Knowledge (XXG)

Emission spectrum

Source đź“ť

41: 1080: 375: 357: 2091: 444:
color. Similarly, when indium is inserted into a flame, the flame becomes blue. These definite characteristics allow elements to be identified by their atomic emission spectrum. Not all emitted lights are perceptible to the naked eye, as the spectrum also includes ultraviolet rays and infrared radiation. An emission spectrum is formed when an excited gas is viewed directly through a spectroscope.
448: 371:. If only a single atom of hydrogen were present, then only a single wavelength would be observed at a given instant. Several of the possible emissions are observed because the sample contains many hydrogen atoms that are in different initial energy states and reach different final energy states. These different combinations lead to simultaneous emissions at different wavelengths. 2103: 424:
originates from an atom in elemental form. Each element has a different atomic spectrum. The production of line spectra by the atoms of an element indicate that an atom can radiate only a certain amount of energy. This leads to the conclusion that bound electrons cannot have just any amount of energy but only a certain amount of energy.
443:
by analysing the received light. The emission spectrum characteristics of some elements are plainly visible to the naked eye when these elements are heated. For example, when platinum wire is dipped into a sodium nitrate solution and then inserted into a flame, the sodium atoms emit an amber yellow
423:
gives us a discontinuous spectrum. A spectroscope or a spectrometer is an instrument which is used for separating the components of light, which have different wavelengths. The spectrum appears in a series of lines called the line spectrum. This line spectrum is called an atomic spectrum when it
418:
Light consists of electromagnetic radiation of different wavelengths. Therefore, when the elements or their compounds are heated either on a flame or by an electric arc they emit energy in the form of light. Analysis of this light, with the help of a
96:
is equal to the energy difference between the two states. There are many possible electron transitions for each atom, and each transition has a specific energy difference. This collection of different transitions, leading to different radiated
1126:
Report of the Fifth Meeting of the British Association for the Advancement of Science; Held at Dublin in 1835. Notices and Abstracts of Communications to the British Association for the Advancement of Science, at the Dublin Meeting, August
477:, and by observing these wavelengths the elemental composition of the sample can be determined. Emission spectroscopy developed in the late 19th century and efforts in theoretical explanation of atomic emission spectra eventually led to 637:(lines in the solar spectrum) coincide with characteristic emission lines identified in the spectra of heated elements. It was correctly deduced that dark lines in the solar spectrum are caused by absorption by chemical elements in the 352:
The frequencies of light that an atom can emit are dependent on states the electrons can be in. When excited, an electron moves to a higher energy level or orbital. When the electron falls back to its ground level the light is emitted.
128:
Since energy must be conserved, the energy difference between the two states equals the energy carried off by the photon. The energy states of the transitions can lead to emissions over a very large range of frequencies. For example,
511:
Although the emission lines are caused by a transition between quantized energy states and may at first look very sharp, they do have a finite width, i.e. they are composed of more than one wavelength of light. This
33: 187:, and light is treated as an oscillating electric field that can drive a transition if it is in resonance with the system's natural frequency. The quantum mechanics problem is treated using time-dependent 222:
The fact that only certain colors appear in an element's atomic emission spectrum means that only certain frequencies of light are emitted. Each of these frequencies are related to energy by the formula:
1568: 649:
The solution containing the relevant substance to be analysed is drawn into the burner and dispersed into the flame as a fine spray. The solvent evaporates first, leaving finely divided
602:
presented observations and theories about gas spectra. Ångström postulated that an incandescent gas emits luminous rays of the same wavelength as those it can absorb. At the same time
1922: 260: 594:
and emission lines at the same wavelength are both due to the same material, with the difference between the two originating from the temperature of the light source. In 1853, the
219:. The wavelength (or equivalently, frequency) of the photon is determined by the difference in energy between the two states. These emitted photons form the element's spectrum. 287: 1595: 500:. The simplest method is to heat the sample to a high temperature, after which the excitations are produced by collisions between the sample atoms. This method is used in 307: 743:
a charged particle emits radiation under incident light. The particle may be an ordinary atomic electron, so emission coefficients have practical applications.
331: 105:
can be used to identify elements in matter of unknown composition. Similarly, the emission spectra of molecules can be used in chemical analysis of substances.
