Knowledge (XXG)

Nuclear physics

Source 📝

2276:)) Retrieved June 13, 2021 (p.1):"..In an earlier paper, however, we pointed out that α particles are sometimes turned through very large angles..."(p.2):"..Professor Rutherford has recently developed a theory to account for the scattering of α particles through these large angles, the assumption being that the deflexions are the result of an intimate encounter of an α particle with a single atom of the matter traversed. In this theory an atom is supposed to consist of a strong positive or negative central charge concentrated within a sphere of less than about 3 × 10–12 cm. radius, and surrounded by electricity of the opposite sigh distributed throughout the remainder of the atom of about 10−8 cm. radius..." 1893: 821: 996: 986: 834: 5193: 49: 2322:..Geiger and an English-New Zealand student, E. Marsden, to study their scattering through thin metallic foils. In 1909, the two physicists observe that some alpha-particles are scattered backwards by thin platinum or gold foils (Geiger 1909)...It takes Rutherford one and a half years to understand this result. In 1911, he concludes that the atom contains a very small 'nucleus'... 2699: 1881:, which provide the necessary conditions of high temperature, high neutron flux and ejected matter. These stellar conditions make the successive neutron captures very fast, involving very neutron-rich species which then beta-decay to heavier elements, especially at the so-called waiting points that correspond to more stable nuclides with closed neutron shells (magic numbers). 1907: 1347:
each nucleus had, by comparing the nuclear mass with that of the protons and neutrons which composed it. Differences between nuclear masses were calculated in this way. When nuclear reactions were measured, these were found to agree with Einstein's calculation of the equivalence of mass and energy to
1418:
With Yukawa's papers, the modern model of the atom was complete. The center of the atom contains a tight ball of neutrons and protons, which is held together by the strong nuclear force, unless it is too large. Unstable nuclei may undergo alpha decay, in which they emit an energetic helium nucleus,
1194:
containing most of its mass, and consisting of heavy positively charged particles with embedded electrons in order to balance out the charge (since the neutron was unknown). As an example, in this model (which is not the modern one) nitrogen-14 consisted of a nucleus with 14 protons and 7 electrons
1185:
had predicted that the alpha particles should come out of the foil with their trajectories being at most slightly bent. But Rutherford instructed his team to look for something that shocked him to observe: a few particles were scattered through large angles, even completely backwards in some cases.
1110:
in Physics was awarded jointly to Becquerel, for his discovery and to Marie and Pierre Curie for their subsequent research into radioactivity. Rutherford was awarded the Nobel Prize in Chemistry in 1908 for his "investigations into the disintegration of the elements and the chemistry of radioactive
1806:
it eventually became possible for common subatomic particles as we know them (neutrons, protons and electrons) to exist. The most common particles created in the Big Bang which are still easily observable to us today were protons and electrons (in equal numbers). The protons would eventually form
1676:
to overcome the electrical repulsion between the nuclei in order to fuse them; therefore nuclear fusion can only take place at very high temperatures or high pressures. When nuclei fuse, a very large amount of energy is released and the combined nucleus assumes a lower energy level. The binding
2721:
The discovery for which Rutherford is most famous is that atoms have nuclei; ...had its beginnings in 1909...Geiger and Marsden published their anomalous result in July, 1909...The first public announcement of this new model of atomic structure seems to have been made on March 7, 1911, when
1701:, is the development of an economically viable method of using energy from a controlled fusion reaction. Nuclear fusion is the origin of the energy (including in the form of light and other electromagnetic radiation) produced by the core of all stars including our own Sun. 1818:
Some relatively small quantities of elements beyond helium (lithium, beryllium, and perhaps some boron) were created in the Big Bang, as the protons and neutrons collided with each other, but all of the "heavier elements" (carbon, element number 6, and elements of greater
1787:
were active over 1.5 billion years ago. Measurements of natural neutrino emission have demonstrated that around half of the heat emanating from the Earth's core results from radioactive decay. However, it is not known if any of this results from fission chain reactions.
1593:
have been characterized as unstable. These "radioisotopes" decay over time scales ranging from fractions of a second to trillions of years. Plotted on a chart as a function of atomic and neutron numbers, the binding energy of the nuclides forms what is known as the
1846:
peaks around iron (56 nucleons). Since the creation of heavier nuclei by fusion requires energy, nature resorts to the process of neutron capture. Neutrons (due to their lack of charge) are readily absorbed by a nucleus. The heavy elements are created by either a
1378:
who mentioned the equations in his Nobel address, and they were also known to Yukawa, Wentzel, Taketani, Sakata, Kemmer, Heitler, and Fröhlich who appreciated the content of Proca's equations for developing a theory of the atomic nuclei in Nuclear Physics.
