Knowledge (XXG)

Molecular solid

Source 📝

699: 1203:. This flexibility is anisotropic; to bend HCB to 180° you must stress the face of the crystal. Another example of a flexible molecular solid is 2-(methylthio)nicotinic acid (MTN). MTN is flexible due to its strong hydrogen bonding and π-π interactions creating a rigid set of dimers that dislocate along the alignment of their terminal methyls. When stressed on the face this crystal will bend 180°. Note, not all ductile molecular solids bend 180°, and some may have more than one bending face. 637: 595: 708: 715: 509: 546: 648:
charge (δ = -0.59) on the cyano- moiety on TCNQ at room temperature. For reference, a completely charged molecule δ = ±1. This partial negative charge leads to a strong interaction with the thio- moiety of the TTF. The strong interaction leads to favorable alignment of these functional groups adjacent to each other in the solid state. While π-π interactions cause the TTF and TCNQ to stack in separate columns.
446: 38: 722: 692: 514:
naphthalene molecules and quadrupole. (b) A 3D representation of the quadrupole from two naphthalene molecules interacting. (c) A dipole-dipole interaction between acetone molecules flipped in direction, but adjacent to each other in the same plane. (c) Demonstration of how quadrupole-quadrupole interactions are involved in the crystal lattice structure.
1151:
red phosphorus, the density goes to 2.2–2.4 g/cm and melting point to 590 °C, and when white phosphorus is transformed into the (also covalent) black phosphorus, the density becomes 2.69–3.8 g/cm and melting temperature ~200 °C. Both red and black phosphorus forms are significantly harder than white phosphorus.
505:
molecule, respectively. The δ- orienttowards the δ+ causing the acetone molecules to prefer to align in a few configurations in a δ- to δ+ orientation (pictured left). The dipole-dipole and other intermolecular interactions align to minimize energy in the solid state and determine the crystal lattice structure.
1191:), many molecular solids have directional intermolecular forces. This phenomenon can lead to anisotropic mechanical properties. Typically, a molecular solid is ductile when it has isotropic intermolecular interactions. This allows for dislocation between layers of the crystal much like metals. For example, 628:. For the second example, the δ- bromine atom in the diatomic bromine molecule is aligning with the less electronegative oxygen in the 1,4-dioxane. The oxygen in this case is viewed as δ+ compared to the bromine atom. This coordination results in a chain-like organization that stack into 2D and then 3D. 796:
of metals and ionic solids is ~ 1000 °C and greater, while molecular solids typically melt closer to 300 °C (see table), thus many corresponding substances are either liquid (ice) or gaseous (oxygen) at room temperature. This is due to the elements involved, the molecules they form, and the
450:
Van der Waals and London dispersion forces guide iodine to condense into a solid at room temperature. (a) A lewis dot structure of iodine and an analogous structure as a spacefill model. Purple balls represent iodine atoms. (b) Demonstration of how van der Waals and London dispersion forces guide the
1150:
Allotropes of phosphorus are useful to further demonstrate this structure-property relationship. White phosphorus, a molecular solid, has a relatively low density of 1.82 g/cm and melting point of 44.1 °C; it is a soft material which can be cut with a knife. When it is converted to the covalent
498:
The dipole-dipole interactions between the acetone molecules partially guide the organization of the crystal lattice structure. (a) A dipole-dipole interaction between acetone molecules stacked on top of one another. (b) A dipole-dipole interaction between acetone molecules in front and bock of each
647:
Coulombic interactions are manifested in some molecular solids. A well-studied example is the radical ion salt TTF-TCNQ with a conductivity of 5 x 10 Ω cm, much closer to copper (ρ = 6 x 10 Ω cm) than many molecular solids. The coulombic interaction in TTF-TCNQ stems from the large partial negative
641:
The partial ionic bonding between the TTF and TCNQ molecules partially guides the organization of the crystal structure. The van der Waals interactions of the core for TTF and TCNQ guide adjacent stacked columns. (a) A lewis dot structure and ball and stick model of TTF and TCNQ. The partial ionic
504:
For acetone dipole-dipole interactions are a major driving force behind the structure of its crystal lattice. The negative dipole is caused by oxygen. Oxygen is more electronegative than carbon and hydrogen, causing a partial negative (δ-) and positive charge (δ+) on the oxygen and remainder of the
550:
The hydrogen bonding between the acetic acid molecules partially guides the organization of the crystal lattice structure. (a) A lewis dot structure with the partial charges and hydrogen bond denoted with blue dashed line. A ball and stick model of acetic acid with hydrogen bond denoted with blue
683:
The structural transitions in phosphorus are reversible: upon releasing high pressure, black phosphorus gradually converts into the red phosphorus, and by vaporizing red phosphorus at 490 °C in an inert atmosphere and condensing the vapor, covalent red phosphorus can be transformed into the
1231:
The thermal properties of molecular solids (as, for instance, specific heat capacity, thermal expansion, and thermal conductance to name a few) are determined by the intra- and intermolecular vibrations of the atoms and molecules of the molecular solid. In molecular solids the transitions of an
599:
The halogen bonding between the bromine and 1,4-dioxane molecules partially guides the organization of the crystal lattice structure. (a) A lewis dot structure and ball and stick model of bromine and 1,4-dioxane. The halogen bond is between the bromine and 1,4-dioxane. (b) Demonstration of how
531:
resulting in a quadrupole. For naphthalene, this quadrupole manifests in a δ- and δ+ accumulating within and outside the ring system, respectively. Naphthalene assembles through the coordination of δ- of one molecules to the δ+ of another molecule. This results in 1D columns of naphthalene in a
513:
The quadrupole-quadrupole interactions between the naphthalene molecules partially guide the organization of the crystal lattice structure. (a) A lewis dot structure artificially colored to provide a qualitative map of where the partial charges exist for the quadrupole. A 3D representation of
783:
Since molecular solids are held together by relatively weak forces they tend to have low melting and boiling points, low mechanical strength, low electrical conductivity, and poor thermal conductivity.it will Also, depending on the structure of the molecule the intermolecular forces may have
494: 499:
other in the same plane. (c) A dipole-dipole interaction between acetone molecules flipped in direction, but adjacent to each other in the same plane. (d) Demonstration of how quadrupole-quadrupole interactions are involved in the crystal lattice structure.
