Knowledge (XXG)

Nuclear magnetic resonance

Source 📝

7631: 926:. Classically, this corresponds to the proportionality between the angular momentum and the magnetic dipole moment of a spinning charged sphere, both of which are vectors parallel to the rotation axis whose length increases proportional to the spinning frequency. It is the magnetic moment and its interaction with magnetic fields that allows the observation of NMR signal associated with transitions between nuclear spin levels during resonant RF irradiation or caused by Larmor precession of the average magnetic moment after resonant irradiation. Nuclides with even numbers of both protons and neutrons have zero 5253:
respond to both the rock matrix and fluid properties and are strongly dependent on mineralogy, NMR-logging measurements respond to the presence of hydrogen. Because hydrogen atoms primarily occur in pore fluids, NMR effectively responds to the volume, composition, viscosity, and distribution of these fluids, for example oil, gas or water. NMR logs provide information about the quantities of fluids present, the properties of these fluids, and the sizes of the pores containing these fluids. From this information, it is possible to infer or estimate:
2127:, and it explains why NMR is able to probe the chemical structure of molecules, which depends on the electron density distribution in the corresponding molecular orbitals. If a nucleus in a specific chemical group is shielded to a higher degree by a higher electron density of its surrounding molecular orbitals, then its NMR frequency will be shifted "upfield" (that is, a lower chemical shift), whereas if it is less shielded by such surrounding electron density, then its NMR frequency will be shifted "downfield" (that is, a higher chemical shift). 2119:) would resonate at exactly the same frequency but this is not the case. The most important perturbation of the NMR frequency for applications of NMR is the "shielding" effect of the shells of electrons surrounding the nucleus. Electrons, similar to the nucleus, are also charged and rotate with a spin to produce a magnetic field opposite to the applied magnetic field. In general, this electronic shielding reduces the magnetic field 7643: 5307: 2471:. When the oscillation frequency matches the nuclear resonance frequency, the transverse magnetization is maximized and a peak is observed in the spectrum. Although NMR spectra could be, and have been, obtained using a fixed constant magnetic field and sweeping the frequency of the oscillating magnetic field, it was more convenient to use a fixed frequency source and vary the current (and hence magnetic field) in an 1255:). By itself, there is no energetic difference for any particular orientation of the nuclear magnet (only one energy state, on the left), but in an external magnetic field there is a high-energy state and a low-energy state depending on the relative orientation of the magnet to the external field, and in thermal equilibrium, the low-energy orientation is preferred. The average orientation of the magnetic moment will 2334: 2788:. Then, Jake Schaefer and Ed Stejskal demonstrated the powerful use of cross polarization under MAS conditions (CP-MAS) and proton decoupling, which is now routinely employed to measure high resolution spectra of low-abundance and low-sensitivity nuclei, such as carbon-13, silicon-29, or nitrogen-15, in solids. Significant further signal enhancement can be achieved by 2107:("90° pulse"), while after a twice longer time, the initial magnetization has been inverted ("180° pulse"). It is the transverse magnetization generated by a resonant oscillating field which is usually detected in NMR, during application of the relatively weak RF field in old-fashioned continuous-wave NMR, or after the relatively strong RF pulse in modern pulsed NMR. 1236: 4650: 44: 541:. Different atomic nuclei within a molecule resonate at different (radio) frequencies in the same applied static magnetic field, due to various local magnetic fields. The observation of such magnetic resonance frequencies of the nuclei present in a molecule makes it possible to determine essential chemical and structural information about the molecule. 5087: 2100:. The stronger the oscillating field, the faster the Rabi oscillations or the precession around the effective field in the rotating frame. After a certain time on the order of 2–1000 microseconds, a resonant RF pulse flips the spin magnetization to the transverse plane, i.e. it makes an angle of 90° with the constant magnetic field 2607:
and spin state prior to it. The full analysis involves repeating the sequence with the pulse timings systematically varied in order to probe the oscillations of the spin system are point by point in the time domain. Multidimensional Fourier transformation of the multidimensional time signal yields the multidimensional spectrum. In
36: 5490:) are field independent, producing clusters of two or more frequencies separated by several Hz, which are more easily observed in a fundamental resonance of about 2 kHz."Indeed it appears that enhanced resolution is possible due to the long spin relaxation times and high field homogeneity which prevail in EFNMR." 2805:
with such nuclides. The most abundant naturally occurring isotopes of hydrogen and phosphorus (for example) are both magnetically susceptible and readily useful for nuclear magnetic resonance spectroscopy. In contrast, carbon and nitrogen have useful isotopes but which occur only in very low natural abundance.
127:(MRI). The original application of NMR to condensed matter physics is nowadays mostly devoted to strongly correlated electron systems. It reveals large many-body couplings by fast broadband detection and should not be confused with solid state NMR, which aims at removing the effect of the same couplings by 6538:
Wu, B.; Majumdar, R.D.; Lysak, D.H.; Biswas, R.G.; Tabatabaei-Anaraki, M.; Jenne, A.; You, X.; Soong, R.; Lane, D.; Helm, P.A.; Codina, A.; Decker, V.; Simpson, M.J. & Simpson, A.J. (2021). "Towards real-time kinetic monitoring of wastewater treatment: A case study of sunlight and ozone treatment
320:
It is a key feature of NMR that the resonance frequency of nuclei in a particular sample substance is usually directly proportional to the strength of the applied magnetic field. It is this feature that is exploited in imaging techniques; if a sample is placed in a non-uniform magnetic field then the
2623:
interactions. Through-bond interactions relate to structural connectivity of the atoms and provide information about which ones are directly connected to each other, connected by way of a single other intermediate atom, etc. Through-space interactions relate to actual geometric distances and angles,
2606:
allows production of a spectrum that contains many different types of information about the molecules in the sample. In multi-dimensional nuclear magnetic resonance spectroscopy, there are at least two pulses: one leads to the directly detected signal and the others affect the starting magnetization
2527:
Most applications of NMR involve full NMR spectra, that is, the intensity of the NMR signal as a function of frequency. Early attempts to acquire the NMR spectrum more efficiently than simple CW methods involved illuminating the target simultaneously with more than one frequency. A revolution in NMR
265:
In its application to molecules the NMR effect can be observed only in the presence of a static magnetic field. However, in the ordered phases of magnetic materials, very large internal fields are produced at the nuclei of magnetic ions (and of close ligands), which allow NMR to be performed in zero
2395:
or dipolar couplings between nuclei are also useful. NMR spectroscopy can provide detailed and quantitative information on the functional groups, topology, dynamics and three-dimensional structure of molecules in solution and the solid state. Since the area under an NMR peak is usually proportional
5603:
Surface magnetic resonance (or magnetic resonance sounding) is based on the principle of nuclear magnetic resonance (NMR) and measurements can be used to indirectly estimate the water content of saturated and unsaturated zones in the earth's subsurface. SNMR is used to estimate aquifer properties,
5252:
NMR logging, a subcategory of electromagnetic logging, measures the induced magnet moment of hydrogen nuclei (protons) contained within the fluid-filled pore space of porous media (reservoir rocks). Unlike conventional logging measurements (e.g., acoustic, density, neutron, and resistivity), which
4723:
By studying the peaks of nuclear magnetic resonance spectra, chemists can determine the structure of many compounds. It can be a very selective technique, distinguishing among many atoms within a molecule or collection of molecules of very similar type but which differ only in terms of their local
4699:
These spectroscopic studies are possible because nuclei are surrounded by orbiting electrons, which are charged particles that generate small, local magnetic fields that add to or subtract from the external magnetic field, and so will partially shield the nuclei. The amount of shielding depends on
2804:
As noted above, the sensitivity of nuclear magnetic resonance signals is also dependent on the presence of a magnetically susceptible nuclide and, therefore, either on the natural abundance of such nuclides or on the ability of the experimentalist to artificially enrich the molecules, under study,
2800:
Because the intensity of nuclear magnetic resonance signals and, hence, the sensitivity of the technique depends on the strength of the magnetic field, the technique has also advanced over the decades with the development of more powerful magnets. Advances made in audio-visual technology have also
2768:
is essential for cancelling out the chemical-shift anisotropy broadening. There are different angles for the sample spinning relative to the applied field for the averaging of electric quadrupole interactions and paramagnetic interactions, correspondingly ~30.6° and ~70.1°. In amorphous materials,
5244:
is drilled into rock and sedimentary strata into which nuclear magnetic resonance logging equipment is lowered. Nuclear magnetic resonance analysis of these boreholes is used to measure rock porosity, estimate permeability from pore size distribution and identify pore fluids (water, oil and gas).
2282:
of the initial amplitude immediately after the resonant RF pulse), also depends on the static magnetic field inhomogeneity, which may be quite significant. (There is also a smaller but significant contribution to the observed FID shortening from the RF inhomogeneity of the resonant pulse). In the
1363:(also referred to as spin-up and spin-down, or sometimes α and β spin states, respectively) for the z-component of spin. In the absence of a magnetic field, these states are degenerate; that is, they have the same energy. Hence the number of nuclei in these two states will be essentially equal at 5209:
is that it can be used to obtain important dynamic information. This is due to the orientation dependence of the chemical-shift, dipole-coupling, or electric-quadrupole-coupling contributions to the instantaneous NMR frequency in an anisotropic molecular environment. When the molecule or segment
2820:
Saturation of the sample with energy applied at the resonant radiofrequency. This manifests in both CW and pulsed NMR; in the first case (CW) this happens by using too much continuous power that keeps the upper spin levels completely populated; in the second case (pulsed), each pulse (that is at
2647:
for his work in FT NMR, including multi-dimensional FT NMR, and especially 2D-FT NMR of small molecules. Multi-dimensional FT NMR experiments were then further developed into powerful methodologies for studying molecules in solution, in particular for the determination of the
2808:
Other limitations on sensitivity arise from the quantum-mechanical nature of the phenomenon. For quantum states separated by energy equivalent to radio frequencies, thermal energy from the environment causes the populations of the states to be close to equal. Since incoming radiation is equally
3298:
takes a long time. Frequently used for labeling of compounds in synthetic and metabolic studies. Has low sensitivity and moderately wide chemical shift range, yields sharp signals. Low percentage makes it useful by preventing spin-spin couplings and makes the spectrum appear less crowded. Slow
2614:
There are many such experiments. In some, fixed time intervals allow (among other things) magnetization transfer between nuclei and, therefore, the detection of the kinds of nuclear–nuclear interactions that allowed for the magnetization transfer. Interactions that can be detected are usually
2479:
As of 1996, CW instruments were still used for routine work because the older instruments were cheaper to maintain and operate, often operating at 60 MHz with correspondingly weaker (non-superconducting) electromagnets cooled with water rather than liquid helium. One radio coil operated
2484:
coil, designed not to receive radiation from the transmitter, received signals from nuclei that reoriented in solution. As of 2014, low-end refurbished 60 MHz and 90 MHz systems were sold as FT-NMR instruments, and in 2010 the "average workhorse" NMR instrument was configured for
5298:. The most common volumes are the bound fluid and free fluid. A permeability estimate is made using a transform such as the Timur-Coates or SDR permeability transforms. By running the log with different acquisition parameters, direct hydrocarbon typing and enhanced diffusion are possible. 2559:
Applying such a pulse to a set of nuclear spins simultaneously excites all the single-quantum NMR transitions. In terms of the net magnetization vector, this corresponds to tilting the magnetization vector away from its equilibrium position (aligned along the external magnetic field). The
1060:
rather than nuclear spin levels are detected. The basic principles are similar but the instrumentation, data analysis, and detailed theory are significantly different. Moreover, there is a much smaller number of molecules and materials with unpaired electron spins that exhibit ESR (or
2840:. Especially in solid state NMR, or in samples containing very few nuclei with spin (diamond with the natural 1% of carbon-13 is especially troublesome here) the longitudinal relaxation times can be on the range of hours, while for proton-NMR they are often in the range of one second. 5474:
An important feature of EFNMR spectrometry compared with high-field NMR is that some aspects of molecular structure can be observed more clearly at low fields and low frequencies, whereas other aspects observable at high fields are not observable at low fields. This is because:
5462:
spectrum. Earth's field NMR (EFNMR) is typically stimulated by applying a relatively strong dc magnetic field pulse to the sample and, after the end of the pulse, analyzing the resulting low frequency alternating magnetic field that occurs in the Earth's magnetic field due to
2513:). Hence the overall signal-to-noise ratio increases as the square-root of the number of spectra measured. However, monitoring an NMR signal at a single frequency as a function of time may be better suited for kinetic studies than pulsed Fourier-transform NMR spectrosocopy. 5210:
containing the NMR-observed nucleus changes its orientation relative to the external field, the NMR frequency changes, which can result in changes in one- or two-dimensional spectra or in the relaxation times, depending on the correlation time and amplitude of the motion.
4641:. NMR is widely used in organic chemistry and industrially mainly for analysis of chemicals. The technique is also used to measure the ratio between water and fat in foods, monitor the flow of corrosive fluids in pipes, or to study molecular structures such as catalysts. 2709:
of the resonance frequency can provide information on the mobile charge carriers. Though nuclear magnetic resonance is used to study the structure of solids, extensive atomic-level structural detail is more challenging to obtain in the solid state. Due to broadening by
2149:
is required to average out this orientation dependence in order to obtain frequency values at the average or isotropic chemical shifts. This is unnecessary in conventional NMR investigations of molecules in solution, since rapid "molecular tumbling" averages out the
47: 4890: 51: 50: 46: 45: 52: 3277:
nucleus, is widely used, despite its relative paucity in naturally occurring carbon (approximately 1.1%). It is stable to nuclear decay. Since there is a low percentage in natural carbon, spectrum acquisition on samples which have not been enriched in
2611:(2D-NMR), there will be one systematically varied time period in the sequence of pulses, which will modulate the intensity or phase of the detected signals. In 3D-NMR, two time periods will be varied independently, and in 4D-NMR, three will be varied. 2349:
decay experiment can be used to measure the dephasing time, as shown in the animation. The size of the echo is recorded for different spacings of the two pulses. This reveals the decoherence that is not refocused by the 180° pulse. In simple cases, an
3363:, is relatively commonly used. Can be used for isotopically labeling compounds. Very insensitive but yields sharp signals. Low percentage in natural nitrogen together with low sensitivity requires high concentrations or expensive isotope enrichment. 2169: 1546: 7095:
Freeview video by the Vega Science Trust (Wüthrich was awarded a Nobel Prize in Chemistry in 2002 "for his development of nuclear magnetic resonance spectroscopy for determining the three-dimensional structure of biological macromolecules in
2761:; as a result of such magic angle sample spinning, the broad chemical shift anisotropy bands are averaged to their corresponding average (isotropic) chemical shift values. Correct alignment of the sample rotation axis as close as possible to 2123:(which is what determines the NMR frequency). As a result, the frequency required to achieve resonance is also reduced. This shift in the NMR frequency due to the electronic molecular orbital coupling to the external magnetic field is called 49: 5343:
plants. Two different types of NMR analysis are utilized to provide real time analysis of feeds and products in order to control and optimize unit operations. Time-domain NMR (TD-NMR) spectrometers operating at low field (2–20 MHz for
5314:
Recently, real-time applications of NMR in liquid media have been developed using specifically designed flow probes (flow cell assemblies) which can replace standard tube probes. This has enabled techniques that can incorporate the use of
3477:, 100% of natural phosphorus. Medium sensitivity, wide chemical shift range, yields sharp lines. Spectra tend to have a moderate level of noise. Used in biochemical studies and in coordination chemistry with phosphorus-containing ligands. 2828:) must pass before the next pulse or pulse sequence can be applied. For single pulse experiments, shorter RF pulses that tip the magnetization by less than 90° can be used, which loses some intensity of the signal, but allows for shorter 2528:
occurred when short radio-frequency pulses began to be used, with a frequency centered at the middle of the NMR spectrum. In simple terms, a short pulse of a given "carrier" frequency "contains" a range of frequencies centered about the
2218:
refers to the mean time for an individual nucleus to return to its thermal equilibrium state of the spins. After the nuclear spin population has relaxed, it can be probed again, since it is in the initial, equilibrium (mixed) state.
5532:
turn out to be good detectors for zero field NMR. A zero magnetic field environment does not provide any polarization hence it is the combination of zero field NMR with hyperpolarization schemes that makes zero field NMR desirable.
4724:
chemical environment. NMR spectroscopy is used to unambiguously identify known and novel compounds, and as such, is usually required by scientific journals for identity confirmation of synthesized new compounds. See the articles on
6117:
Vandersypen, Lieven M. K.; Steffen, Matthias; Breyta, Gregory; Yannoni, Costantino S.; Sherwood, Mark H.; Chuang, Isaac L. (2001). "Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance".