1659:
decay, the energy from an excited nucleus may eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons but is not beta decay and (unlike beta decay) does not transmute one element to another.
1098:
were ejected from the atom with a continuous range of energies, rather than the discrete amounts of energy that were observed in gamma and alpha decays. This was a problem for nuclear physics at the time, because it seemed to indicate that
1712:
is the reverse process to fusion. For nuclei heavier than nickel-62 the binding energy per nucleon decreases with the mass number. It is therefore possible for energy to be released if a heavy nucleus breaks apart into two lighter ones.
1329:
particles, which explained the mass not due to protons. The neutron spin immediately solved the problem of the spin of nitrogen-14, as the one unpaired proton and one unpaired neutron in this model each contributed a spin of
2630:..It is suggested that, in 1910, the 'plum pudding model' was suddenly overturned by Rutherford's experiment. In fact, Rutherford had already formulated the nuclear model of the atom before the experiment was carried out.. 1407:, mediated a force between all nucleons, including protons and neutrons. This force explained why nuclei did not disintegrate under the influence of proton repulsion, and it also gave an explanation of why the attractive 1601:
The most stable nuclei fall within certain ranges or balances of composition of neutrons and protons: too few or too many neutrons (in relation to the number of protons) will cause it to decay. For example, in
1724:. It is a highly asymmetrical fission because the four particles which make up the alpha particle are especially tightly bound to each other, making production of this nucleus in fission particularly likely. 2605:, "..In 1910, his investigations into the scattering of alpha rays and the nature of the inner structure of the atom which caused such scattering led to the postulation of his concept of the 'nucleus'..." 1727:
From several of the heaviest nuclei whose fission produces free neutrons, and which also easily absorb neutrons to initiate fission, a self-igniting type of neutron-initiated fission can be obtained, in a
1271:. In the Rutherford model of nitrogen-14, 20 of the total 21 nuclear particles should have paired up to cancel each other's spin, and the final odd particle should have left the nucleus with a net spin of 1771:
of the relevant isotope present in a certain space under certain conditions. The conditions for the smallest critical mass require the conservation of the emitted neutrons and also their slowing or
3353: 1190:
at tissue paper and having it bounce off. The discovery, with Rutherford's analysis of the data in 1911, led to the Rutherford model of the atom, in which the atom had a very small, very dense
1873:
process occurs in thermally pulsing stars (called AGB, or asymptotic giant branch stars) and takes hundreds to thousands of years to reach the heaviest elements of lead and bismuth. The
2565: 1423:). After one of these decays the resultant nucleus may be left in an excited state, and in this case it decays to its ground state by emitting high-energy photons (gamma decay). 1130:
predates this, an explanation of the source of the energy of radioactivity would have to wait for the discovery that the nucleus itself was composed of smaller constituents, the
1732:. Chain reactions were known in chemistry before physics, and in fact many familiar processes like fires and chemical explosions are chemical chain reactions. The fission or 2305: 1551:) or extreme neutron-to-proton ratios. Experimenters can create such nuclei using artificially induced fusion or nucleon transfer reactions, employing ion beams from an 1629:, which typically occurs in the heaviest nuclei, the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus 2528: 5116: 4024: 1598:. Stable nuclides lie along the bottom of this energy valley, while increasingly unstable nuclides lie up the valley walls, that is, have weaker binding energy. 3794: 2558: 1672:, two low-mass nuclei come into very close contact with each other so that the strong force fuses them. It requires a large amount of energy for the strong or 1162:. In 1911–1912 Rutherford went before the Royal Society to explain the experiments and propound the new theory of the atomic nucleus as we now understand it. 1693:. The uncontrolled fusion of hydrogen into helium is known as thermonuclear runaway. A frontier in current research at various institutions, for example the 1154:
with experiments he and Rutherford had done, passing alpha particles through air, aluminum foil and gold leaf. More work was published in 1909 by Geiger and
1047:
a year later was an indication that the atom had internal structure. At the beginning of the 20th century the accepted model of the atom was J. J. Thomson's
4113: 2681:.. in 1911, Rutherford writes: "I have been working recently on scattering of alpha and beta particles and have devised a new atom to explain the results.. 3345: 1165:
Published in 1909, with the eventual classical analysis by Rutherford published May 1911, the key preemptive experiment was performed during 1909, at the
779: 2343: 2265: 1488:
and partly from electrical repulsion of the protons. The liquid-drop model is able to reproduce many features of nuclei, including the general trend of
2594: 4866: 3127: 865: 2309: 1555:. Beams with even higher energies can be used to create nuclei at very high temperatures, and there are signs that these experiments have produced a 5104: 3016:
Scipioni, R. (1999). "Isomorphism between non-Riemannian gravity and Einstein–Proca–Weyl theories extended to a class of scalar gravity theories".