1813: 1746: 1691: 1660: 552: 1655: 2028: 1846: 1708: 215:
pushes the electrons to higher energy orbitals. When the electrons fall back down and leave the excited state, energy is re-emitted in the form of a
117:, emission is the process by which a higher energy quantum mechanical state of a particle becomes converted to a lower one through the emission of a 1977: 1796: 1640: 183:
Emission of radiation is typically described using semi-classical quantum mechanics: the particle's energy levels and spacings are determined from
1917: 1719: 1620: 1863: 1841: 1588: 591: 1929: 1851: 1534: 1104: 1681: 1786: 1731: 493: 1094: 2139: 1363:"On certain physical properties of light, produced by the combustion of different metals, in the electric spark, refracted by a prism" 2013: 1765: 1581: 607: 402:(combined vibrational and electronic) transitions. These energy transitions often lead to closely spaced groups of many different 2018: 1836: 2033: 2003: 1934: 1868: 489: 226: 40: 2134: 1962: 1753: 1650: 603: 484:
There are many ways in which atoms can be brought to an excited state. Interaction with electromagnetic radiation is used in
341:
with specific energies are emitted by the atom. The principle of the atomic emission spectrum explains the varied colors in
156:
of an object quantifies how much light is emitted by it. This may be related to other properties of the object through the
2149: 1760: 1665: 1563: 818:
from incident flux, the density of the charged particles and their Thomson differential cross section (area/solid angle).
2144: 1894: 1741: 1630: 866: 583: 527: 69: 2050: 1889: 1858: 1791: 665:
are excited as described above, and the spontaneously emit photon to decay to lower energy states. It is common for a
501: 599: 505: 2040: 1982: 1831: 1703: 85: 1380:"On certain physical properties of the light of the electric spark, within certain gases, as seen through a prism" 2066: 2045: 1808: 1686: 1482:"Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht" 708: 610:
were discussing similar postulates. Ångström also measured the emission spectrum from hydrogen later labeled the
485: 436: 77: 834:
emission coefficient relating to its temperature and total power radiation. This is sometimes called the second
157: 2159: 513: 368: 2107: 1379: 1235: 1201: 988:"Neue Modifikation des Lichtes durch gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze derselben" 427:
The emission spectrum can be used to determine the composition of a material, since it is different for each
2129: 1939: 1635: 1362: 1003:"Kurzer Bericht von den Resultaten neuerer Versuche ĂĽber die Gesetze des Lichtes, und die Theorie derselben" 851: 538: 196: 1079: 1726: 724: 473:
to a lower energy state. Each element emits a characteristic set of discrete wavelengths according to its
395: 192: 2095: 1967: 1698: 1612: 990:(New modification of light by the mutual influence and the diffraction of rays, and the laws thereof), 564: 391: 177: 1218: 618:
published observations on the spectra of metals and gases, including an independent observation of the
582:
reported that different metals could be distinguished by bright lines in the emission spectra of their
265: 133:
is emitted by the coupling of electronic states in atoms and molecules (then the phenomenon is called
1493: 1454: 1330: 1280: 887: 861: 835: 474: 452: 961: 390:
As well as the electronic transitions discussed above, the energy of a molecule can also change via
2154: 2023: 1736: 1645: 1156: 915: 856: 720: 572: 568: 560: 548: 399: 188: 1418: 199:, although the semi-classical version continues to be more useful in most practical computations. 2071: 2008: 1987: 1803: 1781: 1714: 1625: 1173: 1121: 1074: 871: 815: 740: 579: 497: 987: 1005:(Short account of the results of new experiments on the laws of light, and the theory thereof) 567:
solidified this significant experimental leap of replacing a prism as the source of wavelength
1972: 1899: 1873: 1530: 1526: 1407: 1100: 1056: 839: 556: 478: 184: 169: 65: 1501: 1462: 1338: 1288: 1247: 1046: 1038: 892: 638: 634: 626: 587: 544: 428: 61: 1558: 912:
equation includes the emission coefficient (which is not related to the one discussed here)
1002: 903: 898: 728: 334: 292: 138: 1497: 1458: 1334: 1284: 1051: 1026: 882: 877: 432: 407: 403: 316: 176:. Precise measurements at many wavelengths allow the identification of a substance via 173: 153: 101:, make up an emission spectrum. Each element's emission spectrum is unique. Therefore, 2123: 831: 666: 630: 470: 130: 89: 374: 1604: 619: 611: 543:
In 1756 Thomas Melvill observed the emission of distinct patterns of colour when
462: 420: 356: 165: 134: 102: 966:
Essays and Observations, Physical and Literary. Read Before a Society in Edinburgh
17: 792: 615: 161: 146: 125:. The frequency of light emitted is a function of the energy of the transition. 98: 73: 1412:
Monatsbericht der Königlichen Preussische Akademie der Wissenschaften zu Berlin
1414:(Monthly report of the Royal Prussian Academy of Sciences in Berlin), 662–665. 1251: 716: 677: 346: 142: 1506: 1466: 1073:
OpenStax Astronomy, "Spectroscopy in Astronomy". OpenStax CNX. Sep 29, 2016
685: 676:
and samples of metal salts. This method of qualitative analysis is called a
672:
On a simple level, flame emission spectroscopy can be observed using just a
662: 447: 342: 310: 208: 1060: 1042: 508:
when he discovered the phenomenon of discrete emission lines in the 1850s.
