Knowledge (XXG)

Mohr–Mascheroni theorem

Source 📝

407: 1177: 1079: 1872: 1416: 623: 311: 274:- the arbitrary placement of points may be prohibited. In such a paradigm, however, for example, various constructions exist so that arbitrary point placement is unnecessary. It is also worth pointing out that no circle could be constructed without the compass, thus there is no reason in practice for a center point not to exist. 297:
The ability to translate, or copy, a circle to a new center is vital in these proofs and fundamental to establishing the veracity of the theorem. The creation of a new circle with the same radius as the first, but centered at a different point, is the key feature distinguishing the collapsing compass
282:
To prove the above constructions #3 and #4, which are included below, a few necessary intermediary constructions are also explained below since they are used and referenced frequently. These are also compass-only constructions. All constructions below rely on #1,#2,#5, and any other construction that
46:
Though the use of a straightedge can make a construction significantly easier, the theorem shows that any set of points that fully defines a constructed figure can be determined with compass alone, and the only reason to use a straightedge is for the aesthetics of seeing straight lines, which for the
261:
In general constructions there are often several variations that will produce the same result. The choices made in such a variant can be made without loss of generality. However, when a construction is being used to prove that something can be done, it is not necessary to describe all these various
34:
It must be understood that "any geometric construction" refers to figures that contain no straight lines, as it is clearly impossible to draw a straight line without a straightedge. It is understood that a line is determined provided that two distinct points on that line are given or constructed,
2172:
concentric is sufficient, provided that a point on either the centerline through them or the radical axis between them is given, or two parallel lines exist in the plane. A single circle without its center can also be sufficient under the right circumstances. Other unique conditions may exist.
168:
It is understood that a straight line cannot be drawn without a straightedge. A line is considered to be given by any two points, as any such pair define a unique line. In keeping with the intent of the theorem which we aim to prove, the actual line need not be drawn but for aesthetic reasons.
2171:
Additionally, the center itself may be omitted instead of portions of the arc, if it is substituted for something else sufficient, such as a second concentric circle, a second intersecting circle, or a third circle in the plane. Alternatively, a second circle which is neither intersecting nor
2136:
shows that in all the constructions mentioned above, the familiar modern compass with its fixable aperture, which can be used to transfer distances, may be replaced with a "collapsible compass", a compass that collapses whenever it is lifted from a page, so that it may not be directly used to
269:
It is also important to note that some of the constructions below proving the Mohr–Mascheroni theorem require the arbitrary placement of points in space, such as finding the center of a circle when not already provided (see construction below). In some construction paradigms - such as in the
2153:, wherein he proposed that any construction possible by straightedge and compass could be done with straightedge alone. However, the one stipulation is that no less than a single circle with its center identified must be provided. This statement, now known as the 298:
from the modern, rigid compass. With the rigid compass this is a triviality, but with the collapsing compass it is a question of construction possibility. The equivalence of a collapsing compass and a rigid compass was proved by Euclid (Book I Proposition 2 of
2137:
transfer distances. Indeed, Euclid's original constructions use a collapsible compass. It is possible to translate any circle in the plane with a collapsing compass using no more than three additional applications of the compass over that of a rigid compass.
302:) using straightedge and collapsing compass when he, essentially, constructs a copy of a circle with a different center. This equivalence can also be established with (collapsing) compass alone, a proof of which can be found in the main article. 2100:
Thus it has been shown that all of the basic construction one can perform with a straightedge and compass can be done with a compass alone, provided that it is understood that a line cannot be literally drawn but merely defined by two points.
70:
Several proofs of the result are known. Mascheroni's proof of 1797 was generally based on the idea of using reflection in a line as the major tool. Mohr's solution was different. In 1890, August Adler published a proof using the
40:
Any Euclidean construction, insofar as the given and required elements are points (or circles), may be completed with the compass alone if it can be completed with both the compass and the straightedge
1404:
The compass-only construction of the intersection points of a line and a circle breaks into two cases depending upon whether the center of the circle is or is not collinear with the line.
2129:
and others were able to show in the 16th century that any ruler-and-compass construction could be accomplished with a straightedge and a fixed-width compass (i.e. a rusty compass).
262:
choices and, for the sake of clarity of exposition, only one variant will be given below. However, many constructions come in different forms depending on whether or not they use
116: 752: 871: 2586: 2168:
relaxes the requirement that one full circle be provided, and shows that any small arc of the circle, so long as the center is still provided, is still sufficient.