1229:. This was a particularly remarkable development since at that time fusion and thermonuclear energy, and even that stars are largely composed of 3726: 2475: 3992: 2665: 1892: 820: 3674: 3649: 3596: 3556: 3459: 3424: 1991: 2617: 1614:-16 atom (8 protons, 8 neutrons) within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is converted by the 995: 2020: 3323: 2506: 2462:
Rutherford, transmutation and the proton 8 May 2019 The events leading to Ernest Rutherford's discovery of the proton, published in 1919"
4146: 1533: 128: 3562: 2850: 2440: 2221: 2175: 2125: 1254: 5002: 3787: 3500: 5083: 2399: 432: 31: 1784: 624: 3693: 2575: 1159: 3940: 329: 1170: 3734: 2524: 1811:
in the first three minutes after the Big Bang, and this helium accounts for most of the helium in the universe today (see
858: 2735: 2551: 5099: 3780: 2583: 1219:. At that time, the source of stellar energy was a complete mystery; Eddington correctly speculated that the source was 1225: 1119: 4077: 3758: 2708: 2561: 642: 612: 113: 1434:
in 1934) led physicists to collide nuclei and electrons at ever higher energies. This research became the science of
1308: 689: 3908: 3881: 3522: 1300: 928: 239: 5175: 1536:
try to solve the nuclear many-body problem from the ground up, starting from the nucleons and their interactions.
1499:
Superimposed on this classical picture, however, are quantum-mechanical effects, which can be described using the
4587: 2963:
Vuille, C.; Ipser, J.; Gallagher, J. (2002). "Einstein–Proca model, micro black holes, and naked singularities".
2365:
Rutherford, E. (May 1911). "LXXIX. The scattering of α and β particles by matter and the structure of the atom".
1926: 1912: 1539:
Much of current research in nuclear physics relates to the study of nuclei under extreme conditions such as high
1169:. Ernest Rutherford's assistant, Professor Johannes "Hans" Geiger, and an undergraduate, Marsden, performed an 575: 2586:: School of Physics and Astronomy – Particle Physics Research Centre, Retrieved 13 June 2021 "..by Rutherford.." 1319:
suggested that there were no electrons in the nucleus — only protons and neutrons — and that neutrons were spin
274: 5217: 4014: 2436: 2095: 1812: 1290: 1166: 851: 838: 570: 4405: 2335: 2262: 1824: 1051:
in which the atom was a positively charged ball with smaller negatively charged electrons embedded inside it.
1842:
Energy is only released in fusion processes involving smaller atoms than iron because the binding energy per
5143: 4778: 4139: 3105: 2591: 1523: 565: 462: 427: 123: 1589:
which is never observed to decay, amounting to a total of about 251 stable nuclides. However, thousands of
1560: 619: 5078: 4415: 4098: 3960: 3069:
Tucker, R. W; Wang, C (1997). "An Einstein–Proca-fluid model for dark matter gravitational interactions".
2290: 2078: 1733: 1512: 1431: 1100: 269: 234: 1411:
had a more limited range than the electromagnetic repulsion between protons. Later, the discovery of the
5165: 4103: 4072: 3935: 3856: 1776: 1649: 936: 744: 629: 521: 1567:
mingle with one another, rather than being segregated in triplets as they are in neutrons and protons.
1304: 684: 3746: 4062: 3886: 3846: 3705: 3404: 3299: 3233: 3194: 3185:
Haxel, Otto; Jensen, J. Hans D; Suess, Hans E (1949). "On the "Magic Numbers" in Nuclear Structure".
3159: 3078: 3035: 2982: 2915: 2859: 2813: 2774: 2613: 2457: 2230: 2184: 2134: 1946: 1878: 1832: 1694: 1637:
of this kind, including other types of decays (usually beta decay) until a stable element is formed.
1552: 1504: 962: 754: 729: 546: 3487:. Isao Tanihata, Hiroshi Toki, Toshitaka Kajino (eds.). Singapore: Springer Nature Singapore. 2020. 2648: 5180: 4163: 4037: 3896: 3891: 3876: 3851: 3828: 3804: 3385: 2739: 2660: 2041: 1761: 1656: 1595: 1580: 1516: 1500: 1473: 1459: 952: 649: 528: 422: 365: 358: 348: 289: 284: 118: 5192: 5123: 4132: 4093: 3970: 3965: 3918: 3717: 3625:. The International Series of Monographs on Physics (2. ed.). Oxford: Calrendon Press (OUP). 3516: 3051: 3025: 2998: 2972: 2933: 2782: 2609: 2273: 2045: 1745: 1396: 1182: 1048: 940: 912: 592: 587: 402: 1311:
was actually due to a neutral particle of about the same mass as the proton, that he called the
2008: 985: 5160: 5073: 4552: 4297: 4224: 4108: 4057: 4002: 3982: 3868: 3670: 3645: 3592: 3552: 3496: 3455: 3420: 3381: 3315: 3287: 3259: 2493:"This Month in Physics History: May, 1911: Rutherford and the Discovery of the Atomic Nucleus" 2492: 2069: 2050: 1987: 1951: 1931: 1836: 1772: 1508: 1481: 1477: 1463: 1455: 1315:(following a suggestion from Rutherford about the need for such a particle). In the same year 1143: 1063: 784: 764: 759: 719: 597: 336: 324: 307: 279: 249: 90: 3538: 1823:) that we see today, were created inside stars during a series of fusion stages, such as the 961:
evolved out of nuclear physics and the two fields are typically taught in close association.