1425:(Proceedings of the Natural History / Medical Association in Heidelberg), 936: 555:
discovered the principles of diffraction grating and American astronomer
1343: 1318: 693: 361: 81: 1293: 1268: 712: 114: 52:(right) emission sodium D lines using a wick with salt water in a flame 1161:
Société Philomatique de Paris. Extraits des Procès-Verbaux de Séances.
653:
particles which move to the hottest region of the flame where gaseous
1423:
Verhandlungen des naturhistorisch-medizinischen Vereins zu Heidelberg
1392:
Alter's observations of hydrogen's optical spectrum appear on p. 213.
827: 689: 681: 595: 586:, thereby introducing an alternative to flame spectroscopy. In 1849, 466: 338: 216: 212: 211:
in the atom are excited, for example by being heated, the additional
141:). On the other hand, nuclear shell transitions can emit high energy 118: 93: 1481: 1442: 992:
Denkschriften der Königlichen Akademie der Wissenschaften zu München
684:
salts placed in the flame will glow yellow from sodium ions, while
909: 719:
of the light. It has unit mâ‹…sâ‹…sr. It is also used as a measure of
692:
wire will create a blue colored flame, however in the presence of
673: 654: 650: 446: 373: 355: 122: 39: 31: 1564:
Color Simulation of Element Emission Spectrum Based on NIST data
658: 440: 379: 1577: 1573: 1553: 1075:
http://cnx.org/contents/1f92a120-370a-4547-b14e-a3df3ce6f083@3
469:
emitted by atoms or molecules during their transition from an
410:. Unresolved band spectra may appear as a spectral continuum. 160:. For most substances, the amount of emission varies with the 32: 575:
and allowing for the dispersed wavelengths to be quantified.
27:
Frequencies of light emitted by atoms or chemical compounds
1559:
NIST Physical Reference Data—Atomic Spectroscopy Databases
707:
is a coefficient in the power output per unit time of an
661:
are produced through the dissociation of molecules. Here
523:
because of the light nature of what is being emitted.
88:
from a high energy state to a lower energy state. The
1269:"Early Spectroscopy and the Balmer Lines of Hydrogen" 994:(Memoirs of the Royal Academy of Science in Munich), 645:
Experimental technique in flame emission spectroscopy
319: 295: 268: 229: 1307:(Ă…ngström, 1852), p. 352; (Ă…ngström, 1855b), p. 337. 1122:"On the prismatic decomposition of electrical light" 715:. The emission coefficient of a gas varies with the 2059: 1996: 1955: 1948: 1910: 1882: 1824: 1774: 1674: 1611: 874:, Table of emission spectra of gas discharge lamps 325: 301: 281: 254: 145:, while nuclear spin transitions emit low energy 36:Emission spectrum of a ceramic metal halide lamp. 1129:. London, England: John Murray. pp. 11–12. 696:gives green (molecular contribution by CuCl). 519:Emission spectroscopy is often referred to as 1589: 8: 1661:Vibrational spectroscopy of linear molecules 764:is the energy scattered by a volume element 465:technique which examines the wavelengths of 168:of the object, leading to the appearance of 1027:"A geological history of reflecting optics" 1952: 1656:Nuclear resonance vibrational spectroscopy 1596: 1582: 1574: 1206:Kongliga Vetenskaps-Akademiens Handlingar 1178:L'Institut, Journal Universel des Sciences 1138: 1136: 367:The above picture shows the visible light 2029:Inelastic electron tunneling spectroscopy 1709:Resonance-enhanced multiphoton ionization 1505: 1342: 1292: 1050: 688:(used in road flares) ions color it red. 318: 294: 273: 267: 234: 228: 195:. The description has been superseded by 191:and leads to the general result known as 1797:Extended X-ray absorption fine structure 1384:The American Journal of Science and Arts 1367:The American Journal of Science and Arts 669:to be used to allow for easy detection. 