472:. These characteristics make it unfavorable for argon to partake in metallic, covalent, and ionic bonds as well as most intermolecular interactions. It can though partake in van der Waals and London dispersion forces. These weak self-interactions are 536:
configuration. These columns then stack into 2D layers and then 3D bulk materials. Octafluoronaphthalene follows this path of organization to build bulk material except the δ- and δ+ are on the exterior and interior of the ring system, respectively.
1198:
One example of a ductile molecular solid, that can be bent 180°, is hexachlorobenzene (HCB). In this example the π-π interactions between the benzene cores are stronger than the halogen interactions of the chlorides. This difference leads to its
57:, respectively. Images of carbon dioxide (b) and caffeine (d) in the solid state at room temperature and atmosphere. The gaseous phase of the dry ice in image (b) is visible because the molecular solid is 2260:
Kistenmacher, T. J.; Phillips, T. E.; Cowan, D. O. (1974). "The Crystal Structure of the 1:1 Radical Cation-Radical Anion Salt of 2,2'-bis-1,3-dithiole (TTF) and 7,7,8,8-tetracyanoquinodimethane (TCNQ)".
480:
packing when cooled below -189.3. Similarly iodine, a linear diatomic molecule has a net dipole of zero and can only partake in van der Waals interactions that are fairly isotropic. This results in the
676:
tetrahedra are no longer isolated, but connected by covalent bonds into polymer-like chains. Heating white phosphorus under high (GPa) pressures converts it to black phosphorus which has a layered,
519:
A quadrupole, like a dipole, is a permanent pole but the electric field of the molecule is not linear as in acetone, but in two dimensions. Examples of molecular solids with quadrupoles are
155:. These differences in the strength of force (i.e. covalent vs. van der Waals) and electronic characteristics (i.e. delocalized electrons) from other types of solids give rise to the unique 1223:
with ρ = 5 x 10 Ω cm but in such cases orbital overlap is evident in the crystal structure. Fullerenes, which are insulating, become conducting or even superconducting upon doping.
1996:
Allan, D. R.; Clark, S. J.; Ibberson, R. M.; Parsons, S.; Pulham, C. R.; Sawyer, L. (1999). "The Influence of Pressure and Temperature on the Crystal Structure of Acetone".
1661:
Varughese, S.; Kiran, M. S. R. N.; Ramamurty, U.; Desiraju, G. R. (2013). "Nanoindentation in Crystal Engineering: Quantifying Mechanical Properties of Molecular Crystals".
2695: 2351: 551:
dashed line. (b) Four acetic acid molecules in zig-zag hydrogen bonding in 1D. (c) Demonstration of how hydrogen bonding are involved in the crystal lattice structure.
240:
points compared to metal (iron), ionic (sodium chloride), and covalent solids (diamond). Examples of molecular solids with low melting and boiling temperatures include
178:
are semiconductors (ρ = 5 x 10 Ω cm). They are still substantially less than the conductivity of copper (ρ = 6 x 10 Ω cm). Molecular solids tend to have lower
2288:
Cohen, M. J.; Coleman, L. B.; Garito, A. F.; Heeger, A. J. (1974). "Electrical Conductivity of Tetrathiofulvalinium Tetracyanoquinodimethane (TTF) (TCNQ)".
568:. For intermolecular hydrogen bonds the δ+ hydrogen interacts with a δ- on an adjacent molecule. Examples of molecular solids that hydrogen bond are water, 775:) units and are molecular solids at ambient conditions, but converted into covalent allotropes having atomic chains extending throughout the crystal. 642:
bond is between the cyano- and thio- motifs. (b) Demonstration of how van der Waals and partial ionic bonding guide the crystal lattice structure.
160: 587:
moiety (δ-) of the carboxylic on the adjacent molecule. This hydrogen bond leads a string of acetic acid molecules hydrogen bonding to minimize
1293:
Lehmann, C. W.; Stowasser, Frank (2007). "The Crystal Structure of Anhydrous Beta-Caffeine as Determined from X-ray Powder-Diffraction Data".
2620: 2568: 2541: 2514: 2467: 2442: 2388: 2361: 2334: 437:). It is the lack or presence of other intermolecular interactions based on the atom or molecule that affords materials unique properties. 656:
One form of an element may be a molecular solid, but another form of that same element may not be a molecular solid. For example, solid
2593: 2226:
Reddy, C. M.; Krishan, G. R.; Ghosh, S. (2010). "Mechanical properties of molecular crystals—applications to crystal engineering".
2692: 520: 109:. Van der Waals, dipole interactions, quadrupole interactions, π–π interactions, hydrogen bonding, and halogen bonding (2–127 58: 2176:
Metrangolo, P.; Meyer, F.; Pilati, Tullio; Resnati, G.; Terraneo, G. (2008). "Halogen Bonding in Supramolecular Chemistry".
613:
interaction with a less electronegative atom on an adjacent molecule. Examples of molecular solids that halogen bond are
2714: 1934:
Davey, R. J.; Schroeder, S. L.; Horst, J. H. T. (2013). "Nucleation of Organic Crystals - A Molecular Perspective".
556:
A hydrogen bond is a specific dipole where a hydrogen atom has a partial positive charge (δ+) to due a neighboring
664:
called "white", "red", and "black" phosphorus. White phosphorus forms molecular crystals composed of tetrahedral P
433:
of the material is structured. All atoms and molecules can partake in van der Waals and London dispersion forces (
2642: 1176: 1172: 610: 1183:
structure of most molecules or the presence of functional groups capable of forming specific interactions (e.g.
133: 31: 2123: 187: 148: 102: 698: 156: 1175:
till they reach the yield stress. Once the yield stress is reached, ductile solids undergo a period of
1179:
and eventually fracture. Brittle solids fracture promptly after passing the yield stress. Due to the
2661: 2297: 1898: 477: 171: 164: 144: 636: 594: 573: 533: 78: 1969:
Harris, Harris; Edward, M.; Blake, F. C. (1928). "The Atomic Arrangement of Orthorhombic Iodine".