1659: 1858: 1630: 1561: 818: 795: 843: 772: 689: 143:
need to be proven to be possible by using a compass alone, as these are the foundations of, or elementary steps for, all other constructions. These are:
2556: 2538: 2513: 140: 980:
In the event that the above construction fails (that is, the red circle and the black circle do not intersect in two points), find a point
2591: 2444: 2154: 2126: 2133: 292: 118:. In this way, a stronger version of the theorem was proven in 1990. It also shows the dependence of the theorem on 35:
even though no visual representation of the line will be present. The theorem can be stated more precisely as:
28: 2547:
Posamentier, Alfred S.; Geretschläger, Robert (2016), "8. Mascheroni constructions using only the compass",
406: 263: 87: 72: 59:
in 1672, but his proof languished in obscurity until 1928. The theorem was independently discovered by
2181: 201:
The following notation will be used throughout this article. A circle whose center is located at point
92: 2146: 271: 123: 119: 2196: 2150: 2191: 60: 1176: 2552: 2534: 2509: 2440: 1180:
Compass-only construction of the intersection of two lines (not all construction steps shown)
156:
Creating the one or two points in the intersection of a line and a circle (if they intersect)
2493: 2298: 2229: 2165: 2122: 2118: 1078: 193:
Thus, to prove the theorem, only compass-only constructions for #3 and #4 need to be given.
1871: 1635: 726: 83: 2484:
Hungerbühler, Norbert (1994), "A Short Elementary Proof of the Mohr–Mascheroni Theorem",
1837: 1609: 1540: 848: 16:
Constructions performed by a compass and straightedge can be performed by a compass alone
2571: 1875:
Compass only construction of intersection of a circle and a line (circle center on line)
800: 777: 720:
if the circles do not intersect in two points see below for an alternative construction.
2413:
are on the circle of inversion and so are invariant under this last unneeded inversion.
2325: 2186: 1415: 828: 757: 159:
Creating the one or two points in the intersection of two circles (if they intersect).
2580: 2158: 668: 2435:
Retz, Merlyn; Keihn, Meta Darlene (1989), "Compass and Straightedge Constructions",
622: 2497: 2149:
conjectured a variation on the same theme. His work paved the way for the field of
1082:
Compass-only construction of the center of a circle through three points (A, B, C)
1038:
as above (the red and black circles must now intersect in two points). The point
2321: 2259:
Hjelmslev, J. (1928) "Om et af den danske matematiker Georg Mohr udgivet skrift
2114: 177:
This can be done with a compass alone. A straightedge is not required for this.
153:
Creating the point which is the intersection of two existing, non-parallel lines
79: 20: 1571:
If the two circles do not intersect then neither does the circle with the line.
310: 56: 395:(contrary to the assumption), and the two circles are internally tangential. 383:(that is, there is a unique point of intersection of the two circles), then 358:, the other point of intersection of the two circles, is the reflection of 582:
This construction can be repeated as often as necessary to find a point
1667:
An alternate construction, using circle inversion can also be given.
331:
not on the line determined by that segment, construct the image of
2439:, National Council of Teachers of Mathematics (NCTM), p. 195, 2405:
Pedoe carries out one more inversion at this point, but the points
1870: 1414: 1175: 1077: 621: 405: 309: 27:
states that any geometric construction that can be performed by a
410:
A compass-only construction of doubling the length of segment AB
150:
Creating the circle through one point with centre another point
185:
This construction can also be done directly with a compass.
1412:
Assume that center of the circle does not lie on the line.
665:
in the circle. Naturally there is no inversion for a point
710:
Assume that the red circle intersects the black circle at
2326:"On strict strong constructibility with a compass alone" 1172:
Intersection of two non-parallel lines (construction #3)
2533:, Mathematical Association of America, pp. 23–25, 2348: 2346: 1074:
Determining the center of a circle through three points
2529:
Pedoe, Dan (1995) , "1 Section 11: Compass geometry",
671: 47:
purposes of construction is functionally unnecessary.