488:, protons or other heavier particles in 255:{\displaystyle E_{\text{photon}}=h\nu ,} 1099:(2nd ed.). IET. pp. 207–208. 1031:Journal of the Royal Society, Interface 927: 1523:An Introduction to Modern Astrophysics 1554:Emission spectra of atmospheric gases 1096:Sir Charles Wheatstone FRS: 1802-1875 504:, and it was also the method used by 7: 2102: 494:energy-dispersive X-ray spectroscopy 1443:"Ueber die Fraunhofer'schen Linien" 1408:"Ueber die Fraunhofer'schen Linien" 962:"Observations on light and colours" 1221:[Optical investigations]. 1204:[Optical investigations]. 492:and electrons or X-ray photons in 25: 2014:Deep-level transient spectroscopy 1766:Saturated absorption spectroscopy 590:experimentally demonstrated that 439:: identifying the composition of 282:{\displaystyle E_{\text{photon}}} 121:, resulting in the production of 2101: 2090: 2089: 2019:Dual-polarization interferometry 1172:Foucault, L. (7 February 1849). 1078: 791:per unit time then the emission 723:emissions (by mass) per MWâ‹…h of 2034:Scanning tunneling spectroscopy 2009:Circular dichroism spectroscopy 2004:Acoustic resonance spectroscopy 1319:"Spectrum Analysis Discoverer?" 490:particle-induced X-ray emission 44:A demonstration of the 589 nm D 1963:Fourier-transform spectroscopy 1651:Vibrational circular dichroism 711:source, a calculated value in 369:emission spectrum for hydrogen 1: 1761:Cavity ring-down spectroscopy 1666:Thermal infrared spectroscopy 1323:Journal of Chemical Education 1273:Journal of Chemical Education 1223:Annalen der Physik und Chemie 814:in Thomson scattering can be 521:optical emission spectroscopy 289:is the energy of the photon, 1895:Inelastic neutron scattering 1521:Carroll, Bradley W. (2007). 867:Electromagnetic spectroscopy 528:Atomic emission spectroscopy 1956:Data collection, processing 1832:Photoelectron/photoemission 937:"Spectroscopy Oil Analysis" 516:has many different causes. 502:flame emission spectroscopy 349:results (described below). 337:. This concludes that only 2176: 2041:Photoacoustic spectroscopy 1983:Time-resolved spectroscopy 1569:Hydrogen emission spectrum 1419:"Ueber das Sonnenspektrum" 1176:[Electric light]. 1159:[Electric light]. 838:, and can be deduced from 559:made the first engineered 536: 525: 2140:Electromagnetic radiation 2085: 2067:Astronomical spectroscopy 2046:Photothermal spectroscopy 1421:(On the sun's spectrum), 1410:(On Fraunhofer's lines), 1317:Retcofsky, H. L. (2003). 1252:10.1080/14786445508641880 1219:"Optische Untersuchungen" 840:quantum mechanical theory 486:fluorescence spectroscopy 437:astronomical spectroscopy 166:spectroscopic composition 78:electromagnetic radiation 1507:10.1002/andp.18601850205 1467:10.1002/andp.18601850115 1417:Gustav Kirchhoff (1859) 1406:Gustav Kirchhoff (1859) 1234:Ă…ngström, A.J. (1855b). 1217:Ă…ngström, A.J. (1855a). 1202:"Optiska undersökningar" 1025:Parker AR (March 2005). 1001:Fraunhofer, Jos. (1823) 960:Melvill, Thomas (1756). 608:William Thomson (Kelvin) 514:spectral line broadening 386:Radiation from molecules 2051:Pump–probe spectroscopy 1940:Ferromagnetic resonance 1732:Laser-induced breakdown 1200:Ă…ngström, A.J. (1852). 