508: 2677: 2651: 2009: 576: 179: 2065:
Williams, J. H. (1993). "The Molecular Electric QuadrupoleMoment and Solid-State Architecture".
493: 30:"Molecular crystal" redirects here. For a solid network of atoms covalently bound together, see 2404:
Simon, Arndt; Borrmann, Horst; Horakh, Jörg (1997). "On the Polymorphism of White Phosphorus".
1232:
electron contribute negligibly to thermal properties compared to the vibrational contribution.
545: 2616: 2610: 2589: 2564: 2558: 2537: 2531: 2510: 2463: 2438: 2432: 2384: 2378: 2357: 2330: 2324: 2193: 1951: 1916: 1867: 1678: 1310: 1263:
Simon, A.; Peters, K. (1980). "Single-Crystal Refinement of the Structure of Carbon Dioxide".
1241: 1216: 1168: 1122: 1042: 992: 614: 588: 557: 524: 469: 430: 422: 37: 2693:
https://www.boundless.com/chemistry/liquids-and-solids/types-of-crystals/molecular-crystals/
2669: 2413: 2305: 2270: 2235: 2185: 2156: 2118: 2108: 2074: 2040: 2001: 1978: 1943: 1906: 1859: 1670: 1302: 1272: 982: 561: 264:
to small molecules (i.e. naphthalene and water) to large molecules with tens of atoms (i.e.
129: 121: 106: 1911: 1886: 707: 2699: 1192: 1015: 714: 580: 465: 209: 2484: 2665: 2301: 1902: 2096: 1143: 584: 482: 434: 125: 90: 527:
rings. The electronegativity of the atoms of this ring system and conjugation cause a
2708: 1184: 793: 261: 260:(see table below). The constituents of molecular solids range in size from condensed 233: 225: 137: 94: 2681: 2161: 2144: 2013: 564:. Hydrogen bonds are amongst the strong intermolecular interactions know other than 445: 1188: 528: 98: 2097:"Use of a CCD diffractometer in crystal structure determinations at high pressure" 17: 1164: 625: 249: 152: 113: 1215:
at 0.7 eV) is due to the weak intermolecular interactions, which result in low
2673: 2637: 2274: 2113: 2045: 2028: 1276: 721: 657: 591:. These strings of acetic acid molecules then stack together to build solids. 569: 461: 276:
Melting and boiling points of metallic, ionic, covalent, and molecular solids
86: 41:
Models of the packing of molecules in two molecular solids, carbon dioxide or
2417: 2309: 1212: 1211:
Molecular solids are generally insulators. This large band gap (compared to
1200: 1180: 1160: 661: 618: 457: 265: 2197: 2189: 1955: 1947: 1920: 1871: 1682: 1674: 1314: 1306: 429:. The intermolecular interactions between the constituents dictate how the 116:) are typically much weaker than the forces holding together other solids: 1850:
Desiraju, G. R. (2013). "Crystal Engineering: From Molecular to Crystal".
2656: 1220: 952: 858: 832: 819: 764: 677: 669: 473: 426: 257: 253: 175: 74: 54: 2078: 1982: 691: 1781:
Low Temperature Physics: The Crystal Structures of Argon and Its Alloys
1079: 1052: 1002: 935: 901: 871: 752: 622: 217: 183: 42: 1863: 1766:
The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals
2239: 2029:"X-Ray Powder Diffraction Investigation of Naphthalene up to 0.5 GPa" 2005: 1109: 1096: 1025: 965: 918: 884: 845: 760: 668:
molecules. Heating at ambient pressure to 250 °C or exposing to
606: 565: 269: 82: 50: 46: 2462:(in German) (91–100 ed.). Walter de Gruyter. pp. 675–681. 151:
such as the tetrathiafulvane-tetracyanoquinodimethane (TTF-TCNQ), a
635: 593: 544: 507: 492: 451:
organization of the crystal lattice from 1D to 3D (bulk material).
444: 245: 241: 197: 117: 110: 70: 36: 1219:. Some molecular solids exhibit electrical conductivity, such as 45:(a), and caffeine (c). The gray, red, and purple balls represent 2458:
Holleman, Arnold F; Wiberg, Egon; Wiberg, Nils (1985). "Arsen".
201: 1814:
Polycyclic Aromatic Hydrocarbons: Chemistry and Carcinogenicity
1065: 194: 572:, and acetic acid. For acetic acid, the hydrogen (δ+) on the 147:, unlike metallic and certain covalent bonds. Exceptions are 784:
directionality leading to anisotropy of certain properties.
77:. The cohesive forces that bind the molecules together are 2095:
Dawson, A.; Allan, D. R.; Parsons, Simon; Ruf, M. (2004).
1768:. Cambridge, United Kingdom: Royal Society of Chemistry. 600:
halogen bonding can guide the crystal lattice structure.
476:
and result in the long-range ordering of the atoms into
2560:
Product engineering: molecular structure and properties
1746:
Haynes, W. M.; Lise, D. R.; Bruno, T. J., eds. (2016).
672:
converts white phosphorus to red phosphorus where the P
2353:
The Pearson Guide to Objective Chemistry for the AIEEE
2485:"Allotropes – Group 13, Group 14, Group 15, Group 16" 1834:
Organic Molecular Solids: Properties and Applications
1779:
Barret, C. S.; Meyer, L. (1965). Daunt, J. G. (ed.).