2475:
to observe the resonant absorption signals. This is the origin of the counterintuitive, but still common, "high field" and "low field" terminology for low frequency and high frequency regions, respectively, of the NMR spectrum.
1244: 1370:
If a nucleus with spin is placed in a magnetic field, however, the two states no longer have the same energy as a result of the interaction between the nuclear magnetic dipole moment and the external magnetic field. The
2809:
likely to cause stimulated emission (a transition from the upper to the lower state) as absorption, the NMR effect depends on an excess of nuclei in the lower states. Several factors can reduce sensitivity, including:
5520:) are achieved and the nuclear precession frequencies of all nuclei are close to zero and indistinguishable. Under those circumstances the observed spectra are no-longer dictated by chemical shifts but primarily by 5176:
Nuclear magnetic resonance is extremely useful for analyzing samples non-destructively. Radio-frequency magnetic fields easily penetrate many types of matter and anything that is not highly conductive or inherently
3401:, low sensitivity and very low natural abundance (0.037%), wide chemical shift range (up to 2000 ppm). Its quadrupole moment causes line broadening. Used in metabolic and biochemical studies of chemical equilibria. 2572:(NMR absorption intensity vs. NMR frequency) this time-domain signal (intensity vs. time) must be Fourier transformed. Fortunately, the development of Fourier transform (FT) NMR coincided with the development of 2996:
has a narrow chemical-shift range but gives sharp signals in solution state. Fast acquisition of quantitative spectra (with peak integrals in stoichiometric ratios) is possible due to short relaxation time. The
5197:, can be studied using nuclear magnetic resonance for weeks or months before using destructive biochemical experiments. This also makes nuclear magnetic resonance a good choice for analyzing dangerous samples. 4884:. Accurately weighed portions of the standard and sample are combined and analysed by NMR. Suitable peaks from both compounds are selected and the purity of the sample is determined via the following equation. 2733:(magic angle sample spinning; MASS) technique that allowed him to achieve spectral resolution in solids sufficient to distinguish between chemical groups with either different chemical shifts or distinct 697:
However, an unpaired proton and unpaired neutron will have a lower energy when their spins are parallel, not anti-parallel. This parallel spin alignment of distinguishable particles does not violate the
2492:
techniques (see below) since it probes the NMR response at individual frequencies or field strengths in succession. Since the NMR signal is intrinsically weak, the observed spectrum suffers from a poor
2972:
nucleus in NMR investigations, has been studied using many forms of NMR. Hydrogen is highly abundant, especially in biological systems. It is the nucleus providing the strongest NMR signal (apart from
87:, when the oscillation frequency matches the intrinsic frequency of the nuclei, which depends on the strength of the static magnetic field, the chemical environment, and the magnetic properties of the 2061: 5804:
Quinn, Caitlin M.; Wang, Mingzhang; Polenova, Tatyana (2018). "NMR of Macromolecular Assemblies and Machines at 1 GHZ and Beyond: New Transformative Opportunities for Molecular Structural Biology".
3067:
NMR of solutes. It is also used in determining the behavior of lipids in lipid membranes and other solids or liquid crystals as it is a relatively non-perturbing label which can selectively replace
2425:-dipole" interaction broadening (or simply, dipolar broadening), which is always much smaller than the quadrupolar interaction strength because it is a magnetic vs. an electric interaction effect. 1226: 537:, could absorb RF energy when placed in a magnetic field and when the RF was of a frequency specific to the identity of the nuclei. When this absorption occurs, the nucleus is described as being 3325:
moment interferes with acquisition of high resolution spectra, limiting usefulness to smaller molecules and functional groups with a high degree of symmetry such as in the head-groups of lipids.
4745:, a process by which the precession frequency of a nucleus can be influenced by the spin orientation of a chemically bonded nucleus. Spin-spin coupling is easily observed in NMR of hydrogen-1 ( 5082:{\displaystyle \mathrm {Purity} ={\frac {w_{\mathrm {std} }\times n_{\mathrm {std} }\times MW_{\mathrm {spl} }}{w_{\mathrm {spl} }\times MW_{\mathrm {std} }\times n_{\mathrm {spl} }}}\times P} 5319:(HPLC) or other continuous flow sample introduction devices. These flow probes have used in various online process monitoring such as chemical reactions, environmental pollutant degradation. 1759: 916: 4880:
of known purity. Typically this standard will have a high molecular weight to facilitate accurate weighing, but relatively few protons so as to give a clear peak for later integration e.g.
1761:
and this results in a small population bias favoring the lower energy state in thermal equilibrium. With more spins pointing up than down, a net spin magnetization along the magnetic field
1611: 1414: 2464:(CW) spectroscopy, where the transverse spin magnetization generated by a weak oscillating magnetic field is recorded as a function of the oscillation frequency or static field strength 2175: 2174: 2171: 2170: 1085:
can only take on a restricted range of values), and also that the x, y, and z-components of the angular momentum are quantized, being restricted to integer or half-integer multiples of
2176: 1660: 2608: 2597: 2776:
to nearby H nuclei is usually removed by radio-frequency pulses applied at the H frequency during signal detection. The concept of cross polarization developed by Sven Hartmann and
48: 2540:
of a short pulse contains contributions from all the frequencies in the neighborhood of the principal frequency. The restricted range of the NMR frequencies for most light spin-
2330:
depend on the rate of molecular motions as well as the gyromagnetic ratios of both the resonating and their strongly interacting, next-neighbor nuclei that are not at resonance.
2134:
of such molecular orbitals is very high (leading to "isotropic" shift), the shielding effect will depend on the orientation of the molecule with respect to the external field (
1932: 1844: 1812: 5524:-coupling interactions which are independent of the external magnetic field. Since inductive detection schemes are not sensitive at very low frequencies, on the order of the 4735:
A chemist can determine the identity of a compound by comparing the observed nuclear precession frequencies to known or predicted frequencies. Further structural data can be
1664:
As a result, the different nuclear spin states have different energies in a non-zero magnetic field. In less formal language, we can talk about the two spin states of a spin
1870:
is the magnitude of the field. This means that the spin magnetization, which is proportional to the sum of the spin vectors of nuclei in magnetically equivalent sites (the
1402: 869: 6507:
Foley, D.A.; Bez, E.; Codina, A.; Colson, K.L.; Fey, M.; Krull, R.; Piroli, D.; Zell, M.T. & Marquez, B.L. (2014). "NMR Flow Tube for Online NMR Reaction Monitoring".
5471:, EFNMR spectrometers, and MRI imagers. Their inexpensive portable nature makes these instruments valuable for field use and for teaching the principles of NMR and MRI. 2560:
out-of-equilibrium magnetization vector then precesses about the external magnetic field vector at the NMR frequency of the spins. This oscillating magnetization vector
2497:. This can be mitigated by signal averaging, i.e. adding the spectra from repeated measurements. While the NMR signal is the same in each scan and so adds linearly, the 1151: 840: 2093:, which are analyzed most easily in terms of precession of the spin magnetization around the effective magnetic field in a reference frame rotating with the frequency 3575:
despite its slightly broader signal. Organic chlorides yield very broad signals. Its use is limited to inorganic and ionic chlorides and very small organic molecules.
2173: 1896: 7506: 2680: 1986: 1959: 5240:
exploration and recovery. Initial research in this domain began in the 1950s, however, the first commercial instruments were not released until the early 1990s. A
1864: 289:
In the dominant chemistry application, the use of higher fields improves the sensitivity of the method (signal-to-noise ratio scales approximately as the power of
2239:. Because of the difference in the actual relaxation mechanisms involved (for example, intermolecular versus intramolecular magnetic dipole-dipole interactions), 4796:). This now famous form of carbon has 60 carbon atoms forming a sphere. The carbon atoms are all in identical environments and so should see the same internal 234:, can be studied by high-field NMR spectroscopy as well. In order to interact with the magnetic field in the spectrometer, the nucleus must have an intrinsic 2428:
Additional structural and chemical information may be obtained by performing double-quantum NMR experiments for pairs of spins or quadrupolar nuclei such as
3613:, relatively small quadrupole moment, moderately sensitive, very low natural abundance. Used in biochemistry to study calcium binding to DNA, proteins, etc. 7239: 7176: 5542: 5717: 5497:
are clearly separated in high field NMR spectra, but have separations of only a few millihertz at proton EFNMR frequencies, so are usually not resolved.
2817:
population of states. Conversely, low temperature NMR can sometimes yield better results than room-temperature NMR, providing the sample remains liquid.
649:, an intrinsic angular momentum analogous to the classical angular momentum of a spinning sphere. The overall spin of the nucleus is determined by the 356:
The detection of the NMR signal during or after the RF pulse, due to the voltage induced in a detection coil by precession of the nuclear spins around
2376: 580:, where NMR has become indispensable, and by the 1990s improvement in the sensitivity and resolution of NMR spectroscopy resulted in its broad use in 6322: 2769:
residual line broadening remains since each segment is in a slightly different environment, therefore exhibiting a slightly different NMR frequency.
83:) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic field at the nucleus. This process occurs near 6235:
Dalitz, Franz; Cudaj, Markus; Maiwald, Michael; Guthausen, Gisela (January 2012). "Process and reaction monitoring by low-field NMR spectroscopy".
6081: 2705:
state, whereas crystallography, as the name implies, is performed on molecules in a crystalline phase. In electronically conductive materials, the
4687: 282:
with large enough electric quadrupolar coupling to the electric field gradient at the nucleus may also be excited in zero applied magnetic field (
108: 20: 2198:
The process of population relaxation refers to nuclear spins that return to thermodynamic equilibrium in the magnet. This process is also called
2399:
Structure and molecular dynamics can be studied (with or without "magic angle" spinning (MAS)) by NMR of quadrupolar nuclei (that is, with spin
5392:
analysis. High resolution FT-NMR spectrometers operating in the 60 MHz range with shielded permanent magnet systems yield high resolution
5316: 2726: 2692: 1878:
field. This is analogous to the precessional motion of the axis of a tilted spinning top around the gravitational field. In quantum mechanics,
1093:. The integer or half-integer quantum number associated with the spin component along the z-axis or the applied magnetic field is known as the 623: 7630: 1998: 7015: 6890: 6862: 6701: 6679: 6629: 5972: 5821: 483: 7214: 2448:. Furthermore, nuclear magnetic resonance is one of the techniques that has been used to design quantum automata, and also build elementary 7598: 7336: 4704:
will be shielded differently from a hydrogen bonded to a carbon atom. In addition, two hydrogen nuclei can interact via a process known as
2071:
A perturbation of nuclear spin orientations from equilibrium will occur only when an oscillating magnetic field is applied whose frequency
1173: 5205:
In addition to providing static information on molecules by determining their 3D structures, one of the remarkable advantages of NMR over
1782:
A central concept in NMR is the precession of the spin magnetization around the magnetic field at the nucleus, with the angular frequency
722:
isotope of hydrogen must have a pair of anti-parallel spin neutrons (of total spin zero for the neutron spin-pair), plus a proton of spin
6100: 7663: 6194: 4872:
While NMR is primarily used for structural determination, it can also be used for purity determination, provided that the structure and
2253:(that is, slower spin-lattice relaxation, for example because of smaller dipole-dipole interaction effects). In practice, the value of 2154:(CSA). In this case, the "average" chemical shift (ACS) or isotropic chemical shift is often simply referred to as the chemical shift. 7446: 6827: 6491: 4881: 2172: 1716: 7149: 4715:, NMR is used to generate metabolic fingerprints from biological fluids to obtain information about disease states or toxic insults. 1065:(EPR)) absorption than those that have NMR absorption spectra. On the other hand, ESR has much higher signal per spin than NMR does. 874: 7534: 6956: 6930: 6800: 6776: 6660: 5997: 2993: 2718:
or dipolar decoupling by RF pulses, the observed spectrum is often only a broad Gaussian band for non-quadrupolar spins in a solid.
1564: 2387:
NMR spectroscopy is one of the principal techniques used to obtain physical, chemical, electronic and structural information about
6389:
Taylor, R.; Hare, J.P.; Abdul-Sada, A.K. & Kroto, H.W. (1990). "Isolation, separation and characterization of the fullerenes C
5789: 5772: 2883:, an abundant spin-1 nucleus, is difficult to study for this reason. High resolution NMR instead probes molecules using the rarer 7255: 2636: 375:
to each other as this maximizes the NMR signal strength. The frequencies of the time-signal response by the total magnetization (
7451: 7169: 5697: 2564:
a voltage in a nearby pickup coil, creating an electrical signal oscillating at the NMR frequency. This signal is known as the
1616: 1062: 321:
resonance frequencies of the sample's nuclei depend on where in the field they are located. This effect serves as the basis of
7041: 1259:
around the field. The external field can be supplied by a large magnet and also by electrons and other nuclei in the vicinity.
7668: 7234: 2522: 390:
coils, in order to achieve dispersion of response frequencies and of very high homogeneity and stability in order to deliver
7204: 2568:(FID), and it contains the sum of the NMR responses from all the excited spins. In order to obtain the frequency-domain NMR 2556:
nuclei made it relatively easy to use short (1 - 100 microsecond) radio frequency pulses to excite the entire NMR spectrum.
7575: 7427: 7371: 7346: 5291:
decay is further processed to give the total pore volume (the total porosity) and pore volumes within different ranges of
4694: 4668: 2502: 379:) of the nuclear spins are analyzed in NMR spectroscopy and magnetic resonance imaging. Both use applied magnetic fields ( 7621: 444: 346:(RF) pulse. The oscillation frequency required for significant perturbation is dependent upon the static magnetic field ( 7477: 7406: 5722: 2789: 2208: 2199: 549: 283: 5120:: the integrated area of the peak selected for comparison in the standard, corrected for the number of protons in that 1785: 342:
The perturbation of this alignment of the nuclear spins by a weak oscillating magnetic field, usually referred to as a
7422: 7341: 5918:"The History, Development and Impact of Computed Imaging in Neurological Diagnosis and Neurosurgery: CT, MRI, and DTI" 608: 407: 7209: 6571: 5132:: the integrated area of the peak selected for comparison in the sample, corrected for the number of protons in that 4840:
spectra require longer acquisition times since carbon-13 is not the common isotope of carbon (unlike hydrogen, where
3131:
to monitor drift of the magnetic field strength (lock) and to monitor the homogeneity of the external magnetic field.
3299:
relaxation of C not bonded to hydrogen means that spectra are not integrable unless long acquisition times are used.
7524: 7162: 5748: 5528:-couplings (typically between 0 and 1000 Hz), alternative detection schemes are used. Specifically, sensitive 4785:. At low enough temperatures, a distinction can be made between the axial and equatorial hydrogens in cyclohexane. 4679:, deuterium NMR and phosphorus-31 NMR. Biochemical information can also be obtained from living tissue (e.g. human 4664: 4658: 4638: 3018: 642: 322: 124: 7229: 4671:
in research settings. However, it is also widely used in biochemical studies, notably in NMR spectroscopy such as
2391:
due to the chemical shift of the resonance frequencies of the nuclear spins in the sample. Peak splittings due to
2063:
without change in the populations of the energy levels because energy is constant (time-independent Hamiltonian).
7482: 6966:
J.M. Tyszka; S.E. Fraser; R.E. Jacobs (2005). "Magnetic resonance microscopy: recent advances and applications".
6308: 5682: 5443: 5420:
streams. The variation observed in these spectra with changing physical and chemical properties is modeled using
2711: 2625: 2561: 2227: 2151: 1364: 699: 459:
expanded the technique for use on liquids and solids, for which they shared the Nobel Prize in Physics in 1952.
7265: 5625: 2722: 2668: 2644: 2585: 561: 7316: 494:
and on the absorption of such RF power by matter laid the foundation for his discovery of NMR in bulk matter.
3646:(usually used in the studies of their complexes and chemical bonding, or to detect presence of the element): 544:
The improvements of the NMR method benefited from the development of electromagnetic technology and advanced
7608: 7467: 7399: 2821:
least a 90° pulse) leaves the sample saturated, and four to five times the (longitudinal) relaxation time (5
2226:
nuclei can also fall out of alignment with each other and gradually stop producing a signal. This is called
1094: 1053: 927: 310: 239: 6330: 3153:
is very sensitive to NMR. It exists at a very low concentration in natural helium and can be purified from
7519: 7492: 7472: 7394: 6940: 6423:
K. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Ch. 2, Academic Press, 1994.
