Knowledge

Molecular breeding

Source 📝

211:
delivers more accurate predictions. Selection can be based on genomic selection predictions, potentially leading to more rapid and lower cost gains from breeding. Genomic prediction combines marker data with phenotypic and pedigree data (when available) in an attempt to increase the accuracy of the prediction of breeding and genotypic values.
31:
genomic selection. More often, however, molecular breeding implies molecular marker-assisted breeding (MAB) and is defined as the application of molecular biotechnologies, specifically molecular markers, in combination with linkage maps and genomics, to alter and improve plant or animal traits on the basis of genotypic assays.
30:
and animal breeding. In the broad sense, molecular breeding can be defined as the use of genetic manipulation performed at the level of DNA to improve traits of interest in plants and animals, and it may also include genetic engineering or gene manipulation, molecular marker-assisted selection, and
674:
Sun, Min; Yan, Haidong; Zhang, Aling; Jin, Yarong; Lin, Chuang; Luo, Lin; Wu, Bingchao; Fan, Yuhang; Tian, Shilin; Cao, Xiaofang; Wang, Zan; Luo, Jinchan; Yang, Yuchen; Jia, Jiyuan; Zhou, Puding; Tang, Qianzi; Jones, Chris Stephen; Varshney, Rajeev K.; Srivastava, Rakesh K.; He, Min; Xie, Zheni;
210:
Genomic selection is a novel approach to traditional marker-assisted selection where selection is made based on only a few markers. Rather than seeking to identify individual loci significantly associated with a trait, genomics uses all marker data as predictors of performance and consequently
182:
Backcrossing is crossing an F1 with its parents to transfer a limited number of loci (e.g. transgene, disease resistance loci, etc.) from one genetic background to another. Usually the recipient of such genes is a cultivar that is already well performing - except for the gene that is to be
150:
Genes (Quantitative trait loci (abbreviated as QTL) or quantitative trait genes or minor genes or major genes) involved in controlling trait of interest are identified. The process is known as mapping. Mapping of such genes can be done using
220:
Transfer of genes makes possible the horizontal transfer of genes from one organism to another. Thus plants can receive genes from humans or algae or any other organism. This provides limitless opportunities in breeding crop plants.
137:. The "omics" for measurement of phenotypes is called phenomics. The phenotype can be indicative of the measurement of the trait itself or an indirectly related or correlated trait. 183:
transferred. So we want to keep the genetic background of the recipient genotypes, which is done by 4-6 rounds of repeated backcrosses while selecting for the gene of interest.
159:). The basic idea is to identify genes or markers associated with genes that correlate to a phenotypic measurement and that can be used in marker assisted breeding / selection. 731:
Sun, Congwei; Hu, Huiting; Cheng, Yongzhen; Yang, Xi; Qiao, Qi; Wang, Canguan; Zhang, Leilei; Chen, Da-Yuan; Zhao, Simin; Dong, Zhongdong; Chen, Feng (2023).
284:"Stephen P. Moose* and Rita H. Mumm (2008) Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement, Plant Physiology 147:969-977" 264:"Molecular Breeding Makes Crops Hardier and More Nutritious Markers, knockouts and other technical advances improve breeding without modifying genes" 799: 449: 185:
We can use markers from the whole genome to recover the genome quickly in 2-3 rounds of backcrossing might be good enough in such situation.
263: 530:
Jannink, Jean-Luc; Lorenz, Aaron J.; Iwata, Hiroyoshi (2010-03-01). "Genomic selection in plant breeding: from theory to practice".
297:
Dekkers, Jack C. M.; Hospital, Frédéric (2002). "The use of molecular genetics in the improvement of agricultural populations".
97: 677:"Milletdb: a multi‐omics database to accelerate the research of functional genomics and molecular breeding of millets" 818: 164: 93: 44: 156: 116: 75: 675:
Wang, Xiaoshan; Feng, Guangyan; Nie, Gang; Huang, Dejun; Zhang, Xinquan; Zhu, Fangjie; Huang, Linkai (2023).