143:
Intermolecular interactions typically do not involve
797:weak intermolecular interactions of the molecules. 1885:Thakur, T. S.; Dubey, R.; Desiraju, G. R. (2015). 1575:. New York, New York: Oxford University Press Inc. 1195:are soft, resemble waxes and are easily deformed. 1171:stressed. Both ductile and brittle solids undergo 2124:20.500.11820/1ccaaabb-b17b-4282-a863-2675032f925f 729:White, red, violet, and black phosphorus samples 2329:. Jones & Bartlett Learning. p. 981. 421:Molecular solids may consist of single atoms, 2588:(86th ed.). Boca Raton (FL): CRC Press. 2380:Principles of descriptive inorganic chemistry 1593:. Hoboken, New Jersey: Wiley Eastern Limited. 8: 2530:Darrell D. Ebbing, Steven D. Gammon (2007). 1816:. Cambridge, UK: Cambridge University Press. 1627:. Cambridge, Massachusetts: Academic Press. 2323:John Olmsted, Gregory M. Williams (1997). 800: 605:A halogen bond is when an electronegative 2655: 2383:. University Science Books. p. 186. 2160: 2122: 2112: 2044: 1910: 489:Dipole-dipole and quadrupole interactions 2563:. Oxford University Press. p. 137. 2145:"The Structure of Bromine 1,4-Dioxanate" 1971:Journal of the American Chemical Society 1852:Journal of the American Chemical Society 802:Melting points of some molecular solids 686: 274: 2356:. Pearson Education India. p. 36. 2178:Angewandte Chemie International Edition 1936:Angewandte Chemie International Edition 1663:Angewandte Chemie International Edition 1252: 2255: 2253: 2251: 2249: 2221: 2219: 2217: 2215: 2213: 2211: 2209: 2207: 2138: 2136: 2134: 2090: 2088: 2060: 2058: 2056: 1912:10.1146/annurev-physchem-040214-121452 1845: 1843: 1827: 1825: 1823: 1807: 1805: 1798:. Oxford, UK: Oxford University Press. 1796:The Structures and Properties of Water 1759: 1757: 1741: 1739: 1737: 1735: 1733: 1731: 1729: 1727: 1656: 1654: 224:= 5 MPa m). Molecular solids have low 27:Solid consisting of discrete molecules 2586:CRC Handbook of Chemistry and Physics 1748:CRC Handbook of Chemistry and Physics 1725: 1723: 1721: 1719: 1717: 1715: 1713: 1711: 1709: 1707: 1700:. New York, New York: Academic Press. 1652: 1650: 1648: 1646: 1644: 1642: 1640: 1638: 1636: 1634: 1618: 1616: 1614: 1612: 1610: 1608: 1606: 1604: 1602: 1600: 1566: 1564: 1562: 1560: 1558: 1556: 1554: 1552: 1458: 1456: 1454: 1452: 1450: 1448: 1446: 1444: 1442: 1440: 1438: 1436: 1434: 1432: 1396: 1394: 1392: 1390: 1388: 1386: 1384: 1382: 1346: 1344: 1288: 1286: 1258: 1256: 523:. Naphthalene consists of two joined 521:octafluoronaphthalene and naphthalene 7: 1794:Eisenberg, D.; Kauzmann, W. (2005). 1584: 1582: 1550: 1548: 1546: 1544: 1542: 1540: 1538: 1536: 1534: 1532: 1516: 1514: 1512: 1510: 1508: 1506: 1504: 1502: 1486: 1484: 1482: 1480: 1478: 1476: 1474: 1430: 1428: 1426: 1424: 1422: 1420: 1418: 1416: 1414: 1412: 1380: 1378: 1376: 1374: 1372: 1370: 1368: 1366: 1364: 1362: 1342: 1340: 1338: 1336: 1334: 1332: 1330: 1328: 1326: 1324: 1167:, or a combination depending on the 1891:Annual Review of Physical Chemistry 1463:Schwoerer, M.; Wolf, H. C. (2007). 1355:. Berlin, Germany: Springer-Verlag. 755:is a molecular solid composed of As 684:molecular solid, white phosphorus. 216:= 0.5 MPa m), and covalent solids ( 2101:Journal of Applied Crystallography 1887:"Crystal Structure and Prediction" 1521:Patterson, J.; Bailey, B. (2010). 25: 2638:"Superconductivity in Fullerides" 2536:. Cengage Learning. p. 446. 2460:Lehrbuch der Anorganischen Chemie 1750:. Boca Raton, Florida: CRC Press. 1625:Intermolecular and Surface Forces 2615:. FK Publications. p. 550. 2437:. FK Publications. p. 548. 2326:Chemistry: the molecular science 2263:Acta Crystallographica Section B 2143:Hassel, O.; Hvoslef, J. (1954). 2033:Acta Crystallographica Section B 720: 713: 706: 697: 690: 105:, and in some molecular solids, 2509:. Academic Press. p. 524. 2162:10.3891/acta.chem.scand.08-0873 1783:. New York, New York: Springer. 1467:. Weinheim, Germany: Wiley-VCH. 1159:Molecular solids can be either 2027:Alt, H. C.; Kalus, J. (1982). 1493:Elementary Solid State Physics 583:hydrogen bonds with other the 1: 2067:Accounts of Chemical Research 1623:Israelachvili, J. N. (2011). 1353:Molecular Solid State Physics 1295:Chemistry: A European Journal 660:can crystallize as different 1525:. Berlin, Germany: Springer. 