5170: 4941: 4716: 4577: 4562: 4244: 4155: 4047: 3987: 3913: 3637: 3584: 3544: 3488: 3447: 3412: 3307: 3249: 3241: 3202: 3167: 3117: 3086: 3043: 2990: 2923: 2906: 2867: 2821: 2374: 2238: 2192: 2142: 2087: 1615: 1556: 1443: 1435: 1400: 1204: 1174: 958: 932: 924: 774: 704: 457: 375: 343: 163: 95: 3727:
Annotated bibliography on nuclear physics from the Alsos Digital Library for Nuclear Issues
3583:. Lecture Notes in Physics. Vol. 882. Berlin, Heidelberg: Springer Berlin Heidelberg. 2424: 5063: 5047: 4987: 4397: 4214: 4067: 3923: 3823: 3762: 3750: 3738: 3721: 3709: 3697: 2598: 2579: 2555: 2269: 1797: 1721: 1709: 1493: 1485: 1356: 1316: 1123: 1115: 1032: 1028: 989: 974: 920: 769: 749: 724: 654: 541: 469: 415: 380: 3440:
Povh, Bogdan; Rith, Klaus; Scholz, Christoph; Zetsche, Frank; Rodejohann, Werner (2015).
3222:"Topological properties of a self-assembled electrical network via ab initio calculation" 3408: 3303: 3237: 3198: 3163: 3082: 3039: 2986: 2919: 2863: 2817: 2778: 2234: 2188: 2138: 5197: 5111: 5068: 4804: 4592: 4365: 4287: 4282: 4204: 3997: 3952: 3930: 3818: 3377: 3254: 3221: 2841: 2471: 2166: 1936: 1921: 1898: 1729: 1669: 1586: 1540: 1489: 1439: 1375: 1363: 1344: 1343:
With the discovery of the neutron, scientists could at last calculate what fraction of
1250: 1246: 1220: 1208: 1191: 1155: 1087: 1020: 1003:
played an important role of particle detectors and eventually lead to the discovery of
897: 890: 825: 679: 674: 553: 486: 294: 229: 206: 193: 180: 80: 58: 3620: 3578: 3482: 3441: 3398: 3311: 3090: 2392: 1066:
and others. By the turn of the century, physicists had also discovered three types of
5211: 5155: 5007: 4974: 4766: 4736: 4668: 4527: 4307: 4234: 4219: 3631: 3047: 3002: 2937: 2432: 2263:
The Laws of Deflexion of α Particles Through Large Angles \\ H. Geiger and E. Marsden
1941: 1820: 1768: 1737: 1673: 1576: 1388: 1371: 1296: 1223:
of hydrogen into helium, liberating enormous energy according to Einstein's equation
1151: 1044: 1024: 1000: 916: 886: 804: 799: 794: 789: 739: 397: 370: 214: 153: 106: 85: 2393:"1911 John Ratcliffe and Ernest Rutherford (smoking) at the Cavendish Laboratory..." 1655:
Other more exotic decays are possible (see the first main article). For example, in
1622:. The element is transmuted to another element, with a different number of protons. 889:
and their constituents and interactions, in addition to the study of other forms of
5133: 4683: 4673: 4663: 4424: 4375: 4317: 4239: 4194: 4032: 3055: 2572: 2466: 1807:
hydrogen atoms. Almost all the neutrons created in the Big Bang were absorbed into
1749: 1619: 1522:
Other more complicated models for the nucleus have also been proposed, such as the
1427: 1408: 1392: 1059: 1054:
In the years that followed, radioactivity was extensively investigated, notably by
966: 734: 709: 694: 439: 387: 244: 3690: 1685:
like the Sun are powered by the fusion of four protons into a helium nucleus, two
1644:, a nucleus decays from an excited state into a lower energy state, by emitting a 1195:(21 total particles) and the nucleus was surrounded by 7 more orbiting electrons. 3765:, BBC Radio 4 discussion with Jim Al-Khalili, John Gribbin and Catherine Sutton ( 1146:
published "Retardation of the α Particle from Radium in passing through matter."