172:
Once genes or markers are identified, they can be used for genotyping and selection decisions can be made.
113:
Development of SNPs has revolutionized the molecular breeding process as it helps to create dense markers.
55: 758: 704: 268: 50: 196:
MARS include identification and selection of several genomic regions (up to 20 or even more) for
746: 630: 390: 322: 155:. QTL mapping can involve single large family, unrelated individuals or multiple families (see: 133:
To identify genes associated with traits, it is important to measure the trait value - known as
823: 795: 656: 594: 555: 547: 512: 494: 445: 410: 371: 314: 152: 23: 736: 690: 680: 646: 586: 539: 502: 486: 437: 402: 361: 353: 306: 771: 717: 574: 695: 676: 507: 366: 341: 197: 27: 812: 750: 651: 634: 283: 326: 490: 429: 789: 441: 590: 142: 71: 38: 357: 406: 105: 598: 551: 498: 474: 134: 125: 101: 660: 559: 516: 414: 375: 318: 543: 612: 391:"Molecular breeding in developing countries: challenges and perspectives" 84: 573:
Heffner, Elliot L.; Sorrells, Mark E.; Jannink, Jean-Luc (2009-01-01).
475:"Prediction of Total Genetic Value Using Genome-Wide Dense Marker Maps" 741: 732: 685: 434:
Advances in Molecular Breeding Toward Drought and Salt Tolerant Crops
238: 733:"Genomics‐assisted breeding: The next‐generation wheat breeding era" 310: 243: 230: 473:
Meuwissen, T. H. E.; Hayes, B. J.; Goddard, M. E. (2001-04-01).
92:
The commonly used markers include simple sequence repeats (or
430:"Participatory Breeding For Drought and Salt Tolerant Crops" 389:
Ribaut, J-M; de Vicente, Mc; Delannay, X (April 2010).
436:, Dordrecht: Springer Netherlands, pp. 455–478, 342:"Application of Genomics Tools to Animal Breeding" 428:Hollington, P.A.; Steele, Katherine A. (2007), 100:(SNP). The process of identification of plant 229:Molecular breeding resources (including multi 216:Genetic transformation or Genetic engineering 8: 191:Marker-assisted recurrent selection (MARS) 740: 694: 684: 650: 506: 365: 82:Genotyping and creating molecular maps - 34:The areas of molecular breeding include: 575:"Genomic Selection for Crop Improvement" 639:Journal of Animal Breeding and Genetics 254: 767: 756: 713: 702: 7: 468: 466: 791:Selection indices in plant breeding 177:Marker-assisted backcrossing (MABC) 115:Another area that is developing is 14: 788:Baker, R. J. (1 September 1986). 652:10.1111/j.1439-0388.2007.00702.x 532:Briefings in Functional Genomics 395:Current Opinion in Plant Biology 98:single nucleotide polymorphisms 16:Use of molecular biology tools 1: 442:10.1007/978-1-4020-5578-2_18 591:10.2135/cropsci2008.08.0512 491:10.1093/genetics/157.4.1819 340:C.M. Dekkers, Jack (2012). 200:within a single population. 840: 358:10.2174/138920212800543057 407:10.1016/j.pbi.2009.12.011 233:data) are available for: 165:Marker assisted selection 45:Marker assisted selection 157:Family based QTL mapping 117:genotyping by sequencing 76:marker assisted breeding 67:Marker assisted breeding 299:Nature Reviews Genetics 766:Cite journal requires 712:Cite journal requires 145:or association mapping 56:Genetic transformation 22:is the application of 47:and genomic selection 633:; Hayes, BJ (2007). 167:or genetic selection 635:"Genomic selection" 544:10.1093/bfgp/elq001 269:Scientific American 262:Voosen, P. (2009). 62:Constituent methods 51:Genetic engineering 20:Molecular breeding 819:Molecular biology 801:978-0-8493-6377-1 742:10.1111/pbr.13094 686:10.1111/pbi.14136 451:978-1-4020-5577-5 205:Genomic selection 153:molecular markers 41:or gene discovery 24:molecular biology 831: 805: 776: 775: 769: 764: 762: 754: 744: 728: 722: 721: 715: 710: 708: 700: 698: 688: 671: 665: 664: 654: 627: 621: 620: 609: 603: 602: 570: 564: 563: 527: 521: 520: 510: 485:(4): 1819–1829. 470: 461: 460: 459: 458: 425: 419: 418: 386: 380: 379: 369: 346:Current Genomics 337: 331: 330: 294: 288: 287: 280: 274: 273: 259: 186: 114: 26:tools, often in 839: 838: 834: 833: 832: 830: 829: 828: 809: 808: 802: 787: 784: 782:Further reading 779: 765: 755: 730: 729: 725: 711: 701: 673: 672: 668: 629: 628: 624: 611: 610: 606: 572: 571: 567: 529: 528: 524: 472: 471: 464: 456: 454: 452: 427: 426: 422: 388: 387: 383: 339: 338: 334: 296: 295: 291: 282: 281: 277: 261: 260: 256: 252: 227: 218: 207: 193: 184: 179: 169: 147: 130: 112: 94:microsatellites 89: 69: 64: 17: 12: 11: 5: 837: 835: 827: 826: 821: 811: 810: 807: 806: 800: 783: 780: 778: 777: 768:|journal= 723: 714:|journal= 666: 622: 604: 565: 538:(2): 166–177. 