1911:, the intersection points of the circle and the line. 1840: 1638: 1612: 1543: 1400:
Intersection of a line and a circle (construction #4)
851: 831: 803: 780: 760: 729: 95: 1834:
If the two circles are (internally) tangential then
1537:
If the two circles are (externally) tangential then
560:
is an equilateral triangle, and the three angles at
1690:. We wish to construct the points of intersection, 1443:. We wish to construct the points of intersection, 173:#2 - A circle through one point with defined center 1852: 1653: 1624: 1555: 865: 837: 812: 789: 766: 746: 683: 266:and these alternatives will be given if possible. 110: 287:Compass equivalence theorem (circle translation) 2437:Historical Topics for the Mathematics Classroom 141:basic constructions of compass and straightedge 1019:(this is possible by Archimede's axiom). Find 1780:, which represents the inversion of the line 1419:Line-circle intersection (non-collinear case) 147:Creating the line through two existing points 8: 2393: 1408:Circle center is not collinear with the line 723:if the circles intersect in only one point, 2377: 2375: 2373: 1501:(in red). (See above, compass equivalence.) 387:is its own reflection and lies on the line 2145:Motivated by Mascheroni's result, in 1822 1733:Under the assumption of this case, points 1632:then the line is tangential to the circle 1323:is inverted to the circle passing through 1266:is inverted to the circle passing through 2458: 2243: 2241: 2239: 1839: 1637: 1611: 1542: 850: 830: 802: 779: 759: 728: 670: 102: 98: 97: 94: 1867:Circle center is collinear with the line 2208: 1809:are the intersection points of circles 340:Construct two circles: one centered at 55:The result was originally published by 2587:Compass and straightedge constructions 2551:, Prometheus Books, pp. 197–216, 2276:Schogt, J. H. (1938) "Om Georg Mohr's 2105:Other types of restricted construction 2018:is the fourth vertex of parallelogram 1981:is the fourth vertex of parallelogram 1584:are the intersection points of circle 402:Extending the length of a line segment 2381: 2364: 2352: 1926:as the other intersection of circles 1754:of the circle passing through points 1000:is a positive integral multiple, say 31:can be performed by a compass alone. 7: 2422: 2337: 2328:, Journal of Geometry (1990) 38: 12. 2309: 2247: 2233:(Amsterdam: Jacob van Velsen, 1672). 2215: 1201:, find their point of intersection, 901:The light blue circles intersect at 67:until Mohr's work was rediscovered. 1475:Under the assumption of this case, 1460:, which is the reflection of point 992:so that the length of line segment 586:so that the length of line segment 2572:Construction with the Compass Only 2164:A proof later provided in 1904 by 2141:Restrictions excluding the compass 2110:Restrictions involving the compass 1860:, and the line is also tangential. 1566:Internal tangency is not possible. 224:and radius specified by a number, 139:To prove the theorem, each of the 14: 2506:Geometry / A Comprehensive Course 2486:The American Mathematical Monthly 2477:A Survey of Geometry (Volume One) 2263:, udkommet i Amsterdam i 1672" , 2074:are the intersections of circles 1221:of arbitrary radius whose center 1087:Given three non-collinear points 774:simply by doubling the length of 335:upon reflection across this line. 122:(which cannot be formulated in a 2297:(Pavia: Pietro Galeazzi, 1797). 439:is the midpoint of line segment 306:Reflecting a point across a line 189:#3, #4 - The other constructions 181:#5 - Intersection of two circles 111:{\displaystyle \mathbb {R} ^{2}} 1992:as the intersection of circles 1955:as the intersection of circles 1698:, between them (if they exist). 