5613: 4736: 2814: 2577: 573: 448: 2588:
in 1991 for his work on Fourier Transform NMR and his development of multi-dimensional NMR spectroscopy.
7673: 7389: 6180: 6078: 6014: 5206: 3174: 2698: 2494: 7593: 6713:"Structures of larger proteins in solution: three- and four-dimensional heteronuclear NMR spectroscopy" 3177:, where its chemical inertness is beneficial to ascertaining the structure of the entrapping fullerene. 1904: 1817: 4860:
is the common isotope). However, in 1990 the spectrum was obtained by R. Taylor and co-workers at the
2602:
The use of pulses of different durations, frequencies, or shapes in specifically designed patterns or
2396:
to the number of spins involved, peak integrals can be used to determine composition quantitatively.
305:
with the magnetic field strength) and the spectral resolution. Commercial NMR spectrometers employing
7549: 7122: 6904: 6724: 6586: 6283: 6137: 5870: 5712: 5665: 5464: 5437: 5365: 5332: 4861: 4789: 4708:, if they are on the same molecule, which will split the lines of the spectra in a recognizable way. 2730: 2715: 2565: 2305:* relaxation time gives rise to a very sharp NMR peak in the FT-NMR spectrum for a very homogeneous ( 2288: 2261: 2146: 1541:{\displaystyle E=-{\vec {\mu }}\cdot \mathbf {B} _{0}=-\mu _{x}B_{0x}-\mu _{y}B_{0y}-\mu _{z}B_{0z}.} 1252: 706:
structure of these two nucleons. As a result, the spin ground state for the deuteron (the nucleus of
581: 487: 456: 128: 27: 5898: 710:, the H isotope of hydrogen), which has only a proton and a neutron, corresponds to a spin value of 548:
and their introduction into civilian use. Originally as a research tool it was limited primarily to
5707: 5582: 5455: 5219: 4788:
An example of nuclear magnetic resonance being used in the determination of a structure is that of
3044: 1378: 845: 765: 650: 391: 243: 68: 7099: 4864:
and was found to contain a single peak, confirming the unusual structure of buckminsterfullerene.
2089:
of the nuclear magnetization. The populations of the spin-up and -down energy levels then undergo
332:
The alignment (polarization) of the magnetic nuclear spins in an applied, constant magnetic field
7580: 7331: 7291: 7007: 6552: 6161: 6127: 5633: 5487: 5451: 5229: 4778: 4741: 4705: 3439:, relatively commonly measured. Sensitive, yields sharp signals, has a wide chemical shift range. 3047:
for proton NMR, to avoid signal interference from hydrogen-containing solvents in measurement of
2392: 923: 760:). The NMR absorption frequency for tritium is also similar to that of H. In many other cases of 80: 2780:
was utilized in transferring magnetization from protons to less sensitive nuclei by M.G. Gibby,
2460:
In the first few decades of nuclear magnetic resonance, spectrometers used a technique known as
2375: 1127: 816: 7356: 7185: 7138: 7069: 7011: 6983: 6952: 6926: 6886: 6858: 6823: 6796: 6772: 6748: 6740: 6697: 6675: 6656: 6625: 6602: 6520: 6487: 6456: 6252: 6221: 6153: 6097: 5993: 5968: 5837: 5817: 5548: 5494: 4877: 2672: 2537: 2529: 2351: 2284: 2223: 2079: 1988:
expectation values. Precession of non-equilibrium magnetization in the applied magnetic field
1871: 1777: 589: 577: 569: 557: 472: 465:
filed the "Method and means for correlating nuclear properties of atoms and magnetic fields",
462: 387: 364: 112: 6198: 1881: 1081:
that is quantized. This means that the magnitude of this angular momentum is quantized (i.e.
7647: 7565: 7539: 7311: 7286: 7219: 7130: 6995: 6975: 6815: 6732: 6594: 6544: 6512: 6479: 6446: 6406: 6291: 6244: 6145: 5925: 5878: 5827: 5809: 5784: 5728: 5645: 5560: 5225: 5158: 5145: 5133: 5121: 4873: 3128: 2837: 2664: 2640: 2581: 2573: 2533: 2489: 2449: 2370: 2306: 2163: 1078: 235: 7588: 2737:. In MASS, the sample is spun at several kilohertz around an axis that makes the so-called 1964: 1937: 7321: 6916: 6708: 6648: 6104: 6085: 5945: 5861: 5702: 5687: 5459: 5447: 5425: 5328: 2781: 2461: 2142: 1849: 1248: 1090: 553: 491: 434: 343: 120: 116: 6351: 5284:
amplitudes versus time at each sample depth, typically from 0.3 ms to 3 s. The
7126: 6728: 6590: 6287: 6141: 5874: 3043:, a spin-1 nucleus, is commonly utilized to provide a signal-free medium in the form of 2714:(CSA) and dipolar couplings to other nuclear spins, without special techniques such as 7635: 7326: 7270: 7260: 7224: 7000: 6945: 6872: 6765: 5832: 5691: 5552: 5513: 5507: 5336: 5306: 5178: 4770:
is rather slow, compared to other spectroscopic methods, changing the temperature of a
4691: 2702: 2124: 2115:
It might appear from the above that all nuclei of the same nuclide (and hence the same
1074: 668: 646: 611: 604: 596: 395: 76: 72: 262:
with even numbers of both have a total spin of zero and are therefore not NMR-active.
7657: 7053:
Downloadable NMR exercises as PowerPoint (english/german) and PDF (german only) files
7047: 6819: 6689: 6556: 6483: 5417: 5340: 5246: 5182: 4725: 4676: 4568: 4464: 4380: 3840: 3443: 2785: 2676: 2472: 972: 519: 414: 410:, and/or using two-dimensional, three-dimensional and higher-dimensional techniques. 399: 372: 306: 196: 111:
is widely used to determine the structure of organic molecules in solution and study
6786:
The Feynman Lectures on Physics Vol. II Ch. 35: Paramagnetism and Magnetic Resonance
3321:, spin-1, is a medium sensitivity nucleus with wide chemical shift range. Its large 2316:* values give rise to broad FT-NMR peaks even when the magnet is shimmed well. Both 671:, so do even numbers of protons or even numbers of neutrons (both of which are also 7361: 7351: 7306: 7301: 6920: 6195:"2nd Annual Practical Applications of NMR in Industry Conference (PANIC) Announced" 6165: 5988:
Banwell, Colin N.; McCash, Elaine M. (1994). "Chap.7 Spin Resonance Spectroscopy".
5669: 5653: 5641: 5586: 5578: 5572: 5529: 5517: 5468: 5421: 5413: 4712: 4589: 4359: 4254: 4067: 3922: 3902: 3882: 3798: 3777: 3617: 3236: 2734: 2706: 2657: 2498: 2380: 770: 607:, was developed. It is combined with a special technique that makes it possible to 600: 585: 422: 403: 314: 92: 6363: 4663:
The application of nuclear magnetic resonance best known to the general public is
667:, i.e. there is no overall spin. Then, just as electrons pair up in nondegenerate 439:
Nuclear magnetic resonance was first described and measured in molecular beams by
367:
and, in itself, does not involve transitions between spin states or energy levels.
91:
involved; in practical applications with static magnetic fields up to ca. 20 
7113:
Qian, C.; Pines, A.; Martin, R. W. (September 2007). "Off Magic Angle Spinning".
7102:
by Lukas Schwarzenbacher and Susanne Schmid (Swiss German with English subtitles)
6979: 6876: 6785: 5559:. NMR differs from other implementations of quantum computers in that it uses an 2801:
improved the signal-generation and processing capabilities of newer instruments.
266:
applied field. Additionally, radio-frequency transitions of nuclear spin I >
7487: 7296: 7036: 6760: 6248: 5813: 5738: 5516:
all magnetic fields are shielded such that magnetic fields below 1 nT (nano
5424:
to yield predictions on unknown samples. The prediction results are provided to
5373: 5237: 4782: 4610: 4506: 4422: 4338: 4296: 4046: 4025: 4005: 3984: 3964: 3943: 3714: 3693: 3557: 3537: 3501: 3481: 3405: 3329: 3303: 2885: 2865: 2863:
nuclei with their local environment, which broaden and weaken absorption peaks.
2738: 2632: 2510: 2506: 2333: 1305: 1012: 992: 545: 452: 440: 176: 764:
nuclei, the overall spin is also non-zero and may have a contribution from the
7199: 7134: 7081: 6900: 6598: 6548: 5733: 5661: 5480: 5394: 5346: 4842: 4729: 4672: 4547: 4527: 4485: 4401: 4317: 4275: 4233: 4213: 3819: 3579: 3322: 3109: 3089: 3069: 3049: 3025: 2999: 2974: 2938: 2844: 2777: 2773: 2649: 2481: 2430: 2090: 1265: 1256: 565: 499: 467: 216: 136: 7092: 7064: 6460: 6015:"Less risk, less costs: Portable spectroscopy devices could soon become real" 5963:
Lee, W. David; Drazen, Jeffrey; Sharp, Phillip A.; Langer, Robert S. (2014).
5930: 5917: 2291:— the width of the NMR signal in frequency units is inversely related to the 119:
as well as non-crystalline materials. NMR is also routinely used in advanced
7086: 6882: 6736: 5743: 5577:
Various magnetometers use NMR effects to measure magnetic fields, including
5385: 5257:
The volume (porosity) and distribution (permeability) of the rock pore space
5233: 4822: 4802: 4171: 4151: 4130: 4109: 3861: 3756: 3672: 3652: 3367: 3280: 3243: 2346: 2338: 2260:*, which is the actually observed decay time of the observed NMR signal, or 1285: 952: 932: 707: 156: 84: 7142: 6987: 6606: 6524: 6474:
Haner, R.L. & Keifer, P.A. (2009). "Flow Probes for NMR Spectroscopy".
6256: 6157: 5883: 5856: 5841: 2792:
from unpaired electrons to the nuclei, usually at temperatures near 110 K.
1235: 564:, where it produced one of the first demonstrations of the validity of the 6752: 7514: 6410: 6132: 5773:"NMR signal reception: Virtual photons and coherent spontaneous emission" 5629: 5609: 5369: 5241: 4777:* experiment can also give information about fast reactions, such as the 3636: 3201: 3181: 3155: 3135: 2569: 2388: 2131: 1057: 672: 634: 417:, NMR spectroscopy and MRI in the Earth's magnetic field (referred to as 406:(in metals). The information provided by NMR can also be increased using 251: 104: 6947:
Principles of magnetic resonance: with examples from solid state physics
5376:
information, and component composition. These spectrometers are used in
4649: 3219:
and yields sharper signals. The nuclear spin of B is 3 and that of B is
2992:, which is not commonly used due to its instability and radioactivity). 1030:
are nuclides that do exhibit NMR spectra. The last two nuclei have spin
35: 6295: 6271: 5657: 5605: 5381: 5194: 4800:
field. Unfortunately, buckminsterfullerene contains no hydrogen and so
4443: 4192: 4088: 3735: 2653: 719: 691: 657: 638: 259: 255: 247: 88: 6838: 6516: 1109:, in integer steps. Hence for any given nucleus, there are a total of 6451: 6434: 5790:
10.1002/(SICI)1099-0534(1997)9:5<277::AID-CMR1>3.0.CO;2-W
5637: 5377: 4701: 2580:(FFT). Fourier methods can be applied to many types of spectroscopy. 2480:
continuously, sweeping through a range of frequencies, while another
2422: 1874:
of the spin vector in quantum mechanics), moves on a cone around the
1372: 756: 603:
that provides abundant analytical results without the need for large
7154: 6810:
R.L. Haner; P.A. Keifer (2009). "Flow Probes for NMR Spectroscopy".
6744: 6712: 6149: 2701:
in that it is frequently applicable to molecules in an amorphous or
103:
television broadcasts (60–1000 MHz). NMR results from specific
7052: 6922:
Nuclear Magnetic Resonance : applications to organic chemistry
6878:
Two-Dimensional NMR Methods for Establishing Molecular Connectivity
2754:-1 = 0) with respect to the direction of the static magnetic field 2639:
at an international conference, this idea was largely developed by
2631:
Although the fundamental concept of 2D-FT NMR was proposed by
1243: 754:, just like the simpler, abundant hydrogen isotope, H nucleus (the 718:. On the other hand, because of the Pauli exclusion principle, the 19:
This article is about the physical phenomenon. For other uses, see
7570: 7544: 5556: 4700:
the exact local environment. For example, a hydrogen bonded to an
4683: 4680: 4648: 2374: 2332: 2167: 1242: 1234: 703: 490:. His work during that project on the production and detection of 479: 42: 39:
Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer.
34: 6791:
David M. Grant; Robin Kingsley Harris (2002). "Advances in NMR".
6311:
Ernst's Nobel lecture. (Includes mention of Jeener's suggestion.)
5855:
Rabi, I.I.; Zacharias, J.R.; Millman, S. & Kusch, P. (1938).
2928:
Many isotopes of chemical elements can be used for NMR analysis.
595:
In the 2020s zero- to ultralow-field nuclear magnetic resonance (
363:. After an RF pulse, precession usually occurs with the nuclei's 7603: 7087:
Richard Ernst, NL – Developer of multidimensional NMR techniques
5649: 5598: 5389: 4876:
of the compound is known. This technique requires the use of an
950:
is an example of a nuclide that produces no NMR signal, whereas
7158: 5808:. Methods in Molecular Biology. Vol. 1688. pp. 1–35. 2536:) being inversely proportional to the pulse duration, i.e. the 1239:
Splitting of nuclei spin energies in an external magnetic field
702:. The lowering of energy for parallel spins has to do with the 576:
of the Hebel-Slichter effect. It soon showed its potential in
5190: 5186: 1323:. Each nucleus has two linearly independent spin states, with 328:
The principle of NMR usually involves three sequential steps:
100: 96: 7150:
Spotlight on nuclear magnetic resonance: a timeless technique
5181:. For example, various expensive biological samples, such as 3017:
nucleus has provided the sole diagnostic signal for clinical
656:. If the numbers of both the protons and neutrons in a given 497:
Rabi, Bloch, and Purcell observed that magnetic nuclei, like
16:
Spectroscopic technique based on change of nuclear spin state
6572:"Two-dimensional NMR spectroscopy in Earth's magnetic field" 7100:
The Nobel Prize Winner - Documentary about Richard R. Ernst
6433:
Kleinberg, Robert L.; Jackson, Jasper A. (1 January 2001).
6309:"Nuclear Magnetic Resonance Fourier Transform Spectroscopy" 738:. Therefore, the tritium total nuclear spin value is again 386:) of great strength, usually produced by large currents in 79:
are disturbed by a weak oscillating magnetic field (in the
6364:"Chapter Nineteen Non-Medical Applications of NMR and MRI" 3127:. Deuterium resonance is commonly used in high-resolution 1056:(ESR) is a related technique in which transitions between 4711:
As one of the two major spectroscopic techniques used in
6399:
Journal of the Chemical Society, Chemical Communications
2056:{\displaystyle \omega _{L}=2\pi \nu _{L}=-\gamma B_{0},} 6767:
High Resolution Nuclear Magnetic Resonance Spectroscopy
5428:
via analogue or digital outputs from the spectrometer.
4781:
or about structural dynamics, such as ring-flipping in
4763: NMR) since its natural abundance is nearly 100%. 2725:
in the UK pioneered the development of high-resolution
2609:
two-dimensional nuclear magnetic resonance spectroscopy
2598:
Two-dimensional nuclear magnetic resonance spectroscopy
475:
developed the first NMR unit called NMR HR-30 in 1952.
471:
on October 21, 1948 and was accepted on July 24, 1951.
6674:. Cheltenham, UK: Stanley Thornes. pp. 273, 287. 1688:
is positive (true for most isotopes used in NMR) then
842:
is associated with a non-zero magnetic dipole moment,
7619: 4893: 2729:. He was the first to report the introduction of the 2309:) static magnetic field, whereas nuclei with shorter 2001: 1967: 1940: 1907: 1884: 1852: 1820: 1788: 1719: 1619: 1567: 1417: 1381: 1221:{\displaystyle \mu _{z}=\gamma S_{z}=\gamma m\hbar .} 1176: 1130: 877: 848: 819: 107:
properties of certain atomic nuclei. High-resolution
6435:"An introduction to the history of NMR well logging" 5467:(FID). These effects are exploited in some types of 174:, although isotopes of many other elements, such as 7558: 7505: 7460: 7436: 7415: 7379: 7370: 7279: 7248: 7192: 6694:
NMR in Biological Systems: From Molecules to Human.