17: 5148: 4916: 4819: 4814: 4731: 4726: 4656: 4610: 4567: 4532: 4491: 4383: 4347: 4209: 3731: 2902:"Alexandru Proca (1897–1955) and his equation of the massive vector boson field" 2602: 2212: 2162: 2116: 1717: 1641: 1634: 1626: 1234: 1147: 1127: 1107: 1079: 1071: 1055: 948: 699: 392: 314: 167: 3245: 3140:
J.M.Blatt and V.F.Weisskopf, Theoretical Nuclear Physics, Springer, 1979, VII.5
3122: 2743: 2367:
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science
1543:
and excitation energy. Nuclei may also have extreme shapes (similar to that of
4890: 4784: 4774: 4756: 4646: 4547: 4482: 4199: 4052: 4042: 3641: 3588: 3492: 3451: 3416: 3206: 2994: 2736:"The Structure and Binding Energy of the Alpha Particle, the Helium 4 Nucleus" 2548: 2378: 2091: 1962: 1956: 1888: 1603: 1544: 1075: 669: 659: 516: 496: 319: 189: 48: 3446:. Graduate Texts in Physics. Berlin, Heidelberg: Springer Berlin Heidelberg. 2336:"The Scattering of α and β Particles by Matter and the Structure of the Atom" 2261:, H. Geiger and E. Marsden, Roy. Soc. Proc. vol. LXXXII. p. 495 (1909), in, 5032: 5022: 4992: 4885: 4851: 4844: 4721: 4711: 4706: 4678: 4446: 4229: 3903: 3772: 3755: 3171: 2826: 2801: 2074:"On the retardation of the α particle from radium in passing through matter" 1863: 1852: 1828: 1741: 1690: 1645: 1257:
in 1929. By 1925 it was known that protons and electrons each had a spin of
1083: 1067: 714: 664: 491: 479: 474: 353: 3403:. Undergraduate Texts in Physics. Cham: Springer International Publishing. 3319: 3263: 2872: 2845: 2243: 2216: 2197: 2170: 2147: 2120: 2928: 2901: 2722:
Rutherford addressed the Manchester Literary and Philosophical Society;...
5128: 4956: 4911: 4895: 4856: 4829: 4542: 4537: 4517: 4487: 4477: 4472: 4322: 4312: 4302: 4292: 4267: 4262: 4189: 2497: 2395: 1808: 1803: 1686: 1630: 1607: 1515:" numbers of neutrons and protons are particularly stable, because their 1426:
The study of the strong and weak nuclear forces (the latter explained by
1420: 1412: 1230: 1095: 1091: 1040: 1004: 905: 5037: 5027: 4997: 4951: 4946: 4921: 4839: 4824: 4751: 4746: 4651: 4636: 4582: 4557: 4522: 4451: 4433: 4172: 4124: 3346:"Nuclear Fission Confirmed as Source of More than Half of Earth's Heat" 1843: 1757: 1753: 1590: 1469: 1312: 1131: 1036: 944: 882: 176: 149: 141: 73: 63: 3030: 2291:"Physics and Radioactivity after the Discovery of Polonium and Radium" 30:
This article is about the study of atomic nuclei. For other uses, see
5017: 5012: 4641: 4628: 4619: 4441: 4355: 4254: 4007: 1779:
or probability of them initiating another fission. In two regions of
1678: 1611: 1187: 68: 2786: 2073: 2765:
Eddington, A. S. (1920). "The Internal Constitution of the Stars".
1648:. The element is not changed to another element in the process (no 1295:
In 1932 Chadwick realized that radiation that had been observed by
5042: 4982: 4834: 4693: 4572: 4512: 4467: 4360: 4338: 4181: 3691:
Ernest Rutherford's biography at the American Institute of Physics
2977: 1740:
plants and fission-type nuclear bombs, such as those detonated in
1564: 1527: 1404: 1367: 1360: 994: 984: 970: 3548: 1767:
For a neutron-initiated chain reaction to occur, there must be a
1764:, but they are much more likely to undergo decay by alpha decay. 1472:. This means that with some approximation it can be treated as a 1281:. Rasetti discovered, however, that nitrogen-14 had a spin of 1. 4809: 4741: 4701: 4277: 4272: 3150:
Mayer, Maria Goeppert (1949). "On Closed Shells in Nuclei. II".