1451:, between them (if they exist). 1352:be the intersection of circles 534:as the intersection of circles 495:as the intersection of circles 456:as the intersection of circles 78:An algebraic approach uses the 2498:10.1080/00029890.1994.11997027 2029:as an intersection of circles 1648: 1642: 278:Some preliminary constructions 205:and that passes through point 164:#1 - A line through two points 1: 2531:Circles / A Mathematical View 1103:of the circle they determine. 1042:is now obtained by extending 1504:The intersections of circle 1225:does not lie on either line. 521:is an equilateral triangle.) 482:is an equilateral triangle.) 270:geometric definition of the 63:in 1797 and it was known as 2134:compass equivalency theorem 797:(quadrupling the length of 754:, it is possible to invert 626:Point inversion in a circle 293:Compass equivalence theorem 2608: 2592:Theorems in plane geometry 924:is the desired inverse of 876:Construct two new circles 825:Reflect the circle center 290: 2295:La Geometria del Compasso 2127:Niccolò Fontana Tartaglia 1185:Given non-parallel lines 608:for any positive integer 600:⋅ length of line segment 524:Finally, construct point 2155:Poncelet–Steiner theorem 936:is such that the radius 73:inversion transformation 29:compass and straightedge 1515:and the new red circle 661:that is the inverse of 646:(in black) and a point 348:, both passing through 283:is listed prior to it. 220:. A circle with center 25:Mohr–Mascheroni theorem 1876: 1854: 1655: 1626: 1557: 1435:(in black) and a line 1420: 1181: 1083: 867: 839: 814: 791: 768: 748: 685: 627: 411: 315: 112: 2475:Eves, Howard (1963), 2459:Retz & Keihn 1989 2282:Matematisk Tidsskrift 2265:Matematisk Tidsskrift 1874: 1855: 1656: 1627: 1558: 1418: 1179: 1081: 959:is to the radius; or 905:and at another point 868: 840: 815: 792: 769: 749: 686: 625: 618:Inversion in a circle 415:Given a line segment 409: 319:Given a line segment 313: 113: 88:real coordinate space 2504:Pedoe, Dan (1988) , 2293:Lorenzo Mascheroni, 2161:eleven years later. 2147:Jean Victor Poncelet 1838: 1654:{\displaystyle C(r)} 1636: 1610: 1541: 1456:Construct the point 1012:and is greater than 928:in the black circle. 849: 829: 801: 778: 758: 747:{\displaystyle E=E'} 727: 669: 657:construct the point 344:and one centered at 272:constructible number 228:, or a line segment 197:Notation and remarks 124:first-order language 93: 65:Mascheroni's Theorem 2197:Projective geometry 2151:projective geometry 1853:{\displaystyle P=Q} 1625:{\displaystyle P=Q} 1556:{\displaystyle P=Q} 1490:Construct a circle 1004:, of the length of 866:{\displaystyle EE'} 236:will be denoted by 209:will be denoted by 2192:Inversive geometry 2182:Napoleon's problem 1903:, find the points 1877: 1850: 1745:are not collinear. 1651: 1622: 1553: 1421: 1380:is the inverse of 1335:. Find the center 1278:. Find the center 1182: 1152:is the inverse of 1099:, find the center 1084: 863: 835: 813:{\displaystyle DB} 810: 790:{\displaystyle EB} 787: 764: 744: 681: 642:, for some radius 628: 412: 316: 130:Constructive proof 108: 61:Lorenzo Mascheroni 2558:978-1-63388-167-9 2540:978-0-88385-518-8 2515:978-0-486-65812-4 2479:, Allyn and Bacon 2394:Hungerbühler 1994 1895:lies on the line 1880:Given the circle 1769:Construct circle 1112:, the inverse of 838:{\displaystyle B} 767:{\displaystyle D} 120:Archimedes' axiom 2599: 2561: 2543: 2518: 2500: 2480: 2462: 2456: 2450: 2449: 2432: 2426: 2420: 2414: 2412: 2408: 2403: 2397: 2391: 2385: 2379: 2368: 2362: 2356: 2350: 