Knowledge (XXG)

Moment curve

Source đź“ť

292:
hyperplanes. In particular, in five dimensions, sets of five hyperplanes can partition segments of the moment curve into at most 26 pieces. It is not known whether four-dimensional partitions into 16 equal subsets by four hyperplanes are always possible, but it is possible to partition 16 points on
288:. Similarly but more complicatedly, any volume or measure in three dimensions may be partitioned into eight equal subsets by three planes. However, this result does not generalize to five or more dimensions, as the moment curve provides examples of sets that cannot be partitioned into 2 subsets by 387:
Then a plane can only cross the curve at three positions. Since two crossing edges must have four vertices in the same plane, this can never happen. A similar construction using the moment curve modulo a prime number, but in two dimensions rather than three, provides a linear bound for the
119: 263: 203:. Cyclic polytopes have the largest possible number of faces for a given number of vertices, and in dimensions four or more have the property that their edges form a 743: 714: 688: 215:/2 vertices of the polytope forms one of its faces. Sets of points on the moment curve also realize the maximum possible number of simplices, 728: 704: 718: 646: 544:; Attali, Dominique; Devillers, Olivier (2007), "Complexity of Delaunay triangulation for points on lower-dimensional polyhedra", 183:
points, then the curve crosses the hyperplane at each intersection point. Thus, every finite point set on the moment curve is in
566: 46: 296:
A construction based on the moment curve can be used to prove a lemma of Gale, according to which, for any positive integers
494:, Section 3.5, Gale's Lemma and Schrijver's Theorem, pp. 64–67. The use of Gale's lemma for the coloring problem is due to 696: 218: 774: 675:, Symposia in Pure Mathematics, vol. 7, Providence, R.I.: American Mathematical Society, pp. 225–232, 389: 152: 266: 329: 137: 634: 343:-vertex graphs may be drawn with their vertices in a three-dimensional integer grid of side length O( 285: 37: 208: 724: 700: 642: 561: 144: 752: 720:
Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combinatorics and Geometry
614: 575: 321: 184: 156: 680: 656: 641:, EATCS Monographs on Theoretical Computer Science, vol. 10, Berlin: Springer-Verlag, 626: 587: 553: 676: 652: 622: 583: 549: 281: 200: 148: 125: 33: 25: 204: 768: 579: 524: 336: 293:
the four-dimensional moment curve into the 16 orthants of a set of four hyperplanes.
133: 605: 600: 325: 160: 284:, it is possible to divide any area or measure into four equal subsets, using the 668: 596: 541: 196: 756: 316:-dimensional sphere in such a way that every open hemisphere contains at least 738: 664: 546:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms
172: 347:) and with no two edges crossing. The main idea is to choose a prime number 129: 17: 618: 320:
points. This lemma, in turn, can be used to calculate the
143:
Moment curves have been used for several applications in
179:
points. If a hyperplane intersects the curve in exactly
114:{\displaystyle \left(x,x^{2},x^{3},\dots ,x^{d}\right).} 175:
intersects the moment curve in a finite set of at most
463: 221: 199:
of any finite set of points on the moment curve is a
49: 507: 257: 113: 564:(1978), "A short proof of Kneser's conjecture", 328:, a problem first solved in a different way by 667:(1963), "Neighborly and cyclic polytopes", in 258:{\displaystyle \Omega (n^{\lceil d/2\rceil })} 8: 475: 447: 423: 247: 233: 603:(1997), "Three-dimensional graph drawing", 744:Journal of the London Mathematical Society 239: 232: 220: 136:. Its closure in projective space is the 132:, and in three-dimensional space it is a 97: 78: 65: 48: 491: 479: 451: 431: 427: 411: 407: 400: 335:The moment curve has also been used in 495: 741:(1951), "On a problem of Heilbronn", 548:, New York: ACM, pp. 1106–1113, 464:Amenta, Attali & Devillers (2007) 7: 639:Algorithms in Combinatorial Geometry 520: 443: 211:, meaning that each set of at most 699:, vol. 212, Springer-Verlag, 222: 14: 36:given by the set of points with 567:Journal of Combinatorial Theory 155:, and a geometric proof of the 252: 225: 1: 697:Graduate Texts in Mathematics 693:Lectures on Discrete Geometry 580:10.1016/0097-3165(78)90023-7 359:of the graph at coordinates 410:, Definition 5.4.1, p. 97; 304:, it is possible to place 2 791: 723:, Universitext, Springer, 414:, Definition 1.6.3, p. 17. 207:. More strongly, they are 757:10.1112/jlms/s1-26.3.198 673:Convexity, Seattle, 1961 390:no-three-in-line problem 153:no-three-in-line problem 128:, the moment curve is a 267:Delaunay triangulations 185:affine general position 430:, Lemma 5.4.2, p. 97; 259: 115: 635:Edelsbrunner, Herbert 454:, Lemma 5.4.2, p. 97. 434:, Lemma 1.6.4, p. 17. 265:, among all possible 260: 138:rational normal curve 116: 38:Cartesian coordinates 355:and to place vertex 286:ham sandwich theorem 219: 209:neighborly polytopes 47: 508:Cohen et al. (1997) 476:Edelsbrunner (1987) 448:Edelsbrunner (1987) 424:Edelsbrunner (1987) 339:, to show that all 619:10.1007/BF02522826 255: 111: 730:978-3-540-00362-5 706:978-0-387-95373-1 145:discrete geometry 782: 775:Algebraic curves 759: 733: 709: 683: 659: 629: 590: 556: 528: 517: 511: 505: 499: 489: 483: 473: 467: 461: 455: 441: 435: 421: 415: 405: 322:chromatic number 264: 262: 261: 256: 251: 250: 243: 157:chromatic number 149:cyclic polytopes 120: 118: 117: 112: 107: 103: 102: 101: 83: 82: 70: 69: 790: 789: 785: 784: 783: 781: 780: 779: 765: 764: 763: 737: 731: 713: 707: 687: 663: 649: 633: 594: 560: 540: 536: 531: 518: 514: 506: 502: 492:Matoušek (2003) 490: 486: 480:Matoušek (2003) 474: 470: 462: 458: 452:Matoušek (2002) 442: 438: 432:Matoušek (2003) 428:Matoušek (2002) 422: 418: 412:Matoušek (2003) 408:Matoušek (2002) 406: 402: 398: 379: mod  371: mod  282:Euclidean plane 228: 217: 216: 201:cyclic polytope 193: 169: 126:Euclidean plane 93: 74: 61: 54: 50: 45: 44: 34:Euclidean space 26:algebraic curve 12: 11: 5: 788: 786: 778: 777: 767: 766: 762: 761: 751:(3): 198–204, 735: 729: 715:Matoušek, Jiří 711: 705: 689:Matoušek, Jiří 685: 661: 647: 631: 613:(2): 199–208, 595:Cohen, R. F.; 592: 574:(3): 325–326, 558: 537: 535: 532: 530: 529: 512: 500: 484: 468: 456: 436: 416: 399: 397: 394: 385: 384: 254: 249: 246: 242: 238: 235: 231: 227: 224: 205:complete graph 192: 189: 168: 165: 122: 121: 110: 106: 100: 96: 92: 89: 86: 81: 77: 73: 68: 64: 60: 57: 53: 13: 10: 