986:Frauhofer. Jos. (1821) 935:Incorporated, SynLube. 852:Absorption spectroscopy 539:History of spectroscopy 197:quantum electrodynamics 1747:Glow-discharge optical 1727:Raman optical activity 1641:Rotational–vibrational 1267:Wagner, H. J. (2005). 1240:Philosophical Magazine 1043:10.1098/rsif.2004.0026 974: ; see pp. 33–36. 455: 382: 364: 345:, as well as chemical 327: 303: 283: 256: 53: 37: 2135:Emission spectroscopy 1968:Hyperspectral imaging 1480:G. Kirchhoff (1860). 1441:G. Kirchhoff (1860). 1361:Alter, David (1854). 1155:Foucault, L. (1849). 1093:Brian Bowers (2001). 826:A warm body emitting 725:electricity generated 633:noticed that several 600:Anders Jonas Ă…ngström 565:Joseph von Fraunhofer 537:Further information: 526:Further information: 506:Anders Jonas Ă…ngström 459:Emission spectroscopy 451:Schematic diagram of 450: 414:Emission spectroscopy 378:Emission spectrum of 377: 360:Emission spectrum of 359: 328: 304: 284: 257: 178:emission spectroscopy 43: 35: 2150:Analytical chemistry 1720:Coherent anti-Stokes 1675:UV–Vis–NIR "Optical" 1429:(7) : 251–255. 1344:10.1021/ed080p1003.1 1236:"Optical researches" 1174:"Lumière Ă©lectrique" 1157:"Lumière Ă©lectrique" 888:Luminous coefficient 862:Atomic spectral line 836:Einstein coefficient 822:Spontaneous emission 777:between wavelengths 705:Emission coefficient 700:Emission coefficient 614:. In 1854 and 1855, 475:electronic structure 453:spontaneous emission 317: 302:{\displaystyle \nu } 293: 266: 227: 158:Stefan–Boltzmann law 2145:Physical quantities 2024:Hadron spectroscopy 1814:Conversion electron 1775:X-ray and Gamma ray 1682:Ultraviolet–visible 1498:1860AnP...185..275K 1459:1860AnP...185..148K 1335:2003JChEd..80.1003R 1294:10.1021/ed082p380.1 1285:2005JChEd..82..380W 1120:Wheatstone (1836). 916:Thermionic emission 857:Absorption spectrum 735:Scattering of light 573:spectral resolution 561:diffraction grating 193:Fermi's golden rule 189:perturbation theory 48:(left) and 590 nm D 2072:Force spectroscopy 1997:Measured phenomena 1988:Video spectroscopy 1692:Cold vapour atomic 1486:Annalen der Physik 1447:Annalen der Physik 1378:Alter, D. (1855). 1007:Annalen der Physik 872:Gas-discharge lamp 741:Thomson scattering 580:Charles Wheatstone 498:X-ray fluorescence 456: 383: 365: 323: 299: 279: 252: 54: 38: 2117: 2116: 2081: 2080: 1973:Spectrophotometry 1900:Neutron spin echo 1874:Beta spectroscopy 1787:Energy-dispersive 1536:978-0-8053-0402-2 1527:Pearson Education 1106:978-0-85296-103-2 770:into solid angle 588:J. B. L. Foucault 557:David Rittenhouse 551:flames. By 1785 479:quantum mechanics 435:. One example is 326:{\displaystyle h} 276: 237: 185:quantum mechanics 170:color temperature 66:chemical compound 58:emission spectrum 18:Molecular spectra 16:(Redirected from 2167: 2105: 2104: 2093: 2092: 1953: 1864:phenomenological 1613:Vibrational (IR) 1598: 1591: 1584: 1575: 1541: 1540: 1518: 1512: 1511: 1509: 1477: 1471: 1470: 1438: 1432: 1401: 1395: 1391: 1374: 1355: 1349: 1348: 1346: 1314: 1308: 1305: 1299: 1298: 1296: 1264: 1258: 1255: 1230: 1213: 1194: 1188: 1185: 1168: 1149: 1143: 1142:Brand, pp. 60–62 1140: 1131: 1130: 1117: 1111: 1110: 1090: 1084: 1083: 1082: 1071: 1065: 1064: 1054: 1022: 1016: 981: 975: 973: 957: 951: 950: 948: 947: 932: 813: 802: 790: 780: 776: 769: 763: 639:solar atmosphere 635:Fraunhofer lines 627:Gustav Kirchhoff 332: 330: 329: 324: 308: 306: 305: 300: 288: 286: 285: 280: 278: 277: 274: 261: 259: 258: 253: 239: 238: 235: 62:chemical element 21: 2175: 2174: 2170: 2169: 2168: 2166: 2165: 2164: 2160:Nuclear physics 2120: 2119: 2118: 2113: 2077: 2055: 1992: 1944: 1906: 1878: 1820: 1770: 1670: 1631:Resonance Raman 1607: 1602: 1550: 1545: 1544: 1537: 1529:. p. 256. 