2341: 2335: 2329: 2319: 2313: 2307: 2301: 2291: 2285: 2278:Euclides Danicus 2274: 2268: 2261:Euclides Danicus 2257: 2251: 2245: 2234: 2230:Euclides Danicus 2225: 2219: 2213: 2166:Francesco Severi 2157:, was proved by 2123:Gerolamo Cardano 2119:Lodovico Ferrari 2095: 2084: 2073: 2069: 2062: 2061: 2054: 2050: 2039: 2028: 2025:Construct point 2021: 2017: 2013: 2002: 1991: 1988:Construct point 1984: 1980: 1976: 1965: 1954: 1951:Construct point 1947: 1936: 1925: 1916:Construct point 1910: 1906: 1902: 1901: 1894: 1890: 1859: 1857: 1856: 1851: 1830: 1819: 1808: 1804: 1798: 1787: 1786: 1779: 1765: 1761: 1757: 1753: 1750:Find the center 1744: 1740: 1736: 1729: 1725: 1721: 1710: 1706: 1697: 1693: 1689: 1688: 1681: 1660: 1658: 1657: 1652: 1631: 1629: 1628: 1623: 1602: 1601: 1594: 1583: 1579: 1562: 1560: 1559: 1554: 1533: 1529: 1525: 1514: 1500: 1484: 1471: 1470: 1463: 1459: 1450: 1446: 1442: 1441: 1434: 1394: 1383: 1379: 1373: 1362: 1351: 1338: 1334: 1330: 1326: 1322: 1321: 1311: 1307: 1303: 1292: 1288: 1281: 1277: 1273: 1269: 1265: 1264: 1254: 1250: 1246: 1235: 1231: 1224: 1220: 1204: 1200: 1199: 1192: 1191: 1166: 1155: 1151: 1145: 1141: 1140: 1133: 1126: 1115: 1111: 1108:Construct point 1102: 1098: 1094: 1090: 1069: 1068: 1057: 1056: 1049: 1048: 1041: 1037: 1026: 1022: 1018: 1011: 1010: 1003: 999: 998: 991: 990: 983: 976: 958: 954: 950: 939: 935: 927: 923: 914: 904: 898:(in light blue). 897: 886: 872: 870: 869: 864: 862: 845:across the line 844: 842: 841: 836: 819: 817: 816: 811: 796: 794: 793: 788: 773: 771: 770: 765: 753: 751: 750: 745: 743: 717: 713: 706: 690: 688: 687: 684:{\textstyle D=B} 682: 664: 660: 656: 645: 641: 613: 607: 606: 599: 593: 592: 585: 577: 563: 555: 544: 533: 516: 505: 494: 485:Construct point 477: 466: 455: 452:Construct point 446: 445: 438: 434: 433: 426: 422: 421: 394: 393: 386: 382: 369: 368: 362:across the line 361: 357: 351: 347: 343: 334: 330: 326: 325: 264:circle inversion 258:, respectively. 257: 246: 235: 234: 227: 223: 219: 208: 204: 117: 115: 114: 109: 107: 106: 101: 2607: 2606: 2602: 2601: 2600: 2598: 2597: 2596: 2577: 2576: 2568: 2559: 2546: 2541: 2528: 2525: 2523:Further reading 2516: 2503: 2483: 2474: 2471: 2466: 2465: 2457: 2453: 2447: 2434: 2433: 2429: 2421: 2417: 2410: 2406: 2404: 2400: 2392: 2388: 2380: 2371: 2363: 2359: 2351: 2344: 2336: 2332: 2320: 2316: 2308: 2304: 2292: 2288: 2284:A, pages 34–36. 2275: 2271: 2258: 2254: 2246: 2237: 2226: 2222: 2214: 2210: 2205: 2178: 2143: 2117:mathematicians 2112: 2107: 2086: 2075: 2071: 2067: 2057: 2056: 2052: 2041: 2030: 2026: 2019: 2015: 2004: 1993: 1989: 1982: 1978: 1967: 1956: 1952: 1938: 1927: 1917: 1908: 1904: 1897: 1896: 1892: 1881: 1869: 1836: 1835: 1821: 1810: 1806: 1802: 1789: 1782: 1781: 1770: 1763: 1759: 1755: 1751: 1742: 1738: 1734: 1727: 1723: 1712: 1708: 1704: 1695: 1691: 1684: 1683: 1672: 1671:Given a circle 1634: 1633: 1608: 1607: 1597: 1596: 1585: 1581: 1577: 1539: 1538: 1531: 1527: 1516: 1505: 1491: 1476: 1472:. (See above.) 1466: 1465: 1461: 1457: 1448: 1444: 1437: 1436: 1425: 1424:Given a circle 1410: 1402: 1385: 1381: 1377: 1364: 1353: 1343: 1339:of this circle. 1336: 1332: 1328: 1324: 1317: 1316: 1309: 1305: 1294: 1290: 1286: 1282:of this circle. 1279: 1275: 1271: 1267: 1260: 1259: 1252: 1248: 1237: 1233: 1229: 1222: 1211: 1202: 1195: 1194: 1187: 1186: 1174: 1157: 1153: 1149: 1143: 1136: 1135: 1131: 1117: 1113: 1109: 1100: 1096: 1092: 1088: 1076: 1064: 1059: 1052: 1051: 1044: 1043: 1039: 1028: 1024: 1023:the inverse of 1020: 1013: 1006: 1005: 1001: 994: 993: 986: 985: 981: 960: 956: 952: 941: 937: 933: 925: 921: 906: 902: 888: 877: 855: 847: 846: 827: 826: 799: 798: 776: 775: 756: 755: 736: 725: 724: 715: 711: 697: 667: 666: 662: 658: 647: 643: 632: 631:Given a circle 620: 609: 602: 601: 595: 588: 587: 583: 578:are collinear.) 