6272:"A General Theory of Magnetic Resonance Absorption" 6237:
Progress in Nuclear Magnetic Resonance Spectroscopy
5857:"A New Method of Measuring Nuclear Magnetic Moment" 4637:NMR is extensively used in medicine in the form of 930:and hence do not exhibit NMR signal. For instance, 7089:Freeview video provided by the Vega Science Trust. 6999: 6944: 6764: 5965:From X-rays to DNA: How Engineering Drives Biology 5081: 2488:CW spectroscopy is inefficient in comparison with 2055: 1980: 1953: 1926: 1890: 1858: 1838: 1806: 1753: 1654: 1605: 1540: 1396: 1220: 1145: 910: 863: 834: 1713:The energy difference between the two states is: 371:The two magnetic fields are usually chosen to be 56:Nuclear Magnetic Resonance (NMR) basic principles 6763:; James Feeney; Leslie Howard Sutcliffe (1965). 3555:is significantly more sensitive, preferred over 3107:can be detected in media specially labeled with 2584:was one of the pioneers of pulsed NMR and won a 1754:{\displaystyle \Delta {E}=\gamma \hbar B_{0}\,,} 766:orbital angular momentum of the unpaired nucleon 7065:A free interactive simulation of NMR principles 6181:"Nuclear Magnetic Resonance (NMR) Spectroscopy" 6032: 6030: 6028: 5992:(4th ed.). McGraw-Hill. pp. 214–242. 2211:" or "longitudinal magnetic" relaxation, where 911:{\displaystyle {\vec {\mu }}=\gamma {\vec {S}}} 6539:of unconcentrated wastewater using flow NMR". 6061: 6059: 5224:Another use for nuclear magnetic resonance is 2624:including effects of dipolar coupling and the 2246:is usually (except in rare cases) longer than 1684:either with or against the magnetic field. If 1606:{\displaystyle E=-\mu _{\mathrm {z} }B_{0}\,,} 1263:Consider nuclei with a spin of one-half, like 7170: 5604:including quantity of water contained in the 5310:Schematic diagram of a NMR Stopped Flow Probe 2067:Magnetic resonance and radio-frequency pulses 1170:-component of the magnetic moment is simply: 8: 5368:data that can be used to determine absolute 2813:Increasing temperature, which evens out the 242:. This occurs when an isotope has a nonzero 5766: 5764: 5543:Nuclear magnetic resonance quantum computer 5327:NMR has now entered the arena of real-time 4820:nuclear magnetic resonance has to be used. 2772:Line broadening or splitting by dipolar or 1124:-component of the angular momentum vector ( 7376: 7177: 7163: 7155: 7070:Interactive simulation on the Bloch sphere 6909:High-resolution Nuclear Magnetic Resonance 6793:Encyclopedia of Nuclear Magnetic Resonance 6622:Magnetic Resonance Imaging for Groundwater 5718:Nuclear magnetic resonance in porous media 5270:The basic core and log measurement is the 5214:Data acquisition in the petroleum industry 2341:decay experiment measuring dephasing time. 2283:corresponding FT-NMR spectrum—meaning the 1247:An intuitive model. Nuclei with spin have 418: 26:"NMR" redirects here. For other uses, see 6450: 6131: 6098:Quantum automaton and quantum computation 6049:R. P. Feynman, R. B. Leighton, M. Sands, 5929: 5882: 5831: 5788: 5057: 5056: 5047: 5025: 5024: 5001: 5000: 4981: 4980: 4957: 4956: 4947: 4925: 4924: 4917: 4894: 4892: 4792:(often called "buckyballs", composition C 2044: 2025: 2006: 2000: 1972: 1966: 1945: 1939: 1916: 1911: 1906: 1883: 1851: 1819: 1787: 1747: 1741: 1723: 1718: 1655:{\displaystyle E=-\gamma m\hbar B_{0}\,.} 1648: 1642: 1618: 1599: 1593: 1582: 1581: 1566: 1526: 1516: 1500: 1490: 1474: 1464: 1448: 1443: 1428: 1427: 1416: 1383: 1382: 1380: 1197: 1181: 1175: 1132: 1131: 1129: 897: 896: 879: 878: 876: 850: 849: 847: 821: 820: 818: 645:, have the intrinsic quantum property of 478:Purcell had worked on the development of 317:have been developed and are widely used. 6276:Journal of the Physical Society of Japan 5305: 394:, the details of which are described by 7626: 6183:. Technische Universitaet Braunschweig. 5760: 5263:Type and quantity of fluid hydrocarbons 4766:Because the nuclear magnetic resonance 4688:in vivo magnetic resonance spectroscopy 2843:Non-magnetic effects, such as electric- 1921: 1734: 1710:("spin up") is the lower energy state. 1635: 1561:, and the above expression reduces to: 1212: 109:nuclear magnetic resonance spectroscopy 21:Nuclear magnetic resonance spectroscopy 6511:. Vol. 86. pp. 12008–12013. 6079:Principle of Shielding and Deshielding 6069:, Ch. 2, Oxford Clarendon Press, 1961. 6036:C. Cohen-Tannoudji, B. Diu, F. Laloe, 5990:Fundamentals of Molecular Spectroscopy 5317:high performance liquid chromatography 5277:decay, presented as a distribution of 2727:solid-state nuclear magnetic resonance 2693:Solid-state nuclear magnetic resonance 2354:is measured which is described by the 1050:and are therefore quadrupolar nuclei. 624:Magnetic resonance (quantum mechanics) 6013:Giegerich, Petra (1 September 2022). 5563:of systems; in this case, molecules. 5555:states of nuclei within molecules as 2615:classified into two kinds. There are 2383:NMR Magnet at HWB-NMR, Birmingham, UK 1846:relates to the oscillation frequency 484:Massachusetts Institute of Technology 7: 6570:Robinson J. N.; et al. (2006). 6323:"Two-dimensional Fourier transforms" 6270:Ryogo Kubo; Kazuhisa Tomita (1954). 6021:(Press release). Universitaet Mainz. 5624:Major NMR instrument makers include 3235:. Quartz tubes must be used because 2509:of the number of spectra added (see 2421:) even in the presence of magnetic " 2298:* time. Thus, a nucleus with a long 1772:Precession of the spin magnetization 618:Theory of nuclear magnetic resonance 447:, and in 1944, Rabi was awarded the 6653:The Principles of Nuclear Magnetism 6197:. Process NMR. 2014. Archived from 6067:The Principles of Nuclear Magnetism 413:NMR phenomena are also utilized in 6812:Encyclopedia of Magnetic Resonance 6476:Encyclopedia of Magnetic Resonance 5388:and food manufacturing as well as 5064: 5061: 5058: 5048: 5032: 5029: 5026: 5008: 5005: 5002: 4988: 4985: 4982: 4964: 4961: 4958: 4948: 4932: 4929: 4926: 4910: 4907: 4904: 4901: 4898: 4895: 4882:1,2,4,5-tetrachloro-3-nitrobenzene 3239:glass interferes with measurement. 3173:. It is used mainly in studies of 2592:Multi-dimensional NMR spectroscopy 1908: 1720: 1583: 788:nucleus has an overall spin value 134:The most commonly used nuclei are 14: 7093:'An Interview with Kurt Wuthrich' 7002:NMR of Proteins and Nucleic Acids 6543:. Vol. 405. p. 126696. 5946:"The Nobel Prize in Physics 1952" 5899:"The Nobel Prize in Physics 1944" 5771:Hoult, D. I.; Bhakar, B. (1997). 2832:. The optimum there is called an 2456:Continuous-wave (CW) spectroscopy 2078:sufficiently closely matches the 1995:occurs with the Larmor frequency 1927:{\displaystyle \Delta {E}/\hbar } 1839:{\displaystyle \omega =2\pi \nu } 1807:{\displaystyle \omega =-\gamma B} 7641: 7629: 6968:Current Opinion in Biotechnology 6820:10.1002/9780470034590.emrstm1085 6484:10.1002/9780470034590.emrstm1085 5479:Electron-mediated heteronuclear 5302:Flow probes for NMR spectroscopy 5245:These instruments are typically 2721:Professor Raymond Andrew at the 2532:, with the range of excitation ( 1444: 353:) and the nuclei of observation. 6051:The Feynman Lectures in Physics 5967:. MIT Press. pp. 161–162. 5698:Least-squares spectral analysis 5579:proton precession magnetometers 5201:Segmental and molecular motions 1231:Spin energy in a magnetic field 1069:Values of spin angular momentum 1063:electron paramagnetic resonance 6855:Understanding NMR Spectroscopy 6670:J.W. Akitt; B.E. Mann (2000). 6439:Concepts in Magnetic Resonance 6220:Derek Lowe (22 October 2010). 6088:. NMRCentral.com (August 2011) 5777:Concepts in Magnetic Resonance 5053: 5044: 4953: 4944: 4868:Purity determination (w/w NMR) 4686:) with the technique known as 2956:, the most commonly used spin- 2523:Fourier-transform spectroscopy 2517:Fourier-transform spectroscopy 1433: 1388: 1137: 928:nuclear magnetic dipole moment 902: 884: 855: 826: 240:nuclear magnetic dipole moment 95:, the frequency is similar to 1: 7115:Journal of Magnetic Resonance 6579:Journal of Magnetic Resonance 6397:: the third form of carbon". 6107:(see also references therein) 5446:, NMR frequencies are in the 5167:: purity of internal standard 5102:: weight of internal standard 4669:magnetic resonance microscopy 2747:(which is ~54.74°, where 3cos 1397:{\displaystyle {\vec {\mu }}} 864:{\displaystyle {\vec {\mu }}} 694:), giving zero overall spin. 6980:10.1016/j.copbio.2004.11.004 6925:. McGraw-Hill Book Company. 6620:Legtchenko, Anatoly (2013). 6541:Chemical Engineering Journal 6329:. PlanetMath. Archived from 5723:Nuclear quadrupole resonance 2847:coupling of spin-1 and spin- 2790:dynamic nuclear polarization 2687:Solid-state NMR spectroscopy 1554:-axis is chosen to be along 1375:of a magnetic dipole moment 1101:, and can take values from + 550:dynamic nuclear polarization 284:nuclear quadrupole resonance 7082:introduction to NMR and MRI 6911:. McGraw-Hill Book Company. 6249:10.1016/j.pnmrs.2011.11.003 5814:10.1007/978-1-4939-7386-6_1 5493:Chemical shifts of several 2697:This technique complements 2637:Free University of Brussels 482:during World War II at the 421:), and in several types of 246:, meaning an odd number of 7692: 7664:Nuclear magnetic resonance 7507:Technological applications 7059:Animations and simulations 6711:; A.M. Gronenborn (1991). 6040:, Vol. 1, Wiley VCH, 1977. 5749:Structure-based assignment 5596: 5570: 5540: 5505: 5435: 5217: 4732:for detailed discussions. 4667:for medical diagnosis and 4665:magnetic resonance imaging 4659:Magnetic resonance imaging 4656: 4639:magnetic resonance imaging 3019:magnetic resonance imaging 2690: 2595: 2520: 2368: 2161: 1775: 1146:{\displaystyle {\vec {S}}} 835:{\displaystyle {\vec {S}}} 621: 443:in 1938, by extending the 432: 323:magnetic resonance imaging 125:magnetic resonance imaging 61:Nuclear magnetic resonance 25: 18: 7249:Characteristic parameters 7135:10.1016/j.jmr.2007.06.006 6857:. John Wiley & Sons. 6624:. John Wiley & Sons. 6599:10.1016/j.jmr.2006.06.027 6549:10.1016/j.cej.2020.126696 6084:26 September 2011 at the 5690:(Not to be confused with 5683:Benchtop NMR spectrometer 5431: 5266:Hydrocarbon producibility 2712:chemical shift anisotropy 2626:nuclear Overhauser effect 2152:chemical shift anisotropy 1117:angular momentum states. 700:Pauli exclusion principle 629:Nuclear spins and magnets 7266:London penetration depth 6907:; H.J.Bernstein (1959). 6875:; A. S. Zektzer (1988). 6370:(11 ed.). June 2017 6179:Brian M. Tissue (1996). 5931:10.1038/npre.2009.3267.4 5626:Thermo Fisher Scientific 5587:Overhauser magnetometers 2903:isotope, which has spin- 2723:University of Nottingham 2669:Nobel Prize in Chemistry 2645:Nobel prize in Chemistry 2586:Nobel Prize in chemistry 2379:900 MHz, 21.2  562:condensed matter physics 451:for this work. In 1946, 445:Stern–Gerlach experiment 313:with fields of up to 28 7559:List of superconductors 7437:By critical temperature 6737:10.1126/science.2047852 6222:"The Latest Technology" 6103:17 January 2010 at the 5620:Makers of NMR equipment 5172:Non-destructive testing 3199:is more sensitive than 1891:{\displaystyle \omega } 1095:magnetic quantum number 1054:Electron spin resonance 641:, composing any atomic 311:superconducting magnets 123:techniques, such as in 5916:Filler, Aaron (2009). 