1520: 1519: 1515: 1479: 1478: 1474: 1440: 1439: 1435: 1402: 1398: 1377: 1360: 1356: 1352: 1316: 1315: 1311: 1306: 1302: 1266: 1265: 1261: 1233: 1216: 1199: 1195: 1191: 1171: 1154: 1150: 1146: 1141: 1134: 1119: 1118: 1114: 1107: 1092: 1091: 1087: 1077: 1072: 1068: 1024: 1023: 1019: 982: 978: 959: 958: 954: 945: 943: 941:www.synlube.com 934: 933: 929: 924: 904:Spectral theory 899:Rydberg formula 848: 824: 807: 796: 782: 778: 771: 765: 747: 737: 729:Emission factor 709:electromagnetic 702: 680:. For example, 647: 541: 535: 530: 416: 388: 335:Planck constant 315: 314: 291: 290: 269: 264: 263: 230: 225: 224: 205: 139:phosphorescence 111: 92:of the emitted 80:emitted due to 51: 47: 28: 23: 22: 15: 12: 11: 5: 2173: 2171: 2163: 2162: 2157: 2152: 2147: 2142: 2137: 2132: 2130:Atomic physics 2122: 2121: 2115: 2114: 2112: 2111: 2099: 2086: 2083: 2082: 2079: 2078: 2076: 2075: 2069: 2063: 2061: 2057: 2056: 2054: 2053: 2048: 2043: 2038: 2037: 2036: 2026: 2021: 2016: 2011: 2006: 2000: 1998: 1994: 1993: 1991: 1990: 1985: 1980: 1975: 1970: 1965: 1959: 1957: 1950: 1946: 1945: 1943: 1942: 1937: 1932: 1927: 1926: 1925: 1914: 1912: 1908: 1907: 1905: 1904: 1903: 1902: 1892: 1886: 1884: 1880: 1879: 1877: 1876: 1871: 1866: 1861: 1856: 1855: 1854: 1849: 1847:Angle-resolved 1844: 1839: 1828: 1826: 1822: 1821: 1819: 1818: 1817: 1816: 1806: 1801: 1800: 1799: 1794: 1789: 1778: 1776: 1772: 1771: 1769: 1768: 1763: 1758: 1757: 1756: 1751: 1750: 1749: 1734: 1729: 1724: 1723: 1722: 1712: 1706: 1701: 1696: 1695: 1694: 1684: 1678: 1676: 1672: 1671: 1669: 1668: 1663: 1658: 1653: 1648: 1643: 1638: 1633: 1628: 1623: 1617: 1615: 1609: 1608: 1603: 1601: 1600: 1593: 1586: 1578: 1572: 1571: 1566: 1561: 1556: 1549: 1548:External links 1546: 1543: 1542: 1535: 1513: 1492:(2): 275–301. 1472: 1453:(1): 148–150. 1433: 1431: 1430: 1415: 1396: 1394: 1393: 1386:. 2nd series. 1375: 1369:. 2nd series. 1350: 1309: 1300: 1259: 1257: 1256: 1242:. 4th series. 1231: 1214: 1208:(in Swedish). 1189: 1187: 1186: 1169: 1144: 1132: 1112: 1105: 1085: 1066: 1017: 1015: 1014: 999: 976: 952: 926: 925: 923: 920: 919: 918: 913: 906: 901: 896: 890: 885: 883:Isotopic shift 880: 878:Isomeric shift 875: 869: 864: 859: 854: 847: 844: 823: 820: 806:The values of 736: 733: 701: 698: 646: 643: 571:improving the 547:were added to 534: 531: 433:periodic table 415: 412: 408:spectral bands 404:spectral lines 387: 384: 322: 298: 272: 251: 248: 245: 242: 233: 204: 201: 174:emission lines 110: 107: 49: 45: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2172: 2161: 2158: 2156: 2153: 2151: 2148: 2146: 2143: 2141: 2138: 2136: 2133: 2131: 2128: 2127: 2125: 2110: 2109: 2100: 2098: 2097: 2088: 2087: 2084: 2073: 2070: 2068: 2065: 2064: 2062: 2058: 2052: 2049: 2047: 2044: 2042: 2039: 2035: 2032: 2031: 2030: 2027: 2025: 2022: 2020: 2017: 2015: 2012: 2010: 2007: 2005: 2002: 2001: 1999: 1995: 1989: 1986: 1984: 1981: 1979: 1976: 1974: 1971: 1969: 1966: 1964: 1961: 1960: 1958: 1954: 1951: 1947: 1941: 1938: 1936: 1933: 1931: 1928: 1924: 1921: 1920: 1919: 1916: 1915: 