565: 561: 546: 535: 525: 507: 496: 486: 468: 457: 453: 441: 440: 436: 429: 428: 424: 417: 416: 404: 389: 388: 384: 374: 364: 363: 359: 355: 349: 345: 341: 332: 328: 321: 320: 308: 295: 289: 280: 248: 237: 230: 229: 225: 221: 210: 206: 202: 199: 137: 132: 96: 91: 90: 84:Euclidean plane 53: 17: 12: 11: 5: 2605: 2603: 2595: 2594: 2589: 2579: 2578: 2575: 2574: 2567: 2566:External links 2564: 2563: 2562: 2557: 2544: 2539: 2524: 2521: 2520: 2519: 2514: 2501: 2492:(8): 784–787, 2481: 2470: 2467: 2464: 2463: 2451: 2445: 2427: 2415: 2398: 2386: 2369: 2357: 2342: 2330: 2314: 2302: 2286: 2269: 2252: 2235: 2220: 2207: 2206: 2204: 2201: 2200: 2199: 2194: 2189: 2187:Geometrography 2184: 2177: 2174: 2142: 2139: 2111: 2108: 2106: 2103: 2098: 2097: 2064: 2023: 1986: 1949: 1913: 1912: 1868: 1865: 1864: 1863: 1862: 1861: 1849: 1846: 1843: 1800: 1767: 1748: 1747: 1746: 1730:respectively. 1703:Invert points 1700: 1699: 1665: 1664: 1663: 1662: 1650: 1647: 1644: 1641: 1621: 1618: 1615: 1574: 1573: 1572: 1569: 1568: 1567: 1552: 1549: 1546: 1502: 1488: 1487: 1486: 1453: 1452: 1409: 1406: 1401: 1398: 1397: 1396: 1384:in the circle 1375: 1340: 1313: 1285:Invert points 1283: 1256: 1228:Invert points 1226: 1210:Select circle 1207: 1206: 1173: 1170: 1169: 1168: 1156:in the circle 1147: 1128: 1116:in the circle 1105: 1104: 1075: 1072: 930: 929: 918: 917: 916: 899: 861: 858: 854: 834: 823: 822: 821: 809: 806: 786: 783: 763: 742: 739: 735: 732: 721: 708: 696:Draw a circle 693: 692: 680: 677: 674: 619: 616: 580: 579: 522: 483: 449: 448: 403: 400: 399: 398: 397: 396: 353: 337: 336: 314:Point symmetry 307: 304: 291:Main article: 288: 285: 279: 276: 198: 195: 161: 160: 157: 154: 151: 148: 136: 133: 131: 128: 105: 100: 52: 49: 44: 43: 15: 13: 10: 9: 6: 4: 3: 2: 2604: 2593: 2590: 2588: 2585: 2584: 2582: 2573: 2570: 2569: 2565: 2560: 2554: 2550: 2545: 2542: 2536: 2532: 2527: 2526: 2522: 2517: 2511: 2507: 2502: 2499: 2495: 2491: 2487: 2482: 2478: 2473: 2472: 2468: 2460: 2455: 2452: 2448: 2446:9780873532815 2442: 2438: 2431: 2428: 2424: 2419: 2416: 2402: 2399: 2395: 2390: 2387: 2383: 2378: 2376: 2374: 2370: 2366: 2361: 2358: 2354: 2349: 2347: 2343: 2339: 2334: 2331: 2327: 2323: 2318: 2315: 2311: 2306: 2303: 2300: 2299:1901 edition. 2296: 2290: 2287: 2283: 2279: 2273: 2270: 2267:B, pages 1–7. 2266: 2262: 2256: 2253: 2249: 2244: 2242: 2240: 2236: 2232: 2231: 2224: 2221: 2217: 2212: 2209: 2202: 2198: 2195: 2193: 2190: 2188: 2185: 2183: 2180: 2179: 2175: 2173: 2169: 2167: 2162: 2160: 2159:Jakob Steiner 2156: 2152: 2148: 2140: 2138: 2135: 2130: 2128: 2124: 2120: 2116: 2109: 2104: 2102: 2093: 2089: 2082: 2078: 2065: 2060: 2048: 2044: 2037: 2033: 2024: 2011: 2007: 2000: 1996: 1987: 1974: 1970: 1963: 1959: 1950: 1945: 1941: 1934: 1930: 1924: 1920: 1915: 1914: 1900: 1891:whose center 1888: 1884: 1879: 1878: 1873: 1866: 1847: 1844: 1841: 1833: 1832: 1828: 1824: 1817: 1813: 1801: 1796: 1792: 1785: 1777: 1773: 1768: 1749: 1732: 1731: 1719: 1715: 1702: 1701: 1687: 1679: 1675: 1670: 1669: 1668: 1645: 1639: 1619: 1616: 1613: 1605: 1604: 1600: 1595:and the line 1592: 1588: 1575: 1570: 1565: 1564: 1550: 1547: 1544: 1536: 1535: 1523: 1519: 1512: 1508: 1503: 1498: 1494: 1489: 1483: 1479: 1474: 1473: 1469: 1455: 1454: 1440: 1432: 1428: 1423: 1422: 1417: 1413: 1407: 1405: 1399: 1392: 1388: 1376: 1371: 1367: 1360: 1356: 1350: 1346: 1341: 1320: 1314: 1312:respectively. 1301: 1297: 1284: 1263: 1257: 1255:respectively. 