:) 2729:, 2724:Z 2719:, 2714:P 2709:( 2670:1 2667:= 2659:z 2654:z 2627:z 2623:1 2614:z 2578:) 2572:, 2567:Z 2562:, 2557:P 2552:( 2524:) 2520:C 2516:, 2513:2 2510:( 2483:C 2458:} 2452:{ 2445:C 2419:. 2401:, 2393:z 2385:z 2372:) 2360:1 2335:, 2332:0 2317:, 2308:0 2299:, 2296:0 2290:z 2284:, 2279:z 2276:1 2267:z 2241:C 2234:s 2213:, 2195:, 2192:s 2189:+ 2186:z 2180:z 2154:C 2147:r 2126:, 2108:, 2105:z 2102:r 2096:z 2070:P 2041:. 2038:} 2035:0 2029:d 2026:, 2022:R 2015:d 2012:, 2008:C 1999:0 1995:z 1980:d 1977:= 1968:) 1963:0 1959:z 1952:z 1949:( 1943:) 1938:0 1934:z 1927:z 1924:( 1917:C 1910:z 1907:{ 1904:{ 1874:} 1870:R 1863:b 1860:, 1856:C 1849:a 1843:0 1834:} 1828:{ 1822:} 1808:0 1805:= 1802:b 1799:+ 1790:z 1787:a 1781:+ 1778:z 1775:a 1768:C 1761:z 1758:{ 1755:{ 1747:Z 1720:C 1710:, 1707:} 1701:{ 1694:C 1685:P 1660:z 1640:y 1637:i 1631:x 1628:= 1620:z 1596:2 1591:R 1583:) 1580:y 1577:, 1574:x 1571:( 1551:y 1548:i 1545:+ 1542:x 1539:= 1536:z 1516:) 1510:, 1505:Z 1500:, 1495:P 1490:( 1479:. 1467:P 1440:z 1419:z 1399:} 1396:P 1393:{ 1390:= 1383:z 1376:z 1352:z 1345:Q 1342:, 1339:P 1315:z 1294:z 1288:Q 1268:z 1262:P 1242:z 1231:. 1219:C 1216:, 1213:B 1210:, 1207:A 1187:z 1167:C 1164:, 1161:B 1158:, 1155:A 1131:) 1125:, 1120:Z 1115:, 1110:P 1105:( 1078:) 1072:, 1067:Z 1062:, 1057:P 1052:( 1040:. 1024:} 1021:) 1017:R 1013:( 1008:A 998:k 992:k 989:{ 983:} 980:) 976:R 972:( 967:A 957:g 951:} 945:{ 939:g 936:{ 928:Z 899:R 889:, 886:} 880:{ 872:2 867:R 857:P 829:) 823:, 818:Z 813:, 808:P 803:( 788:. 776:0 770:r 764:, 759:2 755:r 751:= 746:2 742:) 736:0 732:y 725:y 722:( 719:+ 714:2 710:) 704:0 700:x 693:x 690:( 687:= 684:) 679:0 675:y 668:y 665:, 660:0 656:x 649:x 646:( 616:c 613:= 610:x 590:b 587:+ 584:x 581:m 578:= 575:y 545:2 540:R 512:2 508:y 504:+ 499:2 495:x 491:= 488:) 485:y 482:, 479:x 476:( 450:) 446:R 442:( 437:A 383:1 380:= 375:2 371:y 367:+ 362:2 358:x 321:P 301:z 281:Q 278:, 275:P 251:z 230:z 210:Q 190:z 170:P 150:z 20:)

Index

Moebius plane
August Ferdinand Möbius
Euclidean plane
point at infinity
generalized circle
inversive geometry
involution
reflection
incidence structure
Benz planes
Laguerre plane
Minkowski plane

collinear
point at infinity
incidence structure
tangent circles
tangent to a circle
rational numbers
complex numbers
fields
quadratic forms
Miquel's theorem

quadratic form
Euclidean plane
projective line
PGL(2,C)
Möbius transformation
automorphism group

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.