1405:. Berlin, Germany: Springer. 541:Hydrogen and halogen bonding 2609:AK Srivastava and PC Jain. 2431:AK Srivastava and PC Jain. 1764:O'Neil, M. J., ed. (2013). 1495:. London, England: Pearson. 2731: 1698:The Properties of Diamonds 1696:Field, J. E., ed. (1979). 788:Melting and boiling points 174:, although some, such as 170:Molecular solids are poor 83:dipole–dipole interactions 29: 2674:10.1103/RevModPhys.69.575 2643:Reviews of Modern Physics 2584:Lide, D. R., ed. (2005). 2275:10.1107/s0567740874003669 2149:Acta Chemica Scandinavica 2114:10.1107/s0021889804007149 2046:10.1107/s056774088200942x 1591:Principles of Solid State 1277:10.1107/s0567740880009879 417:Composition and structure 149:charge-transfer complexes 2418:10.1002/cber.19971300911 2310:10.1103/PhysRevB.10.1298 1836:. Boca Raton: CRC Press. 1465:Organic Molecular Solids 103:London dispersion forces 32:Network covalent bonding 2612:Chemistry Vol (1 and 2) 2505:James E. House (2008). 2434:Chemistry Vol (1 and 2) 2377:Gary Wulfsberg (1991). 1998:Chemical Communications 1832:Jones, W., ed. (1997). 1401:Fahlman, B. D. (2011). 1217:charge carrier mobility 566:ion-dipole interactions 132:, 700–900 kJ mol), and 87:quadrupole interactions 73:consisting of discrete 2636:O. Gunnarsson (1997). 2190:10.1002/anie.200800128 1948:10.1002/anie.201204824 1812:Harvey, G. R. (1991). 1675:10.1002/anie.201205002 1307:10.1002/chem.200600973 644: 632:Coulombic interactions 602: 553: 516: 501: 453: 107:coulombic interactions 62: 2487:. Chemistry Explained 2350:Singhal Atul (2009). 1573:The Physics of Solids 1351:Hall, George (1965). 1207:Electrical properties 1155:Mechanical properties 759:units. Some forms of 745:and black phosphorus 639: 597: 548: 511: 496: 448: 172:electrical conductors 167:of molecular solids. 145:delocalized electrons 40: 2483:Masters, Anthony F. 1589:Keer, H. V. (1993). 1491:Omar, M. A. (2002). 734:of white phosphorus 483:bipyramidal symmetry 441:Van der Waals forces 427:polyatomic molecules 208:= 50 MPa m), ionic ( 79:van der Waals forces 2666:1997RvMP...69..575G 2507:Inorganic chemistry 2302:1974PhRvB..10.1298C 2079:10.1021/ar00035a005 1983:10.1021/ja01393a009 1903:2015ARPC...66...21T 1571:Turton, R. (2010). 1523:Solid-State Physics 1403:Materials Chemistry 1265:Acta Crystallogr. B 1177:plastic deformation 1173:elastic deformation 803: 792:The characteristic 478:face centered cubic 277: 140:, 150–900 kJ mol). 124:, 400–500 kJ mol), 2715:Chemical compounds 2698:2014-01-03 at the 2557:James Wei (2007). 2406:Chemische Berichte 1227:Thermal properties 801: 751:Similarly, yellow 739:Structures of red 645: 609:participates in a 603: 554: 517: 502: 454: 275: 180:fracture toughness 165:thermal properties 63: 2622:978-81-88597-83-3 2570:978-0-19-515917-2 2543:978-0-618-85748-7 2533:General Chemistry 2516:978-0-12-356786-4 2469:978-3-11-007511-3 2444:978-81-88597-83-3 2390:978-0-935702-66-8 2363:978-81-317-1359-4 2336:978-0-8151-8450-8 2290:Physical Review B 2184:(33): 6114–6127. 2039:(10): 2595–2600. 1864:10.1021/ja403264c 1858:(27): 9952–9967. 1669:(10): 2701–2712. 1301:(10): 2908–2911. 1271:(11): 2750–2751. 1242:Bonding in solids 1138: 1137: 767:are composed of S 749: 748: 680:-like structure. 643: 615:hexachlorobenzene 601: 552: 515: 500: 452: 414: 413: 18:Molecular crystal 16:(Redirected from 2722: 2686: 2685: 2659: 2657:cond-mat/9611150 2633: 2627: 2626: 2606: 2600: 2599: 2581: 2575: 2574: 2554: 2548: 2547: 2527: 2521: 2520: 2502: 2496: 2495: 2493: 2492: 2480: 2474: 2473: 2455: 2449: 2448: 2428: 2422: 2421: 2401: 2395: 2394: 2374: 2368: 2367: 2347: 2341: 2340: 2320: 2314: 2313: 2296:(4): 1298–1307. 2285: 2279: 2278: 2257: 2244: 2243: 2240:10.1039/c003466e 2234:(8): 2296–2314. 2223: 2202: 2201: 2173: 2167: 2166: 2164: 2140: 2129: 2128: 2126: 2116: 2092: 2083: 2082: 2062: 2051: 2050: 2048: 2024: 2018: 2017: 2006:10.1039/A900558G 1993: 1987: 1986: 1977:(6): 1583–1600. 1966: 1960: 1959: 1942:(8): 2166–2179. 