2412:"..that would become a classic technique of particle physics..." 1780: 1698: 1682: 1548: 1212: 1178: 1012: 1008: 901: 4128: 3776: 3276:
Not a typical example as it results in a "doubly magic" nucleus
1736:, using fission-produced neutrons, is the source of energy for 3443:
Particles and Nuclei: An Introduction to the Physical Concepts
2549:
A History of Gamma-Ray Astronomy Including Related Discoveries
2272:(1913), (published subsequently online by – physics.utah.edu ( 1160:
further greatly expanded work was published in 1910 by Geiger
1019:
The history of nuclear physics as a discipline distinct from
1351: 3743: 1802:
According to the theory, as the Universe cooled after the
1492:
with respect to mass number, as well as the phenomenon of
3110:
Proceedings of the Physico-Mathematical Society of Japan
2951:
G. A. Proca, Alexandre Proca.Oeuvre Scientifique Publiée
2566:
High Energy Astrophysics Science Archive Research Center
1835:. Progressively heavier elements are created during the 1245:
The Rutherford model worked quite well until studies of
1415:
showed it to have the properties of Yukawa's particle.
1359:
was the first to develop and report the massive vector
1340:
in the same direction, giving a final total spin of 1.
1058:, a Polish physicist whose maiden name was Sklodowska, 1173:
under Rutherford's supervision fired alpha particles (
3714: 3703:
American Physical Society Division of Nuclear Physics
3702: 2051:
Proceedings of the Royal Institution of Great Britain
1526:, in which pairs of neutrons and protons interact as 1677:
energy per nucleon increases with mass number up to
1610:-16 atom (7 protons, 9 neutrons) is converted to an 1484:, the nucleus has an energy that arises partly from 5092: 5056: 4973: 4934: 4904: 4878: 4865: 4797: 4765: 4692: 4627: 4618: 4609: 4505: 4460: 4432: 4423: 4414: 4396: 4374: 4346: 4337: 4253: 4180: 4171: 4162: 4086: 4023: 3951: 3867: 3839: 3811: 2573:
Quantum Mechanics and Particle Scattering Lecture 1
1419:or beta decay, in which they eject an electron (or 1352:
Proca's equations of the massive vector boson field
1395:to explain how the nucleus holds together. In the 2900:Poenaru, Dorin N.; Calboreanu, Alexandru (2006). 2806:Monthly Notices of the Royal Astronomical Society 2547:Leonard, P. and Gehrels, N. (November 28, 2009) 2306:International Union of Pure and Applied Chemistry 969:, is crucial in explaining the inner workings of 1150:expanded on this work in a communication to the 951:. Such applications are studied in the field of 3106:"On the Interaction of Elementary Particles. I" 2009:"Sur les radiations émises par phosphorescence" 1633:. In many cases this process continues through 1559:from normal nuclear matter to a new state, the 1382: 3630:Blatt, John M.; Weisskopf, Victor F. (1979) . 2171:"On the diffuse reflection of the α-particles" 1094:was continuous rather than discrete. That is, 4140: 3788: 2559:National Aeronautics and Space Administration 2217:"The scattering of the α-particles by matter" 1391:proposed the first significant theory of the 859: 8: 3288:"The Workings of an Ancient Nuclear Reactor" 2257:H. Geiger and E. Marsden, PM, 25, 604 1913, 2121:"On the scattering of α-particles by matter" 1720:is in essence a special type of spontaneous 896:Nuclear physics should not be confused with 2802:"On the radiative equilibrium of the stars" 2642: 2640: 1207:anticipated the discovery and mechanism of 911:Discoveries in nuclear physics have led to 27:Field of physics that studies atomic nuclei 4875: 4871: 4624: 4615: 4429: 4420: 4343: 4177: 4168: 4147: 4133: 4125: 3795: 3781: 3773: 3665:Bethe, Hans A.; Morrison, Philip (2006) . 3400:The Basics of Nuclear and Particle Physics 3397:Belyaev, Alexander; Ross, Douglas (2021). 3071:Nuclear Physics B: Proceedings Supplements 2693: 2691: 2689: 2610:"Case studies from the history of physics" 2289:Radvanyi, Pierre (January–February 2011). 