1244: 1240: 1227: 1218: 1214: 1209: 1208: 1198: 1190: 1184: 1183: 1178: 1171: 1164: 1160: 1148: 1142:to the point 1139: 1129: 1124: 1120: 1107: 1106: 1086: 1085: 1080: 1073: 1071: 1067: 1062: 1055: 1047: 1035: 1031: 1016: 1009: 997: 989: 978: 975: 971: 967: 963: 948: 944: 919: 913: 909: 900: 895: 891: 884: 880: 875: 874: 859: 856: 852: 832: 824: 807: 804: 784: 781: 761: 740: 737: 733: 730: 722: 719: 718: 709: 704: 700: 695: 694: 678: 675: 672: 654: 650: 639: 635: 630: 629: 624: 617: 615: 612: 605: 598: 591: 576: 572: 568: 559: 553: 549: 542: 538: 532: 528: 523: 520: 514: 510: 503: 499: 493: 489: 484: 481: 475: 471: 464: 460: 451: 450: 444: 432: 423:find a point 420: 414: 413: 408: 401: 392: 381: 377: 372: 371: 367: 354: 339: 338: 324: 318: 317: 312: 305: 303: 301: 294: 286: 284: 277: 275: 273: 267: 265: 259: 255: 251: 244: 240: 233: 217: 213: 196: 194: 191: 190: 186: 183: 182: 178: 175: 174: 170: 166: 165: 158: 155: 152: 149: 146: 145: 144: 142: 134: 129: 127: 125: 121: 103: 89: 85: 81: 76: 74: 68: 66: 62: 58: 50: 48: 42: 38: 37: 36: 32: 30: 26: 22: 2548: 2530: 2505: 2489: 2485: 2476: 2454: 2436: 2430: 2418: 2401: 2389: 2360: 2333: 2317: 2305: 2294: 2289: 2281: 2277: 2272: 2264: 2260: 2255: 2228: 2227:Georg Mohr, 2223: 2211: 2170: 2163: 2144: 2131: 2113: 2099: 2091: 2087: 2080: 2076: 2058: 2046: 2042: 2035: 2031: 2009: 2005: 1998: 1994: 1972: 1968: 1961: 1957: 1943: 1939: 1932: 1928: 1922: 1918: 1898: 1886: 1882: 1826: 1822: 1815: 1811: 1794: 1790: 1788:into circle 1783: 1775: 1771: 1717: 1713: 1685: 1677: 1673: 1666: 1598: 1590: 1586: 1521: 1517: 1510: 1506: 1496: 1492: 1481: 1477: 1467: 1464:across line 1438: 1430: 1426: 1411: 1403: 1390: 1386: 1369: 1365: 1358: 1354: 1348: 1344: 1318: 1299: 1295: 1261: 1242: 1238: 1216: 1212: 1196: 1188: 1162: 1158: 1137: 1134:in the line 1122: 1118: 1065: 1060: 1053: 1045: 1033: 1029: 1014: 1007: 995: 987: 984:on the line 979: 973: 969: 965: 961: 946: 942: 931: 911: 907: 893: 889: 882: 878: 702: 698: 652: 648: 637: 633: 610: 603: 596: 589: 581: 574: 570: 566: 557: 551: 547: 540: 536: 530: 526: 518: 512: 508: 501: 497: 491: 487: 479: 473: 469: 462: 458: 442: 430: 427:on the line 418: 390: 379: 375: 365: 327:and a point 322: 300:The Elements 299: 296: 281: 268: 260: 253: 249: 242: 238: 231: 215: 211: 200: 192: 188: 187: 184: 180: 179: 176: 172: 171: 167: 163: 162: 138: 82:between the 77: 69: 64: 54: 45: 39: 33: 24: 18: 2322:Arnon Avron 2115:Renaissance 1682:and a line 1526:are points 80:isomorphism 21:mathematics 2581:Categories 2549:The Circle 2469:References 2382:Pedoe 1988 2365:Pedoe 1988 2353:Pedoe 1988 1722:to points 1711:in circle 1304:to points 1293:in circle 1247:to points 1236:in circle 1027:in circle 564:show that 435:such that 57:Georg Mohr 2508:, Dover, 2423:Eves 1963 2338:Eves 1963 2310:Eves 1963 2248:Eves 1963 2216:Eves 1963 1315:The line 1258:The line 707:(in red). 41:together. 2461:, p. 196 2425:, p. 200 2396:, p. 784 2384:, p. 123 2340:, p. 184 2312:, p. 198 2250:, p. 199 2218:, p. 201 2176:See also 2055:lies on 1130:Reflect 1050:so that 860:′ 741:′ 86:and the 2367:, p. 77 2355:, p. 78 2066:Points 1576:Points 135:Outline 51:History 2555:  2537:  2512:  2443:  2020:CDD'F' 1762:, and 1741:, and 951:is to 932:Point 920:Point 23:, the 2203:Notes 1983:CD'DF 2553:ISBN 2535:ISBN 2510:ISBN 2441:ISBN 2409:and 2132:The 2125:and 2085:and 2070:and 2040:and 2003:and 1999:DD' 1966:and 1962:DD' 1937:and 1907:and 1820:and 1805:and 1726:and 1707:and 1694:and 1580:and 1530:and 1447:and 1363:and 1342:Let 1331:and 1308:and 1289:and 1274:and 1251:and 1232:and 1193:and 1095:and 1066:BQ' 1046:BQ' 887:and 714:and 573:and 556:. (∆ 545:and 517:. (∆ 506:and 478:. (∆ 467:and 2494:doi 2490:101 2280:," 2051:. ( 2043:F' 2036:D' 2014:. ( 2006:D' 1977:. ( 1919:D' 1606:If 1017:/ 2 955:as 940:of 890:E' 651:(≠ 558:EBC 519:DBE 480:ABD 373:If 247:or 126:). 