5884:10.1103/PhysRev.53.318 5614:hydraulic conductivity 5444:Earth's magnetic field 5311: 5083: 4654: 2578:fast Fourier transform 2384: 2342: 2195: 2057: 1982: 1955: 1928: 1892: 1860: 1840: 1808: 1755: 1656: 1607: 1542: 1398: 1260: 1240: 1222: 1147: 912: 865: 836: 633:All nucleons, that is 572:by the observation by 449:Nobel Prize in Physics 57: 40: 7669:Scientific techniques 7205:Bean's critical state 7006:. New York (NY), US: 5581:(PPM) (also known as 5309: 5207:X-ray crystallography 5084: 4652: 3635:, used in studies of 3175:endohedral fullerenes 2932:Commonly used nuclei: 2699:X-ray crystallography 2495:signal-to-noise ratio 2378: 2336: 2237:transverse relaxation 2180:Visualization of the 2179: 2162:Further information: 2058: 1983: 1981:{\displaystyle S_{y}} 1956: 1954:{\displaystyle S_{x}} 1929: 1893: 1861: 1841: 1809: 1776:Further information: 1756: 1657: 1608: 1543: 1399: 1253:spin magnetic moments 1246: 1238: 1223: 1148: 913: 866: 837: 492:radio frequency power 468:U.S. patent 2,561,490 75:in a strong constant 55: 38: 7380:By magnetic response 6951:. Harper & Row. 6509:Analytical Chemistry 6411:10.1039/c39900001423 5713:NMR spectra database 5666:Agilent Technologies 5583:proton magnetometers 5465:free induction decay 5366:free induction decay 5333:process optimization 4891: 4862:University of Sussex 4790:buckminsterfullerene 2679:) for his work with 2566:free induction decay 2289:free induction decay 2262:free induction decay 2147:magic angle spinning 1999: 1965: 1938: 1905: 1882: 1859:{\displaystyle \nu } 1850: 1818: 1786: 1717: 1617: 1565: 1415: 1404:in a magnetic field 1379: 1174: 1128: 875: 846: 817: 690:particles and hence 582:analytical chemistry 488:Radiation Laboratory 457:Edward Mills Purcell 129:Magic Angle Spinning 28:NMR (disambiguation) 7332:persistent currents 7317:Little–Parks effect 7127:2007JMagR.188..183Q 6941:Charles P. Slichter 6839:"The Basics of NMR" 6729:1991Sci...252.1390M 6723:(5011): 1390–1399. 6655:. Clarendon Press. 6591:2006JMagR.182..343R 6288:1954JPSJ....9..888K 6142:2001Natur.414..883V 5875:1938PhRv...53..318R 5708:NMR crystallography 5488:spin-spin couplings 5456:ultra low frequency 5220:NMR in porous media 3045:deuterated solvents 2681:protein FT NMR 2643:, who won the 1991 2501:adds more slowly – 1365:thermal equilibrium 871:, via the relation 768:. For example, the 651:spin quantum number 392:spectral resolution 69:physical phenomenon 7292:Andreev reflection 7287:Abrikosov vortices 7008:Wiley-Interscience 6853:J. Keeler (2005). 6368:Magnetic Resonance 6296:10.1143/JPSJ.9.888 5634:Oxford Instruments 5452:very low frequency 5312: 5230:petroleum industry 5111:: weight of sample 5079: 4779:Cope rearrangement 4742:spin-spin coupling 4706:spin-spin coupling 4655: 2838:the Nobel laureate 2703:liquid-crystalline 2385: 2343: 2196: 2111:Chemical shielding 2053: 1978: 1951: 1924: 1888: 1856: 1836: 1804: 1751: 1652: 1613:or alternatively: 1603: 1538: 1394: 1261: 1241: 1218: 1143: 924:gyromagnetic ratio 908: 861: 832: 58: 41: 7617: 7616: 7535:quantum computing 7501: 7500: 7357:superdiamagnetism 7186:Superconductivity 7017:978-0-471-11917-3 6892:978-0-471-18707-3 6864:978-0-470-01786-9 6702:978-1-4020-6680-1 6681:978-0-7487-4344-5 6672:NMR and Chemistry 6631:978-1-118-64947-3 6517:10.1021/ac502300q 6405:(20): 1423–1425. 6327:2D-FT NMR and MRI 6126:(6866): 883–887. 6038:Quantum Mechanics 5974:978-0-262-01977-4 5922:Nature Precedings 5823:978-1-4939-7385-9 5549:quantum computing 5537:Quantum computing 5438:Earth's field NMR 5432:Earth's field NMR 5071: 4878:internal standard 3087:. Alternatively, 2673:John Bennett Fenn 2574:digital computers 2538:Fourier transform 2530:carrier frequency 2450:quantum computers 2352:exponential decay 2285:Fourier transform 2194:relaxation times. 2177: 2130:Unless the local 2091:Rabi oscillations 2080:Larmor precession 1872:expectation value 1778:Larmor precession 1436: 1391: 1140: 905: 887: 858: 829: 590:materials science 578:organic chemistry 570:superconductivity 558:Albert Overhauser 552:, by the work of 473:Varian Associates 463:Russell H. Varian 419:Earth's field NMR 408:hyperpolarization 113:molecular physics 53: 7681: 7646: 7645: 7644: 7634: 7633: 7625: 7566:bilayer graphene 7540:Rutherford cable 7452:room temperature 7447:high temperature 7377: 7337:proximity effect 7312:Josephson effect 7256:coherence length 7179: 7172: 7165: 7156: 7146: 7048:NMR Course Notes 7037:NMR/MRI tutorial 7021: 7005: 6991: 6962: 6950: 6936: 6912: 6896: 6868: 6849: 6847: 6845: 6833: 6806: 6782: 6770: 6756: 6685: 6666: 6636: 6635: 6617: 6611: 6610: 6576: 6567: 6561: 6560: 6535: 6529: 6528: 6504: 6498: 6497: 6471: 6465: 6464: 6454: 6452:10.1002/cmr.1018 6430: 6424: 6421: 6415: 6414: 6386: 6380: 6379: 6377: 6375: 6360: 6354: 6352:Multinuclear NMR 6349: 6343: 6342: 6340: 6338: 6318: 6312: 6306: 6300: 6299: 6267: 6261: 6260: 6232: 6226: 6225: 6217: 6211: 6210: 6208: 6206: 6191: 6185: 6184: 6176: 6170: 6169: 6135: 6133:quant-ph/0112176 6114: 6108: 6095: 6089: 6076: 6070: 6063: 6054: 6047: 6041: 6034: 6023: 6022: 6010: 6004: 6003: 5985: 5979: 5978: 5960: 5954: 5953: 5942: 5936: 5935: 5933: 5913: 5907: 5906: 5895: 5889: 5888: 5886: 5852: 5846: 5845: 5835: 5801: 5795: 5794: 5792: 5768: 5729:Protein dynamics 5646:General Electric 5411: 5409: 5408: 5401: 5400: 5372:content values, 5363: 5361: 5360: 5353: 5352: 5260:Rock composition 5226:data acquisition 5159:molecular weight 5146:molecular weight 5134:functional group 5122:functional group 5088: 5086: 5085: 5080: 5072: 5070: 5069: 5068: 5067: 5051: 5037: 5036: 5035: 5013: 5012: 5011: 4994: 4993: 4992: 4991: 4969: 4968: 4967: 4951: 4937: 4936: 4935: 4918: 4913: 4874:molecular weight 4859: 4857: 4856: 4849: 4848: 4839: 4837: 4836: 4829: 4828: 4819: 4817: 4816: 4809: 4808: 4762: 4761: 4760: 4753: 4752: 4627: 4625: 4624: 4617: 4616: 4606: 4604: 4603: 4596: 4595: 4585: 4583: 4582: 4575: 4574: 4564: 4562: 4561: 4554: 4553: 4544: 4542: 4541: 4534: 4533: 4523: 4521: 4520: 4513: 4512: 4502: 4500: 4499: 4492: 4491: 4481: 4479: 4478: 4471: 4470: 4460: 4458: 4457: 4450: 4449: 4439: 4437: 4436: 4429: 4428: 4418: 4416: 4415: 4408: 4407: 4397: 4395: 4394: 4387: 4386: 4376: 4374: 4373: 4366: 4365: 4355: 4353: 4352: 4345: 4344: 4334: 4332: 4331: 4324: 4323: 4313: 4311: 4310: 4303: 4302: 4292: 4290: 4289: 4282: 4281: 4271: 4269: 4268: 4261: 4260: 4250: 4248: 4247: 4240: 4239: 4230: 4228: 4227: 4220: 4219: 4209: 4207: 4206: 4199: 4198: 4188: 4186: 4185: 4178: 4177: 4168: 4166: 4165: 4158: 4157: 4147: 4145: 4144: 4137: 4136: 4126: 4124: 4123: 4116: 4115: 4105: 4103: 4102: 4095: 4094: 4084: 4082: 4081: 4074: 4073: 4063: 4061: 4060: 4053: 4052: 4042: 4040: 4039: 4032: 4031: 4022: 4020: 4019: 4012: 4011: 4001: 3999: 3998: 3991: 3990: 3981: 3979: 3978: 3971: 3970: 3960: 3958: 3957: 3950: 3949: 3939: 3937: 3936: 3929: 3928: 3919: 3917: 3916: 3909: 3908: 3899: 3897: 3896: 3889: 3888: 3878: 3876: 3875: 3868: 3867: 3857: 3855: 3854: 3847: 3846: 3836: 3834: 3833: 3826: 3825: 3815: 3813: 3812: 3805: 3804: 3794: 3792: 3791: 3784: 3783: 3773: 3771: 3770: 3763: 3762: 3752: 3750: 3749: 3742: 3741: 3731: 3729: 3728: 3721: 3720: 3710: 3708: 3707: 3700: 3699: 3689: 3687: 3686: 3679: 3678: 3669: 3667: 3666: 3659: 3658: 3634: 3632: 3631: 3624: 3623: 3612: 3610: 3609: 3606: 3603: 3596: 3594: 3593: 3586: 3585: 3574: 3572: 3571: 3564: 3563: 3554: 3552: 3551: 3544: 3543: 3535:, broad signal. 3534: 3532: 3531: 3528: 3525: 3518: 3516: 3515: 3508: 3507: 3498: 3496: 3495: 3488: 3487: 3476: 3474: 3473: 3470: 3467: 3460: 3458: 3457: 3450: 3449: 3438: 3436: 3435: 3432: 3429: 3422: 3420: 3419: 3412: 3411: 3400: 3398: 3397: 3394: 3391: 3384: 3382: 3381: 3374: 3373: 3362: 3360: 3359: 3356: 3353: 3346: 3344: 3343: 3336: 3335: 3320: 3318: 3317: 3310: 3309: 3297: 3295: 3294: 3287: 3286: 3276: 3274: 3273: 3270: 3267: 3260: 3258: 3257: 3250: 3249: 3234: 3232: 3231: 3228: 3225: 3218: 3216: 3215: 3208: 3207: 3198: 3196: 3195: 3188: 3187: 3172: 3170: 3169: 3162: 3161: 3152: 3150: 3149: 3142: 3141: 3129:NMR spectroscopy 3126: 3124: 3123: 3116: 3115: 3106: 3104: 3103: 3096: 3095: 3086: 3084: 3083: 3076: 3075: 3066: 3064: 3063: 3056: 3055: 3042: 3040: 3039: 3032: 3031: 3016: 3014: 3013: 3006: 3005: 2991: 2989: 2988: 2981: 2980: 2971: 2969: 2968: 2965: 2962: 2955: 2953: 2952: 2945: 2944: 2918: 2916: 2915: 2912: 2909: 2902: 2900: 2899: 2892: 2891: 2882: 2880: 2879: 2872: 2871: 2862: 2860: 2859: 2856: 2853: 2582:Richard R. Ernst 2576:and the digital 2555: 2553: 2552: 2549: 2546: 2490:Fourier analysis 2447: 2445: 2444: 2437: 2436: 2420: 2419: 2417: 2416: 2413: 2410: 2371:NMR spectroscopy 2365:NMR spectroscopy 2281: 2279: 2278: 2273: 2270: 2178: 2164:Relaxation (NMR) 2062: 2060: 2059: 2054: 2049: 2048: 2030: 2029: 2011: 2010: 1987: 1985: 1984: 1979: 1977: 1976: 1960: 1958: 1957: 1952: 1950: 1949: 1933: 1931: 1930: 1925: 1920: 1915: 1897: 1895: 1894: 1889: 1865: 1863: 1862: 1857: 1845: 1843: 1842: 1837: 1813: 1811: 1810: 1805: 1760: 1758: 1757: 1752: 1746: 1745: 1727: 1709: 1708: 1706: 1705: 1702: 1699: 1679: 1677: 1676: 1673: 1670: 1661: 1659: 1658: 1653: 1647: 1646: 1612: 1610: 1609: 1604: 1598: 1597: 1588: 1587: 1586: 1547: 1545: 1544: 1539: 1534: 1533: 1521: 1520: 1508: 1507: 1495: 1494: 1482: 1481: 1469: 1468: 1453: 1452: 1447: 1438: 1437: 1429: 1403: 1401: 1400: 1395: 1393: 1392: 1384: 1362: 1360: 1359: 1356: 1353: 1342: 1340: 1339: 1336: 1333: 1322: 1320: 1319: 1312: 1311: 1302: 1300: 1299: 1292: 1291: 1282: 1280: 1279: 1272: 1271: 1249:magnetic moments 1227: 1225: 1224: 1219: 1202: 1201: 1186: 1185: 1165: 1152: 1150: 1149: 1144: 1142: 1141: 1133: 1116: 1079:angular momentum 1077:is an intrinsic 1049: 1047: 1046: 1043: 1040: 1029: 1027: 1026: 1019: 1018: 1009: 1007: 1006: 999: 998: 989: 987: 986: 979: 978: 969: 967: 966: 959: 958: 949: 947: 946: 939: 938: 917: 915: 914: 909: 907: 906: 898: 889: 888: 880: 870: 868: 867: 862: 860: 859: 851: 841: 839: 838: 833: 831: 830: 822: 813:A non-zero spin 809: 808: 806: 805: 802: 799: 787: 785: 784: 777: 776: 753: 751: 750: 747: 744: 737: 735: 734: 731: 728: 688: 686: 685: 682: 679: 666: 574:Charles Slichter 536: 534: 533: 526: 525: 516: 514: 513: 506: 505: 470: 365:Larmor frequency 304: 302: 301: 298: 295: 281: 279: 278: 275: 272: 236:angular momentum 233: 231: 230: 223: 222: 213: 211: 210: 203: 202: 193: 191: 190: 183: 182: 173: 171: 170: 163: 162: 153: 151: 150: 143: 142: 54: 7691: 7690: 7684: 7683: 7682: 7680: 7679: 7678: 7654: 7653: 7652: 7642: 7640: 7628: 7620: 7618: 7613: 7584: 7554: 7497: 7456: 7443:low temperature 7432: 7411: 7366: 7322:Meissner effect 7275: 7271:Silsbee current 7244: 7210:Ginzburg–Landau 7188: 7183: 7112: 7078: 7061: 7033: 7028: 7018: 6994: 6965: 6959: 6939: 6933: 6917:John D. Roberts 6915: 6899: 6893: 6871: 6865: 6852: 6843: 6841: 6836: 6830: 6809: 6803: 6790: 6779: 6759: 6707: 6682: 6669: 6663: 6647: 6644: 6642:Further reading 6639: 6632: 6619: 6618: 6614: 6574: 6569: 6568: 6564: 6537: 6536: 6532: 6506: 6505: 6501: 6494: 6473: 6472: 6468: 6432: 6431: 6427: 6422: 6418: 6396: 6392: 6388: 6387: 6383: 6373: 6371: 6362: 6361: 6357: 6350: 6346: 6336: 6334: 6333:on 8 March 2009 6320: 6319: 6315: 6307: 6303: 6269: 6268: 6264: 6234: 6233: 6229: 6219: 6218: 6214: 6204: 6202: 6193: 6192: 6188: 6178: 6177: 6173: 6150:10.1038/414883a 6116: 6115: 6111: 6105:Wayback Machine 6096: 6092: 6086:Wayback Machine 6077: 6073: 6064: 6057: 6048: 6044: 6035: 6026: 6012: 6011: 6007: 6000: 5987: 5986: 5982: 5975: 5962: 5961: 5957: 5944: 5943: 5939: 5915: 5914: 5910: 5897: 5896: 5892: 5862:Physical Review 5854: 5853: 5849: 5824: 5803: 5802: 5798: 5770: 5769: 5762: 5758: 5753: 5703:Liquid nitrogen 5688:Larmor equation 5678: 5664:, and formerly 5622: 5601: 5595: 5575: 5569: 5545: 5539: 5510: 5504: 5460:radio frequency 5448:audio frequency 5440: 5434: 5426:control systems 5412:NMR spectra of 5407: 5405: 5404: 5403: 5399: 5397: 5396: 5395: 5393: 5359: 5357: 5356: 5355: 5351: 5349: 5348: 5347: 5345: 5329:process control 5325: 5323:Process control 5304: 5297: 5290: 5283: 5276: 5249:spectrometers. 