9: 6: 4: 3: 2: 787: 776: 773: 772: 770: 758: 754: 750: 746: 745: 740: 736: 732: 726: 722: 721: 716: 712: 708: 702: 698: 694: 690: 686: 682: 678: 674: 670: 666: 662: 658: 654: 650: 648:3-540-13722-X 644: 640: 636: 632: 628: 624: 620: 616: 612: 608: 607: 602: 598: 593: 589: 585: 581: 577: 573: 569: 568: 563: 559: 555: 551: 547: 543: 539: 538: 533: 526: 522: 516: 513: 509: 504: 501: 497: 496:Bárány (1978) 493: 488: 485: 481: 478:, pp. 70–79; 477: 472: 469: 465: 460: 457: 453: 449: 445: 440: 437: 433: 429: 425: 420: 417: 413: 409: 404: 401: 395: 393: 391: 382: 378: 374: 370: 366: 362: 361: 360: 358: 354: 350: 346: 342: 338: 337:graph drawing 333: 331: 330:LászlĂł Lovász 327: 326:Kneser graphs 323: 319: 315: 311: 308: +  307: 303: 299: 294: 291: 287: 283: 278: 276: 272: 268: 244: 240: 236: 229: 214: 210: 206: 202: 198: 190: 188: 186: 182: 178: 174: 166: 164: 162: 161:Kneser graphs 158: 154: 150: 146: 141: 139: 135: 134:twisted cubic 131: 127: 108: 104: 98: 94: 90: 87: 84: 79: 75: 71: 66: 62: 58: 55: 51: 43: 42: 41: 39: 35: 32:-dimensional 31: 27: 23: 19: 748: 742: 719: 692: 672: 669:Klee, Victor 638: 610: 606:Algorithmica 604: 599:; Lin, Tao; 571: 570:, Series A, 565: 545: 542:Amenta, Nina 519:Credited by 515: 503: 487: 482:, pp. 50–51. 471: 459: 439: 419: 403: 386: 380: 376: 372: 368: 364: 356: 352: 351:larger than 348: 344: 340: 334: 317: 313: 312:points on a 309: 305: 301: 297: 295: 289: 279: 277:dimensions. 274: 270: 212: 194: 191:Applications 180: 176: 170: 142: 123: 40:of the form 29: 22:moment curve 21: 15: 739:Roth, K. F. 665:Gale, David 521:Roth (1951) 444:Gale (1963) 269:of sets of 197:convex hull 601:Ruskey, F. 562:Bárány, I. 534:References 525:Paul ErdĹ‘s 450:, p. 101; 426:, p. 100; 273:points in 173:hyperplane 167:Properties 147:including 597:Eades, P. 248:⌉ 234:⌈ 223:Ω 88:… 769:Category 717:(2003), 691:(2002), 637:(1987), 130:parabola 18:geometry 681:0152944 671:(ed.), 657:0904271 627:1425733 588:0514626 554:2485262 324:of the 280:In the 124:In the 727:  703:  679:  655:  645:  625:  586:  552:  171:Every 151:, the 24:is an 20:, the 396:Notes 725:ISBN 701:ISBN 643:ISBN 300:and 195:The 753:doi 615:doi 576:doi 523:to 159:of 28:in 16:In 771:: 749:26 747:, 695:, 677:MR 653:MR 651:, 623:MR 621:, 611:17 609:, 584:MR 582:, 572:25 550:MR 446:; 392:. 383:). 375:, 367:, 332:. 187:. 163:. 140:. 760:. 755:: 734:. 710:. 684:. 660:. 630:. 617:: 591:. 578:: 557:. 527:. 510:. 498:. 466:. 381:p 377:i 373:p 369:i 365:i 363:( 357:i 353:n 349:p 345:n 341:n 318:k 314:d 310:d 306:k 302:d 298:k 290:d 275:d 271:n 253:) 245:2 241:/ 237:d 230:n 226:( 213:d 181:d 177:d 109:. 105:) 99:d 95:x 91:, 85:, 80:3 76:x 72:, 67:2 63:x 59:, 56:x 52:( 30:d

Index

geometry
algebraic curve
Euclidean space
Cartesian coordinates
Euclidean plane
parabola
twisted cubic
rational normal curve
discrete geometry
cyclic polytopes
no-three-in-line problem
chromatic number
Kneser graphs
hyperplane
affine general position
convex hull
cyclic polytope
complete graph
neighborly polytopes
Delaunay triangulations
Euclidean plane
ham sandwich theorem
chromatic number
Kneser graphs
László Lovász
graph drawing
no-three-in-line problem
Matoušek (2002)
Matoušek (2003)
Edelsbrunner (1987)

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