19:In 2583:: 2488:, 2372:^ 2345:^ 2324:, 2238:^ 2121:, 2081:CM 2063:.) 2059:AB 2022:.) 2016:F' 1990:F' 1985:.) 1921:≠ 1899:AB 1831:. 1784:AB 1764:B' 1760:A' 1758:, 1739:B' 1737:, 1735:A' 1728:B' 1724:A' 1686:AB 1603:. 1599:AB 1563:. 1534:. 1480:≠ 1468:AB 1439:AB 1347:≠ 1333:D' 1329:C' 1327:, 1319:CD 1310:D' 1306:C' 1276:B' 1272:A' 1270:, 1262:AB 1253:B' 1249:A' 1197:CD 1189:AB 1138:BD 1091:, 1070:. 1063:⋅ 1058:= 1054:BI 1021:Q' 1008:BD 996:BQ 988:BD 977:. 974:DB 972:/ 968:= 964:/ 962:IB 957:DB 953:IB 910:≠ 873:: 820:). 716:E' 614:. 604:AB 594:= 590:AQ 569:, 529:≠ 490:≠ 443:AC 431:AB 419:AB 391:AB 378:= 370:. 366:AB 323:AB 254:AB 232:AB 75:. 2496:: 2411:Q 2407:P 2096:. 2094:) 2092:D 2090:( 2088:C 2083:) 2079:( 2077:F 2072:Q 2068:P 2053:M 2049:) 2047:D 2045:( 2038:) 2034:( 2032:F 2027:M 2012:) 2010:C 2008:( 2001:) 1997:( 1995:C 1979:F 1975:) 1973:C 1971:( 1969:D 1964:) 1960:( 1958:C 1953:F 1948:. 1946:) 1944:D 1942:( 1940:C 1935:) 1933:D 1931:( 1929:A 1923:D 1909:Q 1905:P 1893:C 1889:) 1887:D 1885:( 1883:C 1848:Q 1845:= 1842:P 1829:) 1827:C 1825:( 1823:E 1818:) 1816:r 1814:( 1812:C 1807:Q 1803:P 1799:. 1797:) 1795:r 1793:( 1791:C 1778:) 1776:C 1774:( 1772:E 1766:. 1756:C 1752:E 1743:C 1720:) 1718:r 1716:( 1714:C 1709:B 1705:A 1696:Q 1692:P 1680:) 1678:r 1676:( 1674:C 1661:. 1649:) 1646:r 1643:( 1640:C 1620:Q 1617:= 1614:P 1593:) 1591:r 1589:( 1587:C 1582:Q 1578:P 1551:Q 1548:= 1545:P 1532:Q 1528:P 1524:) 1522:r 1520:( 1518:D 1513:) 1511:r 1509:( 1507:C 1499:) 1497:r 1495:( 1493:D 1485:. 1482:D 1478:C 1462:C 1458:D 1449:Q 1445:P 1433:) 1431:r 1429:( 1427:C 1395:. 1393:) 1391:r 1389:( 1387:O 1382:Y 1378:X 1374:. 1372:) 1370:O 1368:( 1366:F 1361:) 1359:O 1357:( 1355:E 1349:O 1345:Y 1337:F 1325:O 1302:) 1300:r 1298:( 1296:O 1291:D 1287:C 1280:E 1268:O 1245:) 1243:r 1241:( 1239:O 1234:B 1230:A 1223:O 1219:) 1217:r 1215:( 1213:O 1205:. 1203:X 1167:. 1165:) 1163:B 1161:( 1159:A 1154:X 1150:O 1146:. 1144:X 1132:A 1127:. 1125:) 1123:B 1121:( 1119:A 1114:C 1110:D 1101:O 1097:C 1093:B 1089:A 1061:n 1040:I 1036:) 1034:r 1032:( 1030:B 1025:Q 1015:r 1002:n 982:Q 970:r 966:r 949:) 947:r 945:( 943:B 938:r 934:I 926:D 922:I 915:. 912:B 908:I 903:B 896:) 894:B 892:( 885:) 883:B 881:( 879:E 857:E 853:E 833:B 808:B 805:D 785:B 782:E 762:D 738:E 734:= 731:E 712:E 705:) 703:B 701:( 699:D 691:. 679:B 676:= 673:D 663:D 659:I 655:) 653:B 649:D 644:r 640:) 638:r 636:( 634:B 611:n 597:n 584:Q 575:C 571:B 567:A 562:B 554:) 552:B 550:( 548:E 543:) 541:E 539:( 537:B 531:D 527:C 515:) 513:D 511:( 509:B 504:) 502:B 500:( 498:D 492:A 488:E 476:) 474:A 472:( 470:B 465:) 463:B 461:( 459:A 454:D 447:. 437:B 425:C 385:C 380:D 376:C 360:C 356:D 352:. 350:C 346:B 342:A 333:C 329:C 256:) 252:( 250:U 245:) 243:r 241:( 239:U 226:r 222:U 218:) 216:V 214:( 212:U 207:V 203:U 104:2 99:R

Index

mathematics
compass and straightedge
Georg Mohr
Lorenzo Mascheroni
inversion transformation
isomorphism
Euclidean plane
real coordinate space
Archimedes' axiom
first-order language
basic constructions of compass and straightedge
circle inversion
constructible number
Compass equivalence theorem







Renaissance
Lodovico Ferrari
Gerolamo Cardano
Niccolò Fontana Tartaglia
compass equivalency theorem
Jean Victor Poncelet
projective geometry
Poncelet–Steiner theorem
Jakob Steiner

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.