1931: 1925: 1924: 1914: 1882: 1876: 1875: 1847: 1838: 1837: 1829: 1818: 1817: 1809: 1800: 1799: 1791: 1785: 1784: 1776: 1770: 1769: 1761: 1752: 1751: 1743: 1702: 1701: 1693: 1687: 1686: 1658: 1629: 1628: 1620: 1595: 1594: 1586: 1577: 1576: 1568: 1527: 1526: 1518: 1497: 1496: 1488: 1469: 1468: 1460: 1407: 1406: 1398: 1357: 1356: 1348: 1319: 1318: 1290: 1281: 1280: 1260: 1193:plastic crystals 804: 724: 717: 710: 701: 694: 687: 640: 598: 562:functional group 549: 512: 497: 449: 320:Sodium chloride 278: 153:radical ion salt 130:Coulomb’s forces 122:metallic bonding 95:hydrogen bonding 91:π–π interactions 21: 2730: 2729: 2725: 2724: 2723: 2721: 2720: 2719: 2705: 2704: 2700:Wayback Machine 2689: 2635: 2634: 2630: 2623: 2608: 2607: 2603: 2596: 2583: 2582: 2578: 2571: 2556: 2555: 2551: 2544: 2529: 2528: 2524: 2517: 2504: 2503: 2499: 2490: 2488: 2482: 2481: 2477: 2470: 2457: 2456: 2452: 2445: 2430: 2429: 2425: 2403: 2402: 2398: 2391: 2376: 2375: 2371: 2364: 2349: 2348: 2344: 2337: 2322: 2321: 2317: 2287: 2286: 2282: 2259: 2258: 2247: 2225: 2224: 2205: 2175: 2174: 2170: 2142: 2141: 2132: 2094: 2093: 2086: 2073:(11): 593–598. 2064: 2063: 2054: 2026: 2025: 2021: 1995: 1994: 1990: 1968: 1967: 1963: 1933: 1932: 1928: 1884: 1883: 1879: 1849: 1848: 1841: 1831: 1830: 1821: 1811: 1810: 1803: 1793: 1792: 1788: 1778: 1777: 1773: 1763: 1762: 1755: 1745: 1744: 1705: 1695: 1694: 1690: 1660: 1659: 1632: 1622: 1621: 1598: 1588: 1587: 1580: 1570: 1569: 1530: 1520: 1519: 1500: 1490: 1489: 1472: 1462: 1461: 1410: 1400: 1399: 1360: 1350: 1349: 1322: 1292: 1291: 1284: 1262: 1261: 1254: 1250: 1238: 1229: 1209: 1157: 1148: 1142: 1130: 1126: 1113: 1100: 1087: 1083: 1069: 1056: 1033: 1029: 1006: 973: 969: 956: 943: 939: 926: 922: 909: 905: 892: 888: 875: 862: 849: 836: 823: 813: 790: 781: 774: 770: 758: 733: 675: 667: 654: 634: 581:carboxylic acid 558:electronegative 543: 491: 443: 431:crystal lattice 419: 297: 290: 262:monatomic gases 237: 229: 223: 215: 210:sodium chloride 207: 191: 99:halogen bonding 67:molecular solid 35: 28: 23: 22: 15: 12: 11: 5: 2728: 2726: 2718: 2717: 2707: 2706: 2703: 2702: 2688: 2687: 2628: 2621: 2601: 2594: 2576: 2569: 2549: 2542: 2522: 2515: 2497: 2475: 2468: 2450: 2443: 2423: 2396: 2389: 2369: 2362: 2342: 2335: 2315: 2280: 2269:(3): 763–768. 2245: 2203: 2168: 2130: 2107:(3): 410–416. 2084: 2052: 2019: 2000:(8): 751–752. 1988: 1961: 1926: 1877: 1839: 1819: 1801: 1786: 1771: 1753: 1703: 1688: 1630: 1596: 1578: 1528: 1498: 1470: 1408: 1358: 1320: 1282: 1251: 1249: 1246: 1245: 1244: 1237: 1234: 1228: 1225: 1208: 1205: 1185:hydrogen bonds 1156: 1153: 1147: 1146: 1144:higher alkanes 1136: 1135: 1132: 1128: 1124: 1119: 1118: 1115: 1111: 1106: 1105: 1102: 1098: 1093: 1092: 1089: 1085: 1081: 1076: 1075: 1072: 1067: 1062: 1061: 1058: 1054: 1049: 1048: 1045: 1039: 1038: 1035: 1031: 1027: 1022: 1021: 1018: 1012: 1011: 1008: 1004: 999: 998: 995: 989: 988: 985: 979: 978: 975: 971: 967: 962: 961: 958: 954: 949: 948: 945: 941: 937: 932: 931: 928: 924: 920: 915: 914: 911: 907: 903: 898: 897: 894: 890: 886: 881: 880: 877: 873: 868: 867: 864: 860: 855: 854: 851: 847: 842: 841: 838: 834: 829: 828: 825: 821: 816: 815: 811: 808: 799: 789: 786: 780: 777: 772: 768: 756: 747: 746: 743: 740: 737: 735: 732:Structure unit 730: 726: 725: 718: 711: 704: 702: 695: 673: 665: 653: 650: 633: 630: 542: 539: 490: 487: 442: 439: 418: 415: 412: 411: 408: 405: 402: 398: 397: 394: 391: 388: 384: 383: 380: 377: 374: 370: 369: 366: 363: 360: 356: 355: 352: 349: 346: 342: 341: 338: 335: 332: 328: 327: 324: 321: 318: 314: 313: 310: 307: 304: 300: 299: 295: 292: 288: 285: 282: 281:Type of Solid 235: 227: 221: 213: 205: 200:) than metal ( 189: 138:covalent bonds 134:network solids 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2727: 2716: 2713: 2712: 2710: 2701: 2697: 2694: 2691: 2690: 2683: 2679: 2675: 2671: 2667: 2663: 2658: 2653: 2649: 2645: 2644: 2639: 2632: 2629: 2624: 2618: 2614: 2613: 2605: 2602: 2597: 2595:0-8493-0486-5 2591: 2587: 2580: 2577: 2572: 2566: 2562: 2561: 2553: 2550: 2545: 2539: 2535: 2534: 2526: 2523: 2518: 2512: 2508: 2501: 2498: 2486: 2479: 2476: 2471: 2465: 2461: 2454: 2451: 2446: 2440: 2436: 2435: 2427: 2424: 2419: 2415: 2411: 2407: 2400: 2397: 2392: 2386: 2382: 2381: 2373: 2370: 2365: 2359: 2355: 2354: 2346: 2343: 2338: 2332: 2328: 2327: 2319: 2316: 2311: 2307: 2303: 2299: 2295: 2291: 2284: 2281: 2276: 2272: 2268: 2264: 2256: 2254: 2252: 2250: 2246: 2241: 2237: 2233: 2229: 2222: 2220: 2218: 2216: 2214: 2212: 2210: 