5222: 5216: 5203: 5174: 5156: 5143: 5131: 5119: 5110: 5101: 5052: 5020: 4996: 4995: 4976: 4952: 4920: 4919: 4889: 4888: 4870: 4855: 4853: 4852: 4851: 4847: 4845: 4844: 4843: 4841: 4835: 4833: 4832: 4831: 4827: 4825: 4824: 4823: 4821: 4815: 4813: 4812: 4811: 4807: 4805: 4804: 4803: 4801: 4795: 4776: 4759: 4757: 4756: 4755: 4751: 4749: 4748: 4747: 4746: 4721: 4695:NMR microscopy. 4661: 4647: 4635: 4630: 4623: 4621: 4620: 4619: 4615: 4613: 4612: 4611: 4609: 4602: 4600: 4599: 4598: 4594: 4592: 4591: 4590: 4588: 4581: 4579: 4578: 4577: 4573: 4571: 4570: 4569: 4567: 4560: 4558: 4557: 4556: 4552: 4550: 4549: 4548: 4546: 4540: 4538: 4537: 4536: 4532: 4530: 4529: 4528: 4526: 4519: 4517: 4516: 4515: 4511: 4509: 4508: 4507: 4505: 4498: 4496: 4495: 4494: 4490: 4488: 4487: 4486: 4484: 4477: 4475: 4474: 4473: 4469: 4467: 4466: 4465: 4463: 4456: 4454: 4453: 4452: 4448: 4446: 4445: 4444: 4442: 4435: 4433: 4432: 4431: 4427: 4425: 4424: 4423: 4421: 4414: 4412: 4411: 4410: 4406: 4404: 4403: 4402: 4400: 4393: 4391: 4390: 4389: 4385: 4383: 4382: 4381: 4379: 4372: 4370: 4369: 4368: 4364: 4362: 4361: 4360: 4358: 4351: 4349: 4348: 4347: 4343: 4341: 4340: 4339: 4337: 4330: 4328: 4327: 4326: 4322: 4320: 4319: 4318: 4316: 4309: 4307: 4306: 4305: 4301: 4299: 4298: 4297: 4295: 4288: 4286: 4285: 4284: 4280: 4278: 4277: 4276: 4274: 4267: 4265: 4264: 4263: 4259: 4257: 4256: 4255: 4253: 4246: 4244: 4243: 4242: 4238: 4236: 4235: 4234: 4232: 4226: 4224: 4223: 4222: 4218: 4216: 4215: 4214: 4212: 4205: 4203: 4202: 4201: 4197: 4195: 4194: 4193: 4191: 4184: 4182: 4181: 4180: 4176: 4174: 4173: 4172: 4170: 4164: 4162: 4161: 4160: 4156: 4154: 4153: 4152: 4150: 4143: 4141: 4140: 4139: 4135: 4133: 4132: 4131: 4129: 4122: 4120: 4119: 4118: 4114: 4112: 4111: 4110: 4108: 4101: 4099: 4098: 4097: 4093: 4091: 4090: 4089: 4087: 4080: 4078: 4077: 4076: 4072: 4070: 4069: 4068: 4066: 4059: 4057: 4056: 4055: 4051: 4049: 4048: 4047: 4045: 4038: 4036: 4035: 4034: 4030: 4028: 4027: 4026: 4024: 4018: 4016: 4015: 4014: 4010: 4008: 4007: 4006: 4004: 3997: 3995: 3994: 3993: 3989: 3987: 3986: 3985: 3983: 3977: 3975: 3974: 3973: 3969: 3967: 3966: 3965: 3963: 3956: 3954: 3953: 3952: 3948: 3946: 3945: 3944: 3942: 3935: 3933: 3932: 3931: 3927: 3925: 3924: 3923: 3921: 3915: 3913: 3912: 3911: 3907: 3905: 3904: 3903: 3901: 3895: 3893: 3892: 3891: 3887: 3885: 3884: 3883: 3881: 3874: 3872: 3871: 3870: 3866: 3864: 3863: 3862: 3860: 3853: 3851: 3850: 3849: 3845: 3843: 3842: 3841: 3839: 3832: 3830: 3829: 3828: 3824: 3822: 3821: 3820: 3818: 3811: 3809: 3808: 3807: 3803: 3801: 3800: 3799: 3797: 3790: 3788: 3787: 3786: 3782: 3780: 3779: 3778: 3776: 3769: 3767: 3766: 3765: 3761: 3759: 3758: 3757: 3755: 3748: 3746: 3745: 3744: 3740: 3738: 3737: 3736: 3734: 3727: 3725: 3724: 3723: 3719: 3717: 3716: 3715: 3713: 3706: 3704: 3703: 3702: 3698: 3696: 3695: 3694: 3692: 3685: 3683: 3682: 3681: 3677: 3675: 3674: 3673: 3671: 3665: 3663: 3662: 3661: 3657: 3655: 3654: 3653: 3651: 3630: 3628: 3627: 3626: 3622: 3620: 3619: 3618: 3616: 3607: 3604: 3601: 3600: 3598: 3592: 3590: 3589: 3588: 3584: 3582: 3581: 3580: 3578: 3570: 3568: 3567: 3566: 3562: 3560: 3559: 3558: 3556: 3550: 3548: 3547: 3546: 3542: 3540: 3539: 3538: 3536: 3529: 3526: 3523: 3522: 3520: 3514: 3512: 3511: 3510: 3506: 3504: 3503: 3502: 3500: 3494: 3492: 3491: 3490: 3486: 3484: 3483: 3482: 3480: 3471: 3468: 3465: 3464: 3462: 3456: 3454: 3453: 3452: 3448: 3446: 3445: 3444: 3442: 3433: 3430: 3427: 3426: 3424: 3418: 3416: 3415: 3414: 3410: 3408: 3407: 3406: 3404: 3395: 3392: 3389: 3388: 3386: 3380: 3378: 3377: 3376: 3372: 3370: 3369: 3368: 3366: 3357: 3354: 3351: 3350: 3348: 3342: 3340: 3339: 3338: 3334: 3332: 3331: 3330: 3328: 3316: 3314: 3313: 3312: 3308: 3306: 3305: 3304: 3302: 3293: 3291: 3290: 3289: 3285: 3283: 3282: 3281: 3279: 3271: 3268: 3265: 3264: 3262: 3256: 3254: 3253: 3252: 3248: 3246: 3245: 3244: 3242: 3229: 3226: 3223: 3222: 3220: 3214: 3212: 3211: 3210: 3206: 3204: 3203: 3202: 3200: 3194: 3192: 3191: 3190: 3186: 3184: 3183: 3182: 3180: 3168: 3166: 3165: 3164: 3160: 3158: 3157: 3156: 3154: 3148: 3146: 3145: 3144: 3140: 3138: 3137: 3136: 3134: 3122: 3120: 3119: 3118: 3114: 3112: 3111: 3110: 3108: 3102: 3100: 3099: 3098: 3094: 3092: 3091: 3090: 3088: 3082: 3080: 3079: 3078: 3074: 3072: 3071: 3070: 3068: 3062: 3060: 3059: 3058: 3054: 3052: 3051: 3050: 3048: 3038: 3036: 3035: 3034: 3030: 3028: 3027: 3026: 3024: 3012: 3010: 3009: 3008: 3004: 3002: 3001: 3000: 2998: 2987: 2985: 2984: 2983: 2979: 2977: 2976: 2975: 2973: 2966: 2963: 2960: 2959: 2957: 2951: 2949: 2948: 2947: 2943: 2941: 2940: 2939: 2937: 2926: 2913: 2910: 2907: 2906: 2904: 2898: 2896: 2895: 2894: 2890: 2888: 2887: 2886: 2884: 2878: 2876: 2875: 2874: 2870: 2868: 2867: 2866: 2864: 2857: 2854: 2851: 2850: 2848: 2827: 2798: 2767: 2760: 2753: 2746: 2695: 2689: 2604:pulse sequences 2600: 2594: 2550: 2547: 2544: 2543: 2541: 2525: 2519: 2470: 2462:continuous-wave 2458: 2443: 2441: 2440: 2439: 2435: 2433: 2432: 2431: 2429: 2414: 2411: 2408: 2407: 2405: 2400: 2373: 2367: 2360: 2329: 2322: 2315: 2304: 2297: 2274: 2271: 2268: 2267: 2265: 2259: 2252: 2245: 2233: 2217: 2205: 2193: 2186: 2168: 2166: 2160: 2143:solid-state NMR 2140: 2113: 2106: 2099: 2088: 2077: 2069: 2040: 2021: 2002: 1997: 1996: 1994: 1968: 1963: 1962: 1941: 1936: 1935: 1903: 1902: 1880: 1879: 1848: 1847: 1816: 1815: 1784: 1783: 1780: 1774: 1767: 1737: 1715: 1714: 1703: 1700: 1697: 1696: 1694: 1689: 1674: 1671: 1668: 1667: 1665: 1638: 1615: 1614: 1589: 1577: 1563: 1562: 1560: 1522: 1512: 1496: 1486: 1470: 1460: 1442: 1413: 1412: 1410: 1377: 1376: 1357: 1354: 1351: 1350: 1348: 1337: 1334: 1331: 1330: 1328: 1318: 1316: 1315: 1314: 1310: 1308: 1307: 1306: 1304: 1298: 1296: 1295: 1294: 1290: 1288: 1287: 1286: 1284: 1278: 1276: 1275: 1274: 1270: 1268: 1267: 1266: 1264: 1233: 1193: 1177: 1172: 1171: 1159: 1154: 1153:) is therefore 1126: 1125: 1110: 1091:Planck constant 1071: 1044: 1041: 1038: 1037: 1035: 1025: 1023: 1022: 1021: 1017: 1015: 1014: 1013: 1011: 1005: 1003: 1002: 1001: 997: 995: 994: 993: 991: 985: 983: 982: 981: 977: 975: 974: 973: 971: 965: 963: 962: 961: 957: 955: 954: 953: 951: 945: 943: 942: 941: 937: 935: 934: 933: 931: 873: 872: 844: 843: 815: 814: 803: 800: 797: 796: 794: 789: 783: 781: 780: 779: 775: 773: 772: 771: 769: 762:non-radioactive 748: 745: 742: 741: 739: 732: 729: 726: 725: 723: 683: 680: 677: 676: 674: 669:atomic orbitals 661: 631: 626: 620: 605:magnetic fields 554:Anatole Abragam 532: 530: 529: 528: 524: 522: 521: 520: 518: 512: 510: 509: 508: 504: 502: 501: 500: 498: 466: 437: 435:Anatole Abragam 431: 396:chemical shifts 388:superconducting 385: 362: 352: 344:radio frequency 338: 299: 296: 293: 292: 290: 276: 273: 270: 269: 267: 229: 227: 226: 225: 221: 219: 218: 217: 215: 209: 207: 206: 205: 201: 199: 198: 197: 195: 189: 187: 186: 185: 181: 179: 178: 177: 175: 169: 167: 166: 165: 161: 159: 158: 157: 155: 149: 147: 146: 145: 141: 139: 138: 137: 135: 121:medical imaging 43: 31: 24: 17: 12: 11: 5: 7689: 7688: 7685: 7677: 7676: 7671: 7666: 7656: 7655: 7651: 7650: 7638: 7615: 7614: 7612: 7611: 7606: 7601: 7596: 7591: 7586: 7582: 7578: 7573: 7568: 7562: 7560: 7556: 7555: 7553: 7552: 7547: 7542: 7537: 7532: 7527: 7522: 7520:electromagnets 7517: 7511: 7509: 7503: 7502: 7499: 7498: 7496: 7495: 7490: 7485: 7480: 7475: 7470: 7464: 7462: 7461:By composition 7458: 7457: 7455: 7454: 7449: 7444: 7440: 7438: 7434: 7433: 7431: 7430: 7428:unconventional 7425: 7419: 7417: 7416:By explanation 7413: 7412: 7410: 7409: 7404: 7403: 7402: 7397: 7392: 7383: 7381: 7374: 7372:Classification 7368: 7367: 7365: 7364: 7359: 7354: 7349: 7344: 7339: 7334: 7329: 7324: 7319: 7314: 7309: 7304: 7299: 7294: 7289: 7283: 7281: 7277: 7276: 7274: 7273: 7268: 7263: 7261:critical field 7258: 7252: 7250: 7246: 7245: 7243: 7242: 7237: 7232: 7230:Mattis–Bardeen 7227: 7222: 7217: 7215:Kohn–Luttinger 7212: 7207: 7202: 7196: 7194: 7190: 7189: 7184: 7182: 7181: 7174: 7167: 7159: 7153: 7152: 7147: 7121:(1): 183–189. 7109: 7108: 7104: 7103: 7097: 7090: 7084: 7077: 7074: 7073: 7072: 7067: 7060: 7057: 7056: 7055: 7050: 7045: 7039: 7032: 7029: 7027: 7026:External links 7024: 7023: 7022: 7016: 6992: 6963: 6957: 6937: 6931: 6913: 6897: 6891: 6885:. p. 59. 6873:Gary E. Martin 6869: 6863: 6850: 6834: 6829:978-0470034590 6828: 6814:. John Wiley. 6807: 6801: 6795:. John Wiley. 6788: 6783: 6777: 6757: 6705: 6688:K.V.R. Chary, 6686: 6680: 6667: 6661: 6643: 6640: 6638: 6637: 6630: 6612: 6585:(2): 343–347. 6562: 6530: 6499: 6493:978-0470034590 6492: 6466: 6445:(6): 340–342. 6425: 6416: 6394: 6390: 6381: 6355: 6344: 6313: 6301: 6282:(6): 888–919. 6262: 6227: 6212: 6201:on 17 May 2017 6186: 6171: 6109: 6090: 6071: 6055: 6042: 6024: 6005: 5998: 5980: 5973: 5955: 5950:NobelPrize.org 5937: 5908: 5903:NobelPrize.org 5890: 5869:(4): 318–327. 5847: 5822: 5796: 5783:(5): 277–297. 5759: 5757: 5754: 5752: 5751: 5746: 5741: 5736: 5731: 5726: 5720: 5715: 5710: 5705: 5700: 5695: 5692:Larmor formula 5685: 5679: 5677: 5674: 5668:(who acquired 5621: 5618: 5597:Main article: 5594: 5591: 5571:Main article: 5568: 5565: 5541:Main article: 5538: 5535: 5514:zero field NMR 5508:Zero field NMR 5506:Main article: 5503: 5502:Zero field NMR 5500: 5499: 5498: 5491: 5450:range, or the 5436:Main article: 5433: 5430: 5406: 5398: 5358: 5350: 5337:oil refineries 5324: 5321: 5303: 5300: 5295: 5288: 5281: 5274: 5268: 5267: 5264: 5261: 5258: 5218:Main article: 5215: 5212: 5202: 5199: 5173: 5170: 5169: 5168: 5162: 5154: 5149: 5141: 5136: 5129: 5124: 5117: 5112: 5108: 5103: 5099: 5090: 5089: 5078: 5075: 5066: 5063: 5060: 5055: 5050: 5046: 5043: 5040: 5034: 5031: 5028: 5023: 5019: 5016: 5010: 5007: 5004: 4999: 4990: 4987: 4984: 4979: 4975: 4972: 4966: 4963: 4960: 4955: 4950: 4946: 4943: 4940: 4934: 4931: 4928: 4923: 4916: 4912: 4909: 4906: 4903: 4900: 4897: 4869: 4866: 4854: 4846: 4834: 4826: 4814: 4806: 4793: 4774: 4758: 4750: 4720: 4717: 4692:chemical shift 4646: 4643: 4634: 4631: 4629: 4628: 4622: 4614: 4607: 4601: 4593: 4586: 4580: 4572: 4565: 4559: 4551: 4539: 4531: 4524: 4518: 4510: 4503: 4497: 4489: 4482: 4476: 4468: 4461: 4455: 4447: 4440: 4434: 4426: 4419: 4413: 4405: 4398: 4392: 4384: 4377: 4371: 4363: 4356: 4350: 4342: 4335: 4329: 4321: 4314: 4308: 4300: 4293: 4287: 4279: 4272: 4266: 4258: 4251: 4245: 4237: 4225: 4217: 4210: 4204: 4196: 4189: 4183: 4175: 4163: 4155: 4148: 4142: 4134: 4127: 4121: 4113: 4106: 4100: 4092: 4085: 4079: 4071: 4064: 4058: 4050: 4043: 4037: 4029: 4017: 4009: 4002: 3996: 3988: 3976: 3968: 3961: 3955: 3947: 3940: 3934: 3926: 3914: 3906: 3894: 3886: 3879: 3873: 3865: 3858: 3852: 3844: 3837: 3831: 3823: 3816: 3810: 3802: 3795: 3789: 3781: 3774: 3768: 3760: 3753: 3747: 3739: 3732: 3726: 3718: 3711: 3705: 3697: 3690: 3684: 3676: 3664: 3656: 3648: 3641: 3640: 3639:and complexes. 