522: 462: 450: 420: 401:(2): 213–218. 381: 352:(3): 207–212. 332: 311:10.1038/nrg701 289: 275: 253: 251: 248: 247: 246: 241: 226: 223: 217: 214: 213: 212: 206: 203: 202: 201: 198:complex traits 192: 189: 188: 187: 178: 175: 174: 173: 168: 162: 161: 160: 146: 140: 139: 138: 129: 123:Phenotyping - 121: 110: 109: 88: 80: 68: 65: 63: 60: 59: 58: 53: 48: 42: 28:plant breeding 15: 13: 10: 9: 6: 4: 3: 2: 836: 825: 822: 820: 817: 816: 814: 803: 797: 794:. CRC Press. 793: 792: 786: 785: 781: 773: 760: 752: 748: 743: 738: 734: 727: 724: 719: 706: 697: 692: 687: 682: 678: 670: 667: 662: 658: 653: 648: 645:(6): 323–30. 644: 640: 636: 632: 626: 623: 618: 614: 608: 605: 600: 596: 592: 588: 584: 580: 576: 569: 566: 561: 557: 553: 549: 545: 541: 537: 533: 526: 523: 518: 514: 509: 504: 500: 496: 492: 488: 484: 480: 476: 469: 467: 463: 453: 447: 443: 439: 435: 431: 424: 421: 416: 412: 408: 404: 400: 396: 392: 385: 382: 377: 373: 368: 363: 359: 355: 351: 347: 343: 336: 333: 328: 324: 320: 316: 312: 308: 304: 300: 293: 290: 285: 279: 276: 271: 270: 265: 258: 255: 249: 245: 242: 240: 236: 235: 234: 232: 224: 222: 215: 209: 208: 204: 199: 195: 194: 190: 181: 180: 176: 171: 170: 166: 163: 158: 154: 149: 148: 144: 141: 136: 132: 131: 128: 127: 122: 120: 118: 107: 103: 99: 95: 91: 90: 87: 86: 81: 79: 77: 73: 66: 61: 57: 54: 52: 49: 46: 43: 40: 37: 36: 35: 32: 29: 25: 21: 790: 759:cite journal 726: 705:cite journal 669: 642: 638: 625: 616: 607: 582: 579:Crop Science 578: 568: 535: 531: 525: 482: 478: 455:, retrieved 433: 423: 398: 394: 384: 349: 345: 335: 305:(1): 22–32. 302: 298: 292: 278: 267: 257: 237:Some of the 228: 219: 124: 111: 104:is known as 83: 70: 33: 19: 18: 631:Goddard, ME 585:(1): 1–12. 225:By organism 143:QTL mapping 39:QTL mapping 813:Categories 617:bucklerlab 613:"Analysis" 457:2020-10-02 250:References 106:genotyping 751:258478136 599:1435-0653 552:2041-2649 499:0016-6731 135:phenotype 126:phenomics 102:genotypes 78:include: 824:Breeding 696:10579705 661:18076469 560:20156985 517:11290733 479:Genetics 415:20106715 376:23115522 327:32216266 319:11823788 85:genomics 508:1461589 367:3382275 239:millets 72:Methods 798:  749:  693:  659:  597:  558:  550:  515:  505:  497:  448:  413:  374:  364:  325:  317:  747:S2CID 323:S2CID 244:Wheat 231:omics 796:ISBN 772:help 718:help 657:PMID 595:ISSN 556:PMID 548:ISSN 513:PMID 495:ISSN 446:ISBN 411:PMID 372:PMID 315:PMID 737:doi 691:PMC 681:doi 647:doi 643:124 587:doi 540:doi 503:PMC 487:doi 483:157 438:doi 403:doi 362:PMC 354:doi 307:doi 96:), 74:in 815:: 763:: 761:}} 757:{{ 745:. 735:. 709:: 707:}} 703:{{ 689:. 679:. 655:. 641:. 637:. 615:. 593:. 583:49 581:. 577:. 554:. 546:. 534:. 511:. 501:. 493:. 481:. 477:. 465:^ 444:, 432:, 409:. 399:13 397:. 393:. 370:. 360:. 350:13 348:. 344:. 321:. 313:. 301:. 266:. 119:. 804:. 774:) 770:( 753:. 739:: 720:) 716:( 699:. 683:: 663:. 649:: 619:. 601:. 589:: 562:. 542:: 536:9 519:. 489:: 440:: 417:. 405:: 378:. 356:: 329:. 309:: 303:3 286:. 272:. 108:.

Index

molecular biology
plant breeding
QTL mapping
Marker assisted selection
Genetic engineering
Genetic transformation
Methods
marker assisted breeding
genomics
microsatellites
single nucleotide polymorphisms
genotypes
genotyping
genotyping by sequencing
phenomics
phenotype
QTL mapping
molecular markers
Family based QTL mapping
Marker assisted selection
complex traits
omics
millets
Wheat
"Molecular Breeding Makes Crops Hardier and More Nutritious Markers, knockouts and other technical advances improve breeding without modifying genes"
Scientific American
"Stephen P. Moose* and Rita H. Mumm (2008) Molecular Plant Breeding as the Foundation for 21st Century Crop Improvement, Plant Physiology 147:969-977"
doi
10.1038/nrg701
PMID

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