1913: 1909: 1901: 1898: 1897: 1896: 1893: 1891: 1888: 1887: 1885: 1881: 1875: 1872: 1870: 1867: 1865: 1862: 1860: 1857: 1853: 1850: 1848: 1845: 1843: 1840: 1838: 1835: 1834: 1833: 1830: 1829: 1827: 1823: 1815: 1812: 1811: 1810: 1807: 1805: 1802: 1798: 1795: 1793: 1790: 1788: 1785: 1784: 1783: 1780: 1779: 1777: 1773: 1767: 1764: 1762: 1759: 1755: 1752: 1748: 1745: 1744: 1743: 1740: 1739: 1738: 1735: 1733: 1730: 1728: 1725: 1721: 1718: 1717: 1716: 1713: 1710: 1707: 1705: 1704:Near-infrared 1702: 1700: 1697: 1693: 1690: 1689: 1688: 1685: 1683: 1680: 1679: 1677: 1673: 1667: 1664: 1662: 1659: 1657: 1654: 1652: 1649: 1647: 1644: 1642: 1639: 1637: 1634: 1632: 1629: 1627: 1624: 1622: 1619: 1618: 1616: 1614: 1610: 1606: 1599: 1594: 1592: 1587: 1585: 1580: 1579: 1576: 1570: 1567: 1565: 1562: 1560: 1557: 1555: 1552: 1551: 1547: 1538: 1532: 1528: 1524: 1517: 1514: 1508: 1503: 1499: 1495: 1491: 1487: 1483: 1476: 1473: 1468: 1464: 1460: 1456: 1452: 1448: 1444: 1437: 1434: 1428: 1424: 1420: 1416: 1413: 1409: 1405: 1404: 1400: 1397: 1389: 1385: 1381: 1376: 1372: 1368: 1364: 1359: 1358: 1354: 1351: 1345: 1340: 1336: 1332: 1328: 1324: 1320: 1313: 1310: 1304: 1301: 1295: 1290: 1286: 1282: 1278: 1274: 1270: 1263: 1260: 1253: 1249: 1245: 1241: 1237: 1232: 1228: 1225:(in German). 1224: 1220: 1215: 1211: 1207: 1203: 1198: 1197: 1193: 1190: 1184:(788): 44–46. 1183: 1180:(in French). 1179: 1175: 1170: 1166: 1163:(in French). 1162: 1158: 1153: 1152: 1148: 1145: 1139: 1137: 1133: 1128: 1123: 1116: 1113: 1108: 1102: 1098: 1097: 1089: 1086: 1081: 1076: 1070: 1067: 1062: 1058: 1053: 1048: 1044: 1040: 1036: 1032: 1028: 1021: 1018: 1013:(8): 337–378. 1012: 1008: 1004: 1000: 997: 993: 989: 985: 984: 980: 977: 971: 967: 963: 956: 953: 942: 938: 931: 928: 921: 917: 914: 911: 907: 905: 902: 900: 897: 894: 891: 889: 886: 884: 881: 879: 876: 873: 870: 868: 865: 863: 860: 858: 855: 853: 850: 849: 845: 843: 841: 837: 833: 832:monochromatic 829: 821: 819: 817: 812: 811: 804: 801: 800: 794: 789: 785: 774: 768: 762: 758: 755: 752: 751: 744: 742: 734: 732: 730: 726: 722: 721:environmental 718: 714: 710: 706: 699: 697: 695: 691: 687: 683: 679: 675: 670: 668: 667:monochromator 664: 660: 656: 652: 644: 642: 640: 636: 632: 631:Robert Bunsen 628: 623: 622:of hydrogen. 621: 617: 613: 609: 605: 604:George Stokes 601: 597: 593: 589: 585: 581: 576: 574: 570: 566: 562: 558: 554: 553:James Gregory 550: 546: 540: 532: 529: 524: 522: 517: 515: 509: 507: 503: 499: 495: 491: 487: 482: 480: 476: 472: 471:excited state 468: 464: 463:spectroscopic 460: 454: 449: 445: 442: 438: 434: 430: 425: 422: 413: 411: 409: 405: 401: 397: 393: 385: 381: 376: 372: 370: 363: 358: 354: 350: 348: 344: 340: 336: 320: 312: 296: 270: 249: 246: 243: 240: 231: 220: 218: 214: 210: 202: 200: 198: 194: 190: 186: 181: 179: 175: 171: 167: 163: 159: 155: 150: 148: 144: 140: 136: 132: 131:visible light 126: 124: 120: 116: 108: 106: 104: 100: 95: 91: 90:photon energy 87: 83: 79: 75: 71: 67: 63: 59: 42: 34: 30: 19: 2106: 2094: 2074:(a misnomer) 2060:Applications 1978:Time-stretch 1869:paramagnetic 1687:Fluorescence 1605:Spectroscopy 1522: 1516: 1489: 1485: 1475: 1450: 1446: 1436: 1426: 1422: 1411: 1399: 1387: 1383: 1370: 1366: 1353: 1326: 1322: 1312: 1303: 1276: 1272: 1262: 1243: 1239: 1226: 1222: 1209: 1205: 1192: 1181: 1177: 1164: 1160: 1147: 1125: 1115: 1095: 1088: 1069: 1034: 1030: 1020: 1010: 1006: 995: 991: 979: 969: 965: 955: 944:. Retrieved 940: 930: 825: 809: 808: 805: 798: 797: 787: 783: 772: 766: 760: 756: 753: 749: 748: 745: 738: 704: 703: 671: 648: 624: 620:Balmer lines 612:Balmer lines 577: 542: 520: 518: 510: 483: 458: 457: 426: 421:spectroscope 417: 389: 366: 351: 221: 206: 182: 151: 135:fluorescence 127: 112: 103:spectroscopy 57: 55: 29: 1646:Vibrational 1525:. CA, USA: 1329:(9): 1003. 