3629: 3621: 3614: 3591: 3583: 3576: 3569: 3561: 3549: 3541: 3513: 3505: 3493: 3485: 3478: 3455: 3447: 3440: 3417: 3409: 3402: 3379: 3371: 3364: 3341: 3333: 3326: 3315: 3307: 3300: 3292: 3284: 3255: 3247: 3240: 3213: 3205: 3193: 3185: 3178: 3167: 3159: 3147: 3139: 3132: 3121: 3113: 3101: 3093: 3081: 3073: 3061: 3053: 3037: 3029: 3022: 3011: 3003: 2986: 2978: 2950: 2942: 2925: 2922: 2921: 2920: 2897: 2889: 2877: 2869: 2841: 2830:recycle delays 2825: 2818: 2797: 2794: 2765: 2758: 2751: 2744: 2691:Main article: 2688: 2685: 2656:or even small 2596:Main article: 2593: 2590: 2521:Main article: 2518: 2515: 2485:300 MHz. 2468: 2457: 2454: 2442: 2434: 2369:Main article: 2366: 2363: 2358: 2327: 2320: 2313: 2307:"well-shimmed" 2302: 2295: 2257: 2250: 2243: 2231: 2215: 2203: 2191: 2184: 2159: 2156: 2145:spectroscopy, 2138: 2125:chemical shift 2121:at the nucleus 2112: 2109: 2104: 2097: 2086: 2075: 2068: 2065: 2052: 2047: 2043: 2039: 2036: 2033: 2028: 2024: 2020: 2017: 2014: 2009: 2005: 1992: 1975: 1971: 1948: 1944: 1923: 1919: 1914: 1910: 1900:Bohr frequency 1887: 1855: 1835: 1832: 1829: 1826: 1823: 1803: 1800: 1797: 1794: 1791: 1773: 1770: 1765: 1750: 1744: 1740: 1736: 1733: 1730: 1726: 1722: 1651: 1645: 1641: 1637: 1634: 1631: 1628: 1625: 1622: 1602: 1596: 1592: 1585: 1580: 1576: 1573: 1570: 1558: 1537: 1532: 1529: 1525: 1519: 1515: 1511: 1506: 1503: 1499: 1493: 1489: 1485: 1480: 1477: 1473: 1467: 1463: 1459: 1456: 1451: 1446: 1441: 1435: 1432: 1426: 1423: 1420: 1408: 1390: 1387: 1317: 1309: 1297: 1289: 1277: 1269: 1232: 1229: 1217: 1214: 1211: 1208: 1205: 1200: 1196: 1192: 1189: 1184: 1180: 1157: 1139: 1136: 1089:, the reduced 1070: 1067: 1024: 1016: 1004: 996: 984: 976: 964: 956: 944: 936: 904: 901: 895: 892: 886: 883: 857: 854: 828: 825: 782: 774: 660:are even then 630: 627: 619: 616: 531: 523: 511: 503: 430: 427: 383: 369: 368: 360: 354: 350: 340: 336: 228: 220: 208: 200: 188: 180: 168: 160: 148: 140: 77:magnetic field 15: 13: 10: 9: 6: 4: 3: 2: 7687: 7686: 7675: 7672: 7670: 7667: 7665: 7662: 7661: 7659: 7649: 7639: 7637: 7632: 7627: 7623: 7610: 7607: 7605: 7602: 7600: 7597: 7595: 7592: 7590: 7587: 7585: 7579: 7577: 7574: 7572: 7569: 7567: 7564: 7563: 7561: 7557: 7551: 7548: 7546: 7543: 7541: 7538: 7536: 7533: 7531: 7528: 7526: 7523: 7521: 7518: 7516: 7513: 7512: 7510: 7508: 7504: 7494: 7491: 7489: 7486: 7484: 7481: 7479: 7478:heavy fermion 7476: 7474: 7471: 7469: 7466: 7465: 7463: 7459: 7453: 7450: 7448: 7445: 7442: 7441: 7439: 7435: 7429: 7426: 7424: 7421: 7420: 7418: 7414: 7408: 7407:ferromagnetic 7405: 7401: 7398: 7396: 7393: 7391: 7388: 7387: 7385: 7384: 7382: 7378: 7375: 7373: 7369: 7363: 7360: 7358: 7355: 7353: 7352:supercurrents 7350: 7348: 7345: 7343: 7340: 7338: 7335: 7333: 7330: 7328: 7325: 7323: 7320: 7318: 7315: 7313: 7310: 7308: 7305: 7303: 7300: 7298: 7295: 7293: 7290: 7288: 7285: 7284: 7282: 7278: 7272: 7269: 7267: 7264: 7262: 7259: 7257: 7254: 7253: 7251: 7247: 7241: 7238: 7236: 7233: 7231: 7228: 7226: 7223: 7221: 7218: 7216: 7213: 7211: 7208: 7206: 7203: 7201: 7198: 7197: 7195: 7191: 7187: 7180: 7175: 7173: 7168: 7166: 7161: 7160: 7157: 7151: 7148: 7144: 7140: 7136: 7132: 7128: 7124: 7120: 7116: 7111: 7110: 7106: 7105: 7101: 7098: 7094: 7091: 7088: 7085: 7083: 7080: 7079: 7075: 7071: 7068: 7066: 7063: 7062: 7058: 7054: 7051: 7049: 7046: 7043: 7040: 7038: 7035: 7034: 7030: 7025: 7019: 7013: 7009: 7004: 7003: 6997: 6996:Kurt Wüthrich 6993: 6989: 6985: 6981: 6977: 6973: 6969: 6964: 6960: 6958:9783540084761 6954: 6949: 6948: 6942: 6938: 6934: 6932:9781258811662 6928: 6924: 6923: 6918: 6914: 6910: 6906: 6905:W.G.Schneider 6902: 6898: 6894: 6888: 6884: 6880: 6879: 6874: 6870: 6866: 6860: 6856: 6851: 6840: 6837:J.P. Hornak. 6835: 6831: 6825: 6821: 6817: 6813: 6808: 6804: 6802:9780471490821 6798: 6794: 6789: 6787: 6784: 6780: 6778:9781483184081 6774: 6769: 6768: 6762: 6758: 6754: 6750: 6746: 6742: 6738: 6734: 6730: 6726: 6722: 6718: 6714: 6710: 6706: 6703: 6699: 6695: 6691: 6690:Girjesh Govil 6687: 6683: 6677: 6673: 6668: 6664: 6662:9780198520146 6658: 6654: 6650: 6646: 6645: 6641: 6633: 6627: 6623: 6616: 6613: 6608: 6604: 6600: 6596: 6592: 6588: 6584: 6580: 6573: 6566: 6563: 6558: 6554: 6550: 6546: 6542: 6534: 6531: 6526: 6522: 6518: 6514: 6510: 6503: 6500: 6495: 6489: 6485: 6481: 6477: 6470: 6467: 6462: 6458: 6453: 6448: 6444: 6440: 6436: 6429: 6426: 6420: 6417: 6412: 6408: 6404: 6400: 6385: 6382: 6369: 6365: 6359: 6356: 6353: 6348: 6345: 6332: 6328: 6324: 6321:Baianu, I.C. 6317: 6314: 6310: 6305: 6302: 6297: 6293: 6289: 6285: 6281: 6277: 6273: 6266: 6263: 6258: 6254: 6250: 6246: 6242: 6238: 6231: 6228: 6223: 6216: 6213: 6200: 6196: 6190: 6187: 6182: 6175: 6172: 6167: 6163: 6159: 6155: 6151: 6147: 6143: 6139: 6134: 6129: 6125: 6121: 6113: 6110: 6106: 6102: 6099: 6094: 6091: 6087: 6083: 6080: 6075: 6072: 6068: 6062: 6060: 6056: 6052: 6046: 6043: 6039: 6033: 6031: 6029: 6025: 6020: 6016: 6009: 6006: 6001: 5999:0-07-707976-0 5995: 5991: 5984: 5981: 5976: 5970: 5966: 5959: 5956: 5951: 5947: 5941: 5938: 5932: 5927: 5923: 5919: 5912: 5909: 5904: 5900: 5894: 5891: 5885: 5880: 5876: 5872: 5868: 5864: 5863: 5858: 5851: 5848: 5843: 5839: 5834: 5829: 5825: 5819: 5815: 5811: 5807: 5800: 5797: 5791: 5786: 5782: 5778: 5774: 5767: 5765: 5761: 5755: 5750: 5747: 5745: 5742: 5740: 5737: 5735: 5732: 5730: 5727: 5724: 5721: 5719: 5716: 5714: 5711: 5709: 5706: 5704: 5701: 5699: 5696: 5693: 5689: 5686: 5684: 5681: 5680: 5675: 5673: 5671: 5667: 5663: 5659: 5655: 5651: 5647: 5643: 5639: 5635: 5631: 5627: 5619: 5617: 5615: 5611: 5607: 5600: 5592: 5590: 5588: 5584: 5580: 5574: 5567:Magnetometers 5566: 5564: 5562: 5558: 5554: 5550: 5544: 5536: 5534: 5531: 5530:magnetometers 5527: 5523: 5519: 5515: 5509: 5501: 5496: 5492: 5489: 5485: 5483: 5478: 5477: 5476: 5472: 5470: 5469:magnetometers 5466: 5461: 5458:bands of the 5457: 5453: 5449: 5445: 5439: 5429: 5427: 5423: 5419: 5418:petrochemical 5415: 5410: 5391: 5387: 5383: 5379: 5375: 5371: 5367: 5362: 5342: 5341:petrochemical 5338: 5334: 5330: 5322: 5320: 5318: 5308: 5301: 5299: 5294: 5287: 5280: 5273: 5265: 5262: 5259: 5256: 5255: 5254: 5250: 5248: 5247:low field NMR 5243: 5239: 5235: 5231: 5227: 5221: 5213: 5211: 5208: 5200: 5198: 5196: 5192: 5188: 5184: 5183:nucleic acids 5180: 5179:ferromagnetic 5171: 5166: 5163: 5160: 5153: 5150: 5147: 5140: 5137: 5135: 5128: 5125: 5123: 5116: 5113: 5107: 5104: 5098: 5095: 5094: 5093: 5076: 5073: 5041: 5038: 5021: 5017: 5014: 4997: 4977: 4973: 4970: 4941: 4938: 4921: 4914: 4887: 4886: 4885: 4883: 4879: 4875: 4867: 4865: 4863: 4858: 4838: 4818: 4799: 4791: 4786: 4784: 4780: 4773: 4769: 4764: 4744: 4743: 4739:by observing 4738: 4733: 4731: 4727: 4726:carbon-13 NMR 4718: 4716: 4714: 4709: 4707: 4703: 4697: 4696: 4693: 4689: 4685: 4682: 4678: 4677:carbon-13 NMR 4674: 4670: 4666: 4660: 4651: 4644: 4642: 4640: 4632: 4626: 4608: 4605: 4587: 4584: 4566: 4563: 4543: 4525: 4522: 4504: 4501: 4483: 4480: 4462: 4459: 4441: 4438: 4420: 4417: 4399: 4396: 4378: 4375: 4357: 4354: 4336: 4333: 4315: 4312: 4294: 4291: 4273: 4270: 4252: 4249: 4229: 4211: 4208: 4190: 4187: 4167: 4149: 4146: 4128: 4125: 4107: 4104: 4086: 4083: 4065: 4062: 4044: 4041: 4021: 4003: 4000: 3980: 3962: 3959: 3941: 3938: 3918: 3898: 3880: 3877: 3859: 3856: 3838: 3835: 3817: 3814: 3796: 3793: 3775: 3772: 3754: 3751: 3733: 3730: 3712: 3709: 3691: 3688: 3668: 3650: 3649: 3647: 3645: 3638: 3633: 3615: 3595: 3577: 3573: 3553: 3517: 3497: 3479: 3459: 3441: 3421: 3403: 3383: 3365: 3345: 3327: 3324: 3319: 3301: 3296: 3259: 3241: 3238: 3217: 3197: 3179: 3176: 3171: 3151: 3133: 3130: 3125: 3105: 3085: 3065: 3046: 3041: 3023: 3020: 3015: 2995: 2990: 2954: 2936: 2935: 2934: 2933: 2929: 2923: 2901: 2881: 2846: 2842: 2839: 2835: 2831: 2824: 2819: 2816: 2812: 2811: 2810: 2806: 2802: 2795: 2793: 2791: 2787: 2786:John S. Waugh 2783: 2779: 2775: 2770: 2764: 2757: 2750: 2743: 2740: 2736: 2735:Knight shifts 2732: 2728: 2724: 2719: 2717: 2713: 2708: 2704: 2700: 2694: 2686: 2684: 2683:in solution. 2682: 2678: 2677:Koichi Tanaka 2674: 2670: 2666: 2665:Kurt Wüthrich 2661: 2659: 2658:nucleic acids 2655: 2651: 2648:structure of 2646: 2642: 2641:Richard Ernst 2638: 2634: 2629: 2627: 2622: 2621:through-space 2618: 2612: 2610: 2605: 2599: 2591: 2589: 2587: 2583: 2579: 2575: 2571: 2567: 2563: 2557: 2539: 2535: 2531: 2524: 2516: 2514: 2512: 2508: 2504: 2500: 2496: 2491: 2486: 2483: 2477: 2474: 2473:electromagnet 2467: 2463: 2455: 2453: 2451: 2446: 2426: 2424: 2403: 2397: 2394: 2390: 2382: 2377: 2372: 2364: 2362: 2357: 2353: 2348: 2340: 2335: 2331: 2326: 2319: 2312: 2308: 2301: 2294: 2290: 2286: 2277: 2263: 2256: 2249: 2242: 2238: 2234: 2230: 2225: 2220: 2214: 2210: 2206: 2202: 2190: 2183: 2165: 2157: 2155: 2153: 2148: 2144: 2137: 2133: 2128: 2126: 2122: 2118: 2110: 2108: 2103: 2096: 2092: 2085: 2081: 2074: 2066: 2064: 2050: 2045: 2041: 2037: 2034: 2031: 2026: 2022: 2018: 2015: 2012: 2007: 2003: 1991: 1973: 1969: 1946: 1942: 1917: 1912: 1901: 1885: 1877: 1873: 1869: 1853: 1833: 1830: 1827: 1824: 1821: 1801: 1798: 1795: 1792: 1789: 1779: 1771: 1769: 1764: 1748: 1742: 1738: 1731: 1728: 1724: 1711: 1692: 1687: 1683: 1662: 1649: 1643: 1639: 1632: 1629: 1626: 1623: 1620: 1600: 1594: 1590: 1578: 1574: 1571: 1568: 1557: 1553: 1548: 1535: 1530: 1527: 1523: 1517: 1513: 1509: 1504: 1501: 1497: 1491: 1487: 1483: 1478: 1475: 1471: 1465: 1461: 1457: 1454: 1449: 1439: 1430: 1424: 1421: 1418: 1411:is given by: 1407: 1385: 1374: 1368: 1366: 1346: 1326: 1321: 1301: 1281: 1258: 1254: 1250: 1245: 1237: 1230: 1228: 1215: 1209: 1206: 1203: 1198: 1194: 1190: 1187: 1182: 1178: 1169: 1164: 1160: 1134: 1123: 1118: 1114: 1108: 1104: 1100: 1096: 1092: 1088: 1084: 1080: 1076: 1068: 1066: 1064: 1059: 1055: 1051: 1033: 1028: 1008: 988: 968: 948: 929: 925: 921: 899: 893: 890: 881: 852: 823: 811: 792: 786: 767: 763: 759: 758: 721: 717: 713: 709: 705: 701: 695: 693: 689: 670: 664: 659: 655: 652: 648: 644: 640: 636: 628: 625: 617: 615: 613: 612:atomic nuclei 610: 609:hyperpolarize 606: 602: 599:), a form of 598: 593: 591: 587: 583: 579: 575: 571: 567: 563: 559: 555: 551: 547: 542: 540: 535: 515: 495: 493: 489: 485: 481: 476: 474: 469: 464: 460: 458: 454: 450: 446: 442: 436: 428: 426: 424: 423:magnetometers 420: 416: 415:low-field NMR 411: 409: 405: 404:Knight shifts 401: 400:Zeeman effect 397: 393: 389: 382: 378: 374: 373:perpendicular 366: 359: 355: 349: 345: 341: 335: 331: 330: 329: 326: 324: 318: 316: 312: 308: 307:liquid helium 287: 285: 263: 261: 257: 253: 249: 245: 241: 237: 232: 212: 192: 172: 152: 132: 130: 126: 122: 118: 114: 110: 106: 102: 98: 94: 90: 86: 82: 78: 74: 70: 66: 62: 37: 33: 29: 22: 7674:Biomagnetics 7529: 7488:oxypnictides 7423:conventional 7362:superstripes 7307:flux pumping 7302:flux pinning 7297:Cooper pairs 7118: 7114: 7044:NMR Concepts 7001: 6974:(1): 93–99. 6971: 6967: 6946: 6921: 6908: 6881:. New York: 6877: 6854: 6842:. Retrieved 6811: 6792: 6771:. Pergamon. 