2284: 2282: 866: 852: 36: 3253: 3121: 3029: 2976: 2927: 2871: 2825: 2242: 2196: 2146: 2707:. cuny.manifoldapp.org CUNY's Manifold ( 1468:A heavy nucleus can contain hundreds of 1442:, which describes the strong, weak, and 1383:Yukawa's meson postulated to bind nuclei 965:, the application of nuclear physics to 931:, industrial and agricultural isotopes, 1974: 1851:neutron capture process (the so-called 1090:in 1914 discovered that the beta decay 1070:emanating from atoms, which they named 39: 3993:Atomic, molecular, and optical physics 3619:Mott, N. F.; Massey, H. S. W. (1949). 3537:Bohr, Aage; Mottelson, Ben R (1998) . 3514: 2488:"...1909...a couple of years later..." 1217:The Internal Constitution of the Stars 1171:experiment in which Geiger and Marsden 2346:from the original on 12 February 2020 1122:. While the work on radioactivity by 7: 3356:from the original on 25 January 2023 1285:James Chadwick discovers the neutron 1199:Eddington and stellar nuclear fusion 3669:. Mineola, NY: Dover Publications. 3636:. New York, NY: Springer New York. 2647:Jariskog, Cecilia (December 2008). 1959:, web driven nuclear science portal 3580:Nuclear Reactions: An Introduction 3130:from the original on Nov 22, 2023. 2965:General Relativity and Gravitation 2851:Proceedings of the Royal Society A 2620:from the original on 22 April 2021 2527:. University of Alaska-Fairbanks. 2478:from the original on 18 April 2021 2334:Rutherford F.R.S., E. (May 1911). 2222:Proceedings of the Royal Society A 2176:Proceedings of the Royal Society A 2126:Proceedings of the Royal Society A 1618:into a proton, an electron and an 1585:Eighty elements have at least one 1440:standard model of particle physics 1438:, the crown jewel of which is the 1374:. Proca's equations were known to 1255:California Institute of Technology 1031:in 1896, made while investigating 25: 3577:Paetz gen. Schieck, Hans (2014). 3540:Nuclear Structure: (In 2 Volumes) 3312:10.1038/scientificamerican1105-82 3220:Stephenson, C.; et., al. (2017). 2671:from the original on 13 June 2021 2568:(HEASARC), Retrieved 13 June 2021 2531:from the original on 13 June 2021 2509:from the original on 13 June 2021 2443:from the original on 13 June 2021 2402:from the original on 1 April 2021 5191: 5084:Timeline of particle discoveries 2453:"experiment was conducted 1911" 2312:from the original on 9 July 2023 1905: 1891: 1877:-process is thought to occur in 1785:natural nuclear fission reactors 1237:), had not yet been discovered. 1138:Rutherford discovers the nucleus 833: 832: 819: 47: 32:Nuclear physics (disambiguation) 4114:Timeline of physics discoveries 3622:The Theory Of Atomic Collisions 3565:from the original on 2023-01-20 3344:Biello, David (July 18, 2011). 3326:from the original on 2009-02-27 3286:Meshik, A. P. (November 2005). 2098:from the original on 2022-03-31 2023:from the original on 2017-09-04 1023:, starts with the discovery of 975:origin of the chemical elements 1986:. John Wiley & Sons, Ltd. 1792:Production of "heavy" elements 915:in many fields. This includes 1: 3091:10.1016/s0920-5632(97)00399-x 2701:The Making of the Atomic Bomb 1503:, developed in large part by 5100:History of subatomic physics 3744:Nuclear Data Services – IAEA 2846:"The existence of a neutron" 2584:Queen Mary University London 2519:"..1909..published – 1911.." 1984:Nuclear and Particle Physics 1039:salts. The discovery of the 4078:Quantum information science 3633:Theoretical Nuclear Physics 3484:Handbook of Nuclear Physics 2709:City University of New York 2562:Goddard Space Flight Center 2460:CULTURE AND HISTORY FEATURE 2425:"The Rutherford Experiment" 2342:. 6. 21 May 1911: 669–688. 1775:so that there is a greater 613:High-energy nuclear physics 5234: 3909:Classical electromagnetism 3375: 3246:10.1038/s41598-017-01007-9 3123:10.11429/ppmsj1919.17.0_48 3048:10.1088/0264-9381/16/7/320 1795: 1574: 1453: 1288: 1186:He likened it to firing a 1082:radiation. Experiments by 929:magnetic resonance imaging 904:as a whole, including its 29: 5189: 4874: 3667:Elementary Nuclear Theory 3642:10.1007/978-1-4612-9959-2 3589:10.1007/978-3-642-53986-2 3493:10.1007/978-981-15-8818-1 3452:10.1007/978-3-662-46321-5 3417:10.1007/978-3-030-80116-8 3207:10.1103/PhysRev.75.1766.2 2800:Eddington, A. S. (1916). 