1246:: 327–342. 1037:(2): 1–17. 793:coefficient 616:David Alter 406:, known as 396:vibrational 162:temperature 147:radio waves 99:wavelengths 74:frequencies 2155:Scattering 2124:Categories 1852:Two-photon 1754:absorption 1636:Rotational 1390:: 213–214. 1279:(3): 380. 1229:: 141–165. 1212:: 333–360. 946:2017-02-24 922:References 717:wavelength 678:flame test 598:physicist 592:absorption 569:dispersion 563:. In 1821 392:rotational 347:flame test 343:neon signs 143:gamma rays 86:transition 1930:Terahertz 1911:Radiowave 1809:Mössbauer 816:predicted 686:strontium 663:electrons 625:By 1859, 578:In 1835, 311:frequency 297:ν 247:ν 209:electrons 207:When the 154:emittance 84:making a 82:electrons 2096:Category 1825:Electron 1792:Emission 1742:emission 1699:Vibronic 1373:: 55–57. 1167:: 16–20. 1061:16849159 972:: 12–90. 846:See also 694:chloride 400:vibronic 362:hydrogen 164:and the 109:Emission 70:spectrum 2108:Commons 1935:ESR/EPR 1883:Nucleon 1711:(REMPI) 1494:Bibcode 1455:Bibcode 1331:Bibcode 1281:Bibcode 1052:1578258 998:: 3–76. 895:physics 828:photons 727:, see: 713:physics 596:Swedish 549:alcohol 533:History 467:photons 431:of the 429:element 339:photons 333:is the 309:is its 203:Origins 115:physics 94:photons 68:is the 1949:Others 1737:Atomic 1533:  1103:  1059:  1049:  983:See: 893:Plasma 830:has a 690:Copper 682:sodium 584:sparks 398:, and 313:, and 275:photon 262:where 236:photon 217:photon 213:energy 119:photon 1890:Alpha 1859:Auger 1837:X-ray 1804:Gamma 1782:X-ray 1715:Raman 1626:Raman 1621:FT-IR 1403:See: 1357:See: 1196:See: 1151:See: 910:Diode 674:flame 655:atoms 651:solid 545:salts 461:is a 441:stars 123:light 60:of a 1531:ISBN 1127:1835 1101:ISBN 1057:PMID 908:The 781:and 659:ions 657:and 629:and 606:and 380:iron 172:and 152:The 56:The 1918:NMR 1502:doi 1490:185 1463:doi 1451:185 1339:doi 1289:doi 1248:doi 1047:PMC 1039:doi 795:is 746:If 739:In 496:or 137:or 113:In 76:of 72:of 64:or 2126:: 1923:2D 1842:UV 1500:. 1488:. 1484:. 1461:. 1449:. 1445:. 1388:19 1382:. 1371:18 1365:. 1337:. 1327:80 1325:. 1321:. 1287:. 1277:82 1275:. 1271:. 1238:. 1227:94 1210:40 1182:17 1165:13 1135:^ 1124:. 1055:. 1045:. 1033:. 1029:. 1011:74 1009:, 968:. 964:. 939:. 842:. 803:. 788:dλ 786:+ 767:dV 761:dλ 759:Ω 754:dV 731:. 641:. 481:. 394:, 180:. 149:. 1597:e 1590:t 1583:v 1539:. 1510:. 1504:: 1496:: 1469:. 1465:: 1457:: 1427:1 1347:. 1341:: 1333:: 1297:. 1291:: 1283:: 1254:. 1250:: 1244:9 1109:. 1063:. 1041:: 1035:2 996:8 970:2 949:. 810:X 799:X 784:λ 779:λ 775:Ω 773:d 757:d 750:X 321:h 271:E 250:, 244:h 241:= 232:E 50:1 46:2 20:)

Index

Molecular spectra


chemical element
chemical compound
spectrum
frequencies
electromagnetic radiation
electrons
transition
photon energy
photons
wavelengths
spectroscopy
physics
photon
light
visible light
fluorescence
phosphorescence
gamma rays
radio waves
emittance
Stefan–Boltzmann law
temperature
spectroscopic composition
color temperature
emission lines
emission spectroscopy
quantum mechanics

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