2208: 2204: 2199: 2195: 2191: 2187: 2183: 2179: 2172: 2169: 2163: 2158: 2154: 2150: 2146: 2139: 2137: 2135: 2131: 2125: 2120: 2115: 2110: 2106: 2102: 2098: 2091: 2089: 2085: 2080: 2076: 2072: 2068: 2061: 2059: 2057: 2053: 2047: 2042: 2038: 2034: 2030: 2023: 2020: 2015: 2011: 2007: 2003: 1999: 1992: 1989: 1984: 1980: 1976: 1972: 1965: 1962: 1957: 1953: 1949: 1945: 1941: 1937: 1930: 1927: 1922: 1918: 1913: 1908: 1904: 1900: 1896: 1892: 1888: 1881: 1878: 1873: 1869: 1865: 1861: 1857: 1853: 1846: 1844: 1840: 1835: 1828: 1826: 1824: 1820: 1815: 1808: 1806: 1802: 1797: 1790: 1787: 1782: 1775: 1772: 1767: 1760: 1758: 1754: 1749: 1742: 1740: 1738: 1736: 1734: 1732: 1730: 1728: 1726: 1724: 1722: 1720: 1718: 1716: 1714: 1712: 1710: 1708: 1704: 1699: 1692: 1689: 1684: 1680: 1676: 1672: 1668: 1664: 1657: 1655: 1653: 1651: 1649: 1647: 1645: 1643: 1641: 1639: 1637: 1635: 1631: 1626: 1619: 1617: 1615: 1613: 1611: 1609: 1607: 1605: 1603: 1601: 1597: 1592: 1585: 1583: 1579: 1574: 1567: 1565: 1563: 1561: 1559: 1557: 1555: 1553: 1551: 1549: 1547: 1545: 1543: 1541: 1539: 1537: 1535: 1533: 1529: 1524: 1517: 1515: 1513: 1511: 1509: 1507: 1505: 1503: 1499: 1494: 1487: 1485: 1483: 1481: 1479: 1477: 1475: 1471: 1466: 1459: 1457: 1455: 1453: 1451: 1449: 1447: 1445: 1443: 1441: 1439: 1437: 1435: 1433: 1431: 1429: 1427: 1425: 1423: 1421: 1419: 1417: 1415: 1413: 1409: 1404: 1397: 1395: 1393: 1391: 1389: 1387: 1385: 1383: 1381: 1379: 1377: 1375: 1373: 1371: 1369: 1367: 1365: 1363: 1359: 1354: 1347: 1345: 1343: 1341: 1339: 1337: 1335: 1333: 1331: 1329: 1327: 1325: 1321: 1316: 1312: 1308: 1304: 1300: 1296: 1289: 1287: 1283: 1278: 1274: 1270: 1266: 1259: 1257: 1253: 1247: 1243: 1240: 1239: 1235: 1233: 1226: 1224: 1222: 1218: 1214: 1206: 1204: 1202: 1196: 1194: 1190: 1189:halogen bonds 1186: 1182: 1178: 1174: 1170: 1166: 1162: 1154: 1152: 1145: 1140: 1139: 1133: 1131: 1121: 1120: 1116: 1114: 1108: 1107: 1103: 1101: 1095: 1094: 1090: 1088: 1078: 1077: 1073: 1071: 1064: 1063: 1059: 1057: 1051: 1050: 1046: 1044: 1041: 1040: 1036: 1034: 1024: 1023: 1019: 1017: 1014: 1013: 1009: 1007: 1001: 1000: 996: 994: 991: 990: 986: 984: 981: 980: 976: 974: 964: 963: 959: 957: 951: 950: 946: 944: 934: 933: 929: 927: 917: 916: 912: 910: 900: 899: 895: 893: 883: 882: 878: 876: 870: 869: 865: 863: 857: 856: 852: 850: 844: 843: 839: 837: 831: 830: 826: 824: 818: 817: 809: 806: 805: 798: 795: 794:melting point 787: 785: 778: 776: 766: 762: 754: 744: 741: 738: 736: 731: 728: 727: 723: 719: 716: 712: 709: 705: 703: 700: 696: 693: 689: 688: 685: 681: 679: 671: 663: 659: 651: 649: 638: 631: 629: 627: 624: 620: 616: 612: 608: 596: 592: 590: 586: 582: 578: 575: 571: 567: 563: 559: 547: 540: 538: 535: 530: 526: 522: 510: 506: 495: 488: 486: 484: 479: 475: 471: 467: 463: 459: 447: 440: 438: 436: 432: 428: 424: 416: 409: 406: 403: 400: 399: 395: 392: 389: 386: 385: 381: 378: 375: 372: 371: 367: 364: 361: 358: 357: 353: 350: 347: 344: 343: 339: 336: 333: 330: 329: 325: 322: 319: 316: 315: 311: 308: 305: 302: 301: 293: 286: 283: 280: 279: 273: 271: 267: 263: 259: 255: 251: 247: 243: 239: 231: 219: 211: 203: 199: 196: 192: 185: 181: 177: 173: 168: 166: 162: 158: 154: 150: 146: 141: 139: 135: 131: 127: 123: 119: 115: 112: 108: 104: 100: 96: 92: 88: 84: 80: 76: 72: 68: 60: 56: 52: 48: 44: 39: 33: 19: 2647: 2641: 2631: 2611: 2604: 2585: 2579: 2559: 2552: 2532: 2525: 2506: 2500: 2489:. Retrieved 2478: 2459: 2453: 2433: 2426: 2409: 2405: 2399: 2379: 2372: 2352: 2345: 2325: 2318: 2293: 2289: 2283: 2266: 2262: 2231: 2228:CrystEngComm 2227: 2181: 2177: 2171: 2152: 2148: 2104: 2100: 2070: 2066: 2036: 2032: 2022: 1997: 1991: 1974: 1970: 1964: 1939: 1935: 1929: 1894: 1890: 1880: 1855: 1851: 1833: 1813: 1795: 1789: 1780: 1774: 1765: 1747: 1697: 1691: 1666: 1662: 1624: 1590: 1572: 1522: 1492: 1464: 1402: 1352: 1298: 1294: 1268: 1264: 1230: 1210: 1197: 1169:crystal face 1158: 1149: 791: 782: 750: 682: 655: 646: 604: 555: 529:ring current 518: 503: 456:Argon, is a 455: 420: 376:Naphthalene 169: 142: 66: 64: 2412:(9): 1235. 1201:flexibility 626:1,4-dioxane 611:noncovalent 589:free energy 570:amino acids 534:herringbone 460:that has a 250:naphthalene 2650:(2): 575. 