6766: 6720: 6716: 6693: 6671: 6652: 6621: 6615: 6582: 6578: 6565: 6540: 6533: 6508: 6502: 6475: 6469: 6442: 6438: 6428: 6419: 6402: 6398: 6384: 6372:. Retrieved 6367: 6358: 6347: 6335:. Retrieved 6331:the original 6326: 6316: 6304: 6279: 6275: 6265: 6240: 6236: 6230: 6215: 6203:. Retrieved 6199:the original 6189: 6174: 6123: 6119: 6112: 6093: 6074: 6066: 6065:A. Abragam, 6050: 6045: 6037: 6018: 6008: 5989: 5983: 5964: 5958: 5949: 5940: 5921: 5911: 5902: 5893: 5866: 5860: 5850: 5805: 5799: 5780: 5776: 5670:Varian, Inc. 5654:Kimble Chase 5642:Spinlock SRL 5623: 5602: 5576: 5573:Magnetometer 5546: 5525: 5521: 5511: 5481: 5473: 5441: 5422:chemometrics 5384:production, 5326: 5313: 5292: 5285: 5278: 5271: 5269: 5251: 5223: 5204: 5185:, including 5175: 5164: 5151: 5138: 5126: 5114: 5105: 5096: 5091: 4871: 4797: 4787: 4771: 4767: 4765: 4740: 4734: 4722: 4713:metabolomics 4710: 4698: 4662: 4636: 4633:Applications 3644:Other nuclei 3643: 3642: 3237:borosilicate 2931: 2930: 2927: 2833: 2829: 2822: 2807: 2803: 2799: 2771: 2762: 2755: 2748: 2741: 2720: 2707:Knight shift 2696: 2662: 2630: 2620: 2617:through-bond 2616: 2613: 2603: 2601: 2558: 2526: 2503:proportional 2499:random noise 2487: 2478: 2465: 2459: 2427: 2401: 2398: 2386: 2355: 2344: 2324: 2317: 2310: 2299: 2292: 2275: 2254: 2247: 2240: 2236: 2228: 2221: 2212: 2209:spin-lattice 2200: 2197: 2188: 2181: 2135: 2129: 2120: 2116: 2114: 2101: 2094: 2083: 2072: 2070: 1989: 1899: 1875: 1867: 1781: 1762: 1712: 1690: 1685: 1681: 1663: 1555: 1551: 1550:Usually the 1549: 1405: 1369: 1344: 1324: 1262: 1167: 1162: 1155: 1121: 1119: 1112: 1106: 1102: 1098: 1086: 1082: 1072: 1052: 1031: 919: 812: 790: 761: 755: 715: 711: 696: 662: 653: 632: 601:spectroscopy 594: 586:biochemistry 543: 539:in resonance 538: 496: 477: 461: 438: 412: 380: 376: 370: 357: 347: 333: 327: 319: 288: 264: 244:nuclear spin 133: 131:techniques. 64: 60: 59: 32: 7347:SU(2) color 7327:Homes's law 7096:solution"). 7042:NMR Library 6844:23 February 6761:John Emsley 6374:18 December 6337:22 February 5806:Protein NMR 5739:Relaxometry 5374:rheological 5238:natural gas 5148:of standard 4783:cyclohexane 4653:Medical MRI 2834:Ernst angle 2796:Sensitivity 2774:J-couplings 2739:magic angle 2667:shared the 2650:biopolymers 2633:Jean Jeener 2511:random walk 2507:square root 716:not of zero 546:electronics 453:Felix Bloch 441:Isidor Rabi 7658:Categories 7483:iron-based 7342:reentrance 6709:G.M. Clore 6696:Springer. 6649:A. Abragam 5756:References 5734:Rabi cycle 5662:Siemens AG 5484:-couplings 4737:elucidated 4730:proton NMR 4673:proton NMR 4657:See also: 3323:quadrupole 2994:Proton NMR 2845:quadrupole 2782:Alex Pines 2778:Erwin Hahn 2482:orthogonal 2224:precessing 2158:Relaxation 2082:frequency 1058:electronic 622:See also: 566:BCS theory 433:See also: 81:near field 7648:Chemistry 7280:Phenomena 6901:J.A.Pople 6883:Wiley-VCH 6557:224971456 6461:1099-0534 6243:: 52–70. 6053:, Vol. 3. 5744:Spin echo 5551:uses the 5386:cosmetics 5234:petroleum 5161:of sample 5074:× 5039:× 5015:× 4971:× 4939:× 4768:timescale 4719:Chemistry 3637:catalysts 3261:, a spin- 2815:Boltzmann 2635:from the 2534:bandwidth 2389:molecules 2347:Hahn echo 2339:Hahn echo 2038:γ 2035:− 2023:ν 2019:π 2004:ω 1922:ℏ 1909:Δ 1886:ω 1854:ν 1834:ν 1831:π 1822:ω 1799:γ 1796:− 1790:ω 1768:results. 1735:ℏ 1732:γ 1721:Δ 1680:as being 1636:ℏ 1630:γ 1627:− 1579:μ 1575:− 1514:μ 1510:− 1488:μ 1484:− 1462:μ 1458:− 1440:⋅ 1434:→ 1431:μ 1425:− 1389:→ 1386:μ 1213:ℏ 1207:γ 1191:γ 1179:μ 1138:→ 903:→ 894:γ 885:→ 882:μ 856:→ 853:μ 827:→ 708:deuterium 560:, and to 85:resonance 71:in which 7515:cryotron 7473:cuprates 7468:covalent 7225:Matthias 7193:Theories 7143:17638585 7031:Tutorial 6998:(1986). 6988:15722021 6943:(1963). 6919:(1959). 6651:(1961). 6607:16860581 6525:25375410 6257:22293399 6205:30 March 6158:11780055 6101:Archived 6082:Archived 6019:phys.org 5842:29151202 5676:See also 5630:Magritek 5610:porosity 5561:ensemble 5414:refinery 5370:hydrogen 5364:) yield 5242:borehole 5195:proteins 4645:Medicine 2924:Isotopes 2836:, after 2663:In 2002 2654:proteins 2652:such as 2570:spectrum 2132:symmetry 1073:Nuclear 692:fermions 635:neutrons 597:ZULF NMR 260:Nuclides 252:neutrons 117:crystals 105:magnetic 7636:Physics 7622:Portals 7609:more... 7493:organic 7123:Bibcode 6753:2047852 6725:Bibcode 6717:Science 6692:(2008) 6587:Bibcode 6284:Bibcode 6166:4400832 6138:Bibcode 5871:Bibcode 5833:6217836 5658:Philips 5606:aquifer 5585:), and 5442:In the 5382:polymer 5228:in the 5092:Where: 3611:⁠ 3599:⁠ 3597:, spin- 3533:⁠ 3521:⁠ 3519:, spin- 3475:⁠ 3463:⁠ 3461:, spin- 3437:⁠ 3425:⁠ 3423:, spin- 3399:⁠ 3387:⁠ 3385:, spin- 3361:⁠ 3349:⁠ 3347:, spin- 3275:⁠ 3263:⁠ 3233:⁠ 3221:⁠ 2970:⁠ 2958:⁠ 2917:⁠ 2905:⁠ 2861:⁠ 2849:⁠ 2562:induces 2554:⁠ 2542:⁠ 2505:to the 2418:⁠ 2406:⁠ 2287:of the 2280:⁠ 2266:⁠ 1934:of the 1898:is the 1707:⁠ 1695:⁠ 1682:aligned 1678:⁠ 1666:⁠ 1361:⁠ 1349:⁠ 1341:⁠ 1329:⁠ 1257:precess 1048:⁠ 1036:⁠ 922:is the 807:⁠ 795:⁠ 752:⁠ 740:⁠ 736:⁠ 724:⁠ 720:tritium 687:⁠ 675:⁠ 658:nuclide 643:nucleus 639:protons 429:History 309:cooled 303:⁠ 291:⁠ 280:⁠ 268:⁠ 256:Isotope 250:and/or 248:protons 89:isotope 67:) is a 7386:Types 7220:London 7141:  7014:  6986:  6955:  6929:  6889:  6861:  6826:  6799:  6775:  6751:  6743:  6700:  6678:  6659:  6628:  6605:  6555:  6523:  6490:  6459:  6255:  6164:  6156:  6120:Nature 5996:  5971:  5840:  5830:  5820:  5638:Bruker 5612:, and 5557:qubits 5378:mining 4702:oxygen 4684:tumors 3021:(MRI). 2671:(with 2423:dipole 2361:time. 2141:). In 1814:where 1373:energy 1166:. The 918:where 757:proton 402:, and 398:, the 214:, and 73:nuclei 7599:TBCCO 7571:BSCCO 7550:wires 7545:SQUID 7107:Other 7076:Video 6745:83376 6575:(PDF) 6553:S2CID 6393:and C 6162:S2CID 6128:arXiv 5725:(NQR) 5518:tesla 5193:, or 4681:brain 2404:> 1034:> 704:quark 673:spin- 480:radar 315:Tesla 254:(see 93:tesla 7604:YBCO 7594:NbTi 7589:NbSn 7576:LBCO 7139:PMID 7012:ISBN 6984:PMID 6953:ISBN 6927:ISBN 6887:ISBN 6859:ISBN 6846:2009 6824:ISBN 6797:ISBN 6773:ISBN 6749:PMID 6741:OSTI 6698:ISBN 6676:ISBN 6657:ISBN 6626:ISBN 6603:PMID 6521:PMID 6488:ISBN 6457:ISSN 6376:2017 6339:2009 6253:PMID 6207:2017 6154:PMID 5994:ISBN 5969:ISBN 5838:PMID 5818:ISBN 5650:JEOL 5599:SNMR 5593:SNMR 5553:spin 5547:NMR 5454:and 5416:and 5390:coal 5339:and 5331:and 5236:and 5232:for 5189:and 4728:and 3499:and 2784:and 2675:and 2619:and 2323:and 2264:(to 2222:The 2187:and 1961:and 1866:and 1120:The 1105:to − 1075:spin 1010:and 647:spin 637:and 588:and 556:and 517:and 455:and 238:and 154:and 115:and 99:and 7581:MgB 7530:NMR 7525:MRI 7400:1.5 7240:WHH 7235:RVB 7200:BCS 7131:doi 7119:188 6976:doi 6816:doi 6733:doi 6721:252 6595:doi 6583:182 6545:doi 6513:doi 6480:doi 6447:doi 6407:doi 6292:doi 6245:doi 6146:doi 6124:414 5926:doi 5879:doi 5828:PMC 5810:doi 5785:doi 5672:). 5512:In 5495:ppm 5335:in 5191:DNA 5187:RNA 5155:spl 5142:std 5130:spl 5118:std 5109:spl 5100:std 4690:or 2731:MAS 2716:MAS 2235:or 2207:, " 1347:= − 1343:or 1303:or 1115:+ 1 665:= 0 584:, 568:of 486:'s 286:). 258:). 101:UHF 97:VHF 65:NMR 7660:: 7395:II 7137:. 7129:. 7117:. 7010:. 6982:. 6972:16 6970:. 6903:; 6822:. 6747:. 6739:. 6731:. 6719:. 6715:. 6601:. 6593:. 6581:. 6577:. 6551:. 6519:. 6486:. 6478:. 6455:. 6443:13 6441:. 6437:. 6403:20 6401:. 6395:70 6391:60 6366:. 6325:. 6290:. 6278:. 6274:. 6251:. 6241:60 6239:. 6160:. 6152:. 6144:. 6136:. 6122:. 6058:^ 6027:^ 6017:. 5948:. 5924:. 5920:. 5901:. 5877:. 5867:53 5865:. 5859:. 5836:. 5826:. 5816:. 5779:. 5775:. 5763:^ 5694:). 5660:, 5656:, 5652:, 5648:, 5644:, 5640:, 5636:, 5632:, 5628:, 5616:. 5608:, 5589:. 5380:, 5157:: 5152:MW 5144:: 5139:MW 4794:60 4675:, 4618:Hg 4576:La 4555:Ba 4545:, 4535:Ba 4514:Cs 4472:Te 4451:Sn 4430:Cd 4409:Ag 4388:Mo 4367:Sr 4346:Rb 4325:Br 4304:Se 4283:As 4262:Ge 4241:Ga 4231:, 4221:Ga 4200:Zn 4179:Cu 4169:, 4159:Cu 4138:Ni 4117:Co 4096:Fe 4075:Mn 4054:Cr 4023:, 3992:Ti 3982:, 3972:Ti 3951:Sc 3920:, 3900:, 3827:Si 3806:Al 3785:Mg 3764:Na 3743:Ne 3701:Be 3680:Li 3670:, 3660:Li 3625:Pt 3587:Ca 3565:Cl 3545:Cl 3509:Cl 3489:Cl 3163:He 3143:He 2660:. 2628:. 2452:. 2393:J- 2345:A 2337:A 2098:rf 2076:rf 1693:= 1367:. 1327:= 1283:, 1163:mħ 1161:= 1097:, 1020:Cl 1000:Cl 990:, 970:, 810:. 793:= 778:Al 714:, 614:. 592:. 425:. 325:. 224:Si 194:, 7624:: 7583:2 7390:I 7178:e 7171:t 7164:v 7145:. 7133:: 7125:: 7020:. 6990:. 6978:: 6961:. 6935:. 6895:. 6867:. 6848:. 6832:. 6818:: 6805:. 6781:. 6755:. 6735:: 6727:: 6704:. 6684:. 6665:. 6634:. 6609:. 6597:: 6589:: 6559:. 6547:: 6527:. 6515:: 6496:. 6482:: 6463:. 6449:: 6413:. 6409:: 6378:. 6341:. 6298:. 6294:: 6286:: 6280:9 6259:. 6247:: 6224:. 6209:. 6168:. 6148:: 6140:: 6130:: 6002:. 5977:. 5952:. 5934:. 5928:: 5905:. 5887:. 5881:: 5873:: 5844:. 5812:: 5793:. 5787:: 5781:9 5526:J 5522:J 5486:( 5482:J 5402:H 5354:H 5296:2 5293:T 5289:2 5286:T 5282:2 5279:T 5275:2 5272:T 5165:P 5127:n 5115:n 5106:w 5097:w 5077:P 5065:l 5062:p 5059:s 5054:] 5049:H 5045:[ 5042:n 5033:d 5030:t 5027:s 5022:W 5018:M 5009:l 5006:p 5003:s 4998:w 4989:l 4986:p 4983:s 4978:W 4974:M 4965:d 4962:t 4959:s 4954:] 4949:H 4945:[ 4942:n 4933:d 4930:t 4927:s 4922:w 4915:= 4911:y 4908:t 4905:i 4902:r 4899:u 4896:P 4850:H 4830:C 4810:C 4798:H 4775:2 4772:T 4754:H 4597:W 4493:I 4033:V 4013:V 3930:K 3910:K 3890:K 3869:S 3848:P 3722:F 3608:2 3605:/ 3602:7 3530:2 3527:/ 3524:3 3472:2 3469:/ 3466:1 3451:P 3434:2 3431:/ 3428:1 3413:F 3396:2 3393:/ 3390:5 3375:O 3358:2 3355:/ 3352:1 3337:N 3311:N 3288:C 3272:2 3269:/ 3266:1 3251:C 3230:2 3227:/ 3224:3 3209:B 3189:B 3117:H 3097:H 3077:H 3057:H 3033:H 3007:H 2982:H 2967:2 2964:/ 2961:1 2946:H 2919:. 2914:2 2911:/ 2908:1 2893:N 2873:N 2858:2 2855:/ 2852:3 2826:1 2823:T 2766:m 2763:θ 2759:0 2756:B 2752:m 2749:θ 2745:m 2742:θ 2551:2 2548:/ 2545:1 2469:0 2466:B 2438:H 2415:2 2412:/ 2409:1 2402:S 2381:T 2359:2 2356:T 2328:2 2325:T 2321:1 2318:T 2314:2 2311:T 2303:2 2300:T 2296:2 2293:T 2276:e 2272:/ 2269:1 2258:2 2255:T 2251:2 2248:T 2244:1 2241:T 2232:2 2229:T 2216:1 2213:T 2204:1 2201:T 2192:2 2189:T 2185:1 2182:T 2139:0 2136:B 2117:γ 2105:0 2102:B 2095:ν 2087:L 2084:ν 2073:ν 2051:, 2046:0 2042:B 2032:= 2027:L 2016:2 2013:= 2008:L 1993:0 1990:B 1974:y 1970:S 1947:x 1943:S 1918:/ 1913:E 1876:B 1868:B 1828:2 1825:= 1802:B 1793:= 1766:0 1763:B 1749:, 1743:0 1739:B 1729:= 1725:E 1704:2 1701:/ 1698:1 1691:m 1686:γ 1675:2 1672:/ 1669:1 1650:. 1644:0 1640:B 1633:m 1624:= 1621:E 1601:, 1595:0 1591:B 1584:z 1572:= 1569:E 1559:0 1556:B 1552:z 1536:. 1531:z 1528:0 1524:B 1518:z 1505:y 1502:0 1498:B 1492:y 1479:x 1476:0 1472:B 1466:x 1455:= 1450:0 1445:B 1422:= 1419:E 1409:0 1406:B 1358:2 1355:/ 1352:1 1345:m 1338:2 1335:/ 1332:1 1325:m 1313:F 1293:C 1273:H 1251:( 1216:. 1210:m 1204:= 1199:z 1195:S 1188:= 1183:z 1168:z 1158:z 1156:S 1135:S 1122:z 1113:S 1111:2 1107:S 1103:S 1099:m 1087:ħ 1083:S 1045:2 1042:/ 1039:1 1032:S 980:P 960:C 940:O 920:γ 900:S 891:= 824:S 804:2 801:/ 798:5 791:S 749:2 746:/ 743:1 733:2 730:/ 727:1 712:1 684:2 681:/ 678:1 663:S 654:S 527:P 507:H 384:0 381:B 377:M 361:0 358:B 351:0 348:B 339:. 337:0 334:B 300:2 297:/ 294:3 277:2 274:/ 271:1 204:P 184:F 164:C 144:H 63:( 30:. 23:.

Index

Nuclear magnetic resonance spectroscopy
NMR (disambiguation)

physical phenomenon
nuclei
magnetic field
near field
resonance
isotope
tesla
VHF
UHF
magnetic
nuclear magnetic resonance spectroscopy
molecular physics
crystals
medical imaging
magnetic resonance imaging
Magic Angle Spinning

H


C


F


P


Si

angular momentum
nuclear magnetic dipole moment
nuclear spin
protons
neutrons
Isotope

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.