2491:2009-01-06 1248:References 1181:asymmetric 779:Properties 662:allotropes 658:phosphorus 652:Allotropes 525:conjugated 462:full octet 401:Molecular 387:Molecular 373:Molecular 359:Molecular 345:Molecular 234:boiling (T 226:melting (T 161:electronic 157:mechanical 1897:: 21–42. 1213:germanium 1141:See also 619:cocrystal 474:isotropic 468:, and is 458:noble gas 425:, and/or 404:Caffeine 390:Nicotine 331:Covalent 303:Metallic 284:Material 266:fullerene 75:molecules 59:subliming 2709:Category 2696:Archived 2682:18025631 2198:18651626 2014:54901610 1956:23307268 1921:25422850 1872:23750552 1683:23315913 1315:17200930 1236:See also 1221:TTF-TCNQ 765:selenium 678:graphite 670:sunlight 585:carbonyl 560:atom or 470:nonpolar 423:diatomic 334:Diamond 272:atoms). 268:with 60 258:caffeine 254:nicotine 176:TTF-TCNQ 118:metallic 55:nitrogen 2662:Bibcode 2298:Bibcode 2155:: 873. 1899:Bibcode 1165:brittle 1161:ductile 960:−101.6 947:−129.8 930:−138.3 913:−165.0 896:−181.8 879:−182.4 866:−210.0 853:−218.8 840:−219.6 827:−259.1 807:Formula 753:arsenic 742:violet 623:bromine 579:of the 574:alcohol 435:sterics 354:-185.9 351:-189.3 218:diamond 193:= 0.08 184:sucrose 43:Dry ice 2680:  2619:  2592:  2567:  2540:  2513:  2466:  2441:  2387:  2360:  2333:  2196:  2012:  1954:  1919:  1870:  1681:  1313:  1134:220.0 1117:119.0 1104:113.7 1047:−27.3 1037:−29.7 1020:−50.8 1010:−80.0 997:−80.0 987:−86.8 977:−95.3 771:(or Se 761:sulfur 617:and a 607:halide 577:moiety 466:charge 410:519.9 407:235.6 382:217.9 362:Water 348:Argon 337:4,440 326:1,465 317:Ionic 312:2,861 309:1,538 270:carbon 256:, and 163:, and 53:, and 51:oxygen 47:carbon 2678:S2CID 2652:arXiv 2010:S2CID 1060:−7.2 464:, no 379:80.1 306:Iron 298:(°C) 291:(°C) 246:water 242:argon 126:ionic 71:solid 69:is a 2617:ISBN 2590:ISBN 2565:ISBN 2538:ISBN 2511:ISBN 2464:ISBN 2439:ISBN 2385:ISBN 2358:ISBN 2331:ISBN 2194:PMID 1952:PMID 1917:PMID 1868:PMID 1679:PMID 1311:PMID 1091:5.5 1074:0.0 763:and 396:491 393:-79 368:100 323:801 232:and 202:iron 2670:doi 2414:doi 2410:130 2306:doi 2271:doi 2236:doi 2186:doi 2157:doi 2119:hdl 2109:doi 2075:doi 2041:doi 2002:doi 1979:doi 1944:doi 1907:doi 1860:doi 1856:135 1671:doi 1303:doi 1273:doi 1163:or 1043:HCl 983:HBr 814:°C 621:of 220:, K 212:, K 204:, K 195:MPa 114:mol 2711:: 2676:. 2668:. 2660:. 2648:69 2646:. 2640:. 2408:. 2304:. 2294:10 2292:. 2267:30 2265:. 2248:^ 2232:12 2230:. 2206:^ 2192:. 2182:47 2180:. 2151:. 2147:. 2133:^ 2117:. 2105:37 2103:. 2099:. 2087:^ 2071:26 2069:. 2055:^ 2037:38 2035:. 2031:. 2008:. 1975:50 1973:. 1950:. 1940:52 1938:. 1915:. 1905:. 1893:. 1889:. 1866:. 1854:. 1842:^ 1822:^ 1804:^ 1756:^ 1706:^ 1677:. 1667:52 1665:. 1633:^ 1599:^ 1581:^ 1531:^ 1501:^ 1473:^ 1411:^ 1361:^ 1323:^ 1309:. 1299:13 1297:. 1285:^ 1269:36 1267:. 1255:^ 1187:, 1127:Cl 1053:Br 1032:22 1028:10 1016:HI 1003:NH 993:HF 972:14 953:Cl 942:12 925:10 872:CH 485:. 365:0 340:- 252:, 248:, 244:, 222:Ic 214:Ic 206:Ic 190:Ic 186:, 159:, 111:kJ 101:, 97:, 93:, 89:, 85:, 81:, 65:A 49:, 2684:. 2672:: 2664:: 2654:: 2625:. 2598:. 2573:. 2546:. 2519:. 2494:. 2472:. 2447:. 2420:. 2416:: 2393:. 2366:. 2339:. 2312:. 2308:: 2300:: 2277:. 2273:: 2242:. 2238:: 2200:. 2188:: 2165:. 2159:: 2153:8 2127:. 2121:: 2111:: 2081:. 2077:: 2049:. 2043:: 2016:. 2004:: 1985:. 1981:: 1958:. 1946:: 1923:. 1909:: 1901:: 1895:1 1874:. 1862:: 1685:. 1673:: 1317:. 1305:: 1279:. 1275:: 1129:6 1125:6 1123:C 1112:8 1110:S 1099:2 1097:I 1086:6 1084:H 1082:6 1080:C 1070:O 1068:2 1066:H 1055:2 1030:H 1026:C 1005:3 970:H 968:6 966:C 955:2 940:H 938:5 936:C 923:H 921:4 919:C 908:8 906:H 904:3 902:C 891:6 889:H 887:2 885:C 874:4 861:2 859:N 848:2 846:O 835:2 833:F 822:2 820:H 812:m 810:T 773:8 769:8 757:4 674:4 666:4 296:b 294:T 289:m 287:T 238:) 236:b 230:) 228:m 198:m 188:K 182:( 136:( 128:( 120:( 61:. 34:. 20:)

Index

Molecular crystal
Network covalent bonding

Dry ice
carbon
oxygen
nitrogen
subliming
solid
molecules
van der Waals forces
dipole–dipole interactions
quadrupole interactions
π–π interactions
hydrogen bonding
halogen bonding
London dispersion forces
coulombic interactions
kJ
mol
metallic
metallic bonding
ionic
Coulomb’s forces
network solids
covalent bonds
delocalized electrons
charge-transfer complexes
radical ion salt
mechanical

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.