2379:10.1080/14786440508637080 2092:10.1080/14786440609463525 1927:Neutron-degenerate matter 1913:Nuclear technology portal 5117:mathematical formulation 4712:Eta and eta prime mesons 4015:Condensed matter physics 3715:American Nuclear Society 2437:Florida State University 2007:Henri Becquerel (1896). 1813:Big Bang nucleosynthesis 1734:"nuclear" chain-reaction 1291:Discovery of the neutron 1167:University of Manchester 1101:energy was not conserved 4779:Double-charm tetraquark 3172:10.1103/PhysRev.75.1969 3104:Yukawa, Hideki (1935). 2995:10.1023/a:1015942229041 2953:, S.I.A.G., Rome, 1988. 2592:rutherford/biographical 2582:, p.9, pprc.qmul.ac.uk 2298:Chemistry International 1752:. Heavy nuclei such as 1748:, Japan, at the end of 1524:interacting boson model 1511:. Nuclei with certain " 1241:Studies of nuclear spin 1120:mass–energy equivalence 1118:formulated the idea of 124:Interacting boson model 4099:Nobel Prize in Physics 3961:Relativistic mechanics 3521:: CS1 maint: others ( 3018:Class. Quantum Gravity 2873:10.1098/rspa.1932.0112 2767:The Scientific Monthly 2340:Philosophical Magazine 2244:10.1098/rspa.1910.0038 2198:10.1098/rspa.1909.0054 2148:10.1098/rspa.1908.0067 2079:Philosophical Magazine 1480:one. In the resulting 1450:Modern nuclear physics 1444:electromagnetic forces 1348:within 1% as of 1934. 1016: 992: 5176:Wave–particle duality 5166:Relativistic particle 4303:Electron antineutrino 4104:Philosophy of physics 2827:10.1093/mnras/77.1.16 2653:The nucleus and more" 2423:Davidson, Michael W. 1982:B. R. Martin (2006). 1650:nuclear transmutation 1309:Frédéric Joliot-Curie 998: 988: 937:materials engineering 511:High-energy processes 209:– equal all the above 107:Models of the nucleus 4406:Faddeev–Popov ghosts 4156:Particles in physics 4063:Mathematical physics 3732:Nuclear science wiki 3613:Classics or Historic 3543:. World Scientific. 2890:, December 13, 1946. 2614:Institute of Physics 2429:micro.magnet.fsu.edu 2042:Thomson, Joseph John 1947:Nuclear spectroscopy 1879:supernova explosions 1833:triple-alpha process 1695:Joint European Torus 1505:Maria Goeppert Mayer 1366:and a theory of the 1249:were carried out by 1177:) at a thin film of 1049:"plum pudding" model 963:Nuclear astrophysics 900:, which studies the 547:nuclear astrophysics 5181:Particle chauvinism 5124:Subatomic particles 4038:Atmospheric physics 3877:Classical mechanics 3805:branches of physics 3409:2021bnpp.book.....B 3386:Nuclear engineering 3350:Scientific American 3304:2005SciAm.293e..82M 3292:Scientific American 3238:2017NatSR...7..932B 3199:1949PhRv...75R1766H 3164:1949PhRv...75.1969M 3083:1997NuPhS..57..259T 3040:1999CQGra..16.2471S 2987:2002GReGr..34..689V 2929:10.1051/epn:2006504 2920:2006ENews..37e..24P 2864:1932RSPSA.136..692C 2818:1916MNRAS..77...16E 2779:1920SciMo..11..297E 2740:San Jose University 2698:Godenko, Lyudmila. 2235:1910RSPSA..83..492G 2189:1909RSPSA..82..495G 2139:1908RSPSA..81..174G 1825:proton–proton chain 1762:spontaneous fission 1657:internal conversion 1596:valley of stability 1581:Valley of stability 1501:nuclear shell model 1460:Nuclear shell model 1432:Fermi's interaction 953:nuclear engineering 529:Photodisintegration 452:Capturing processes 366:Spontaneous fission 359:Internal conversion 290:Valley of stability 285:Island of stability 119:Nuclear shell model 4094:History of physics 3761:2017-12-23 at the 3749:2021-03-18 at the 3737:2013-10-21 at the 3720:2008-12-02 at the 3708:2017-09-20 at the 3696:2016-07-30 at the 3226:Scientific Reports 2746:on 30 January 2020 2597:2023-06-03 at the 2578:2021-06-13 at the 2554:2021-06-13 at the 2523:Anderson, Ashley. 2274:University of Utah 2268:2019-05-01 at the 2070:Rutherford, Ernest 1561:quark–gluon plasma 1478:quantum-mechanical 1397:Yukawa interaction 1183:plum pudding model 1017: 993: 941:radiocarbon dating 826:Physics portal 620:Quark–gluon plasma 403:Radiogenic nuclide 5205: 5204: 5161:Massless particle 4969: 4968: 4965: 4964: 4930: 4929: 4793: 4792: 4605: 4604: 4601: 4600: 4553:Magnetic monopole 4501: 4500: 4392: 4391: 4333: 4332: 4313:Muon antineutrino 4298:Electron neutrino 4122: 4121: 4109:Physics education 4058:Materials science 4025:Interdisciplinary 3983:Quantum mechanics 3676:978-0-486-45048-3 3651:978-1-4612-9961-5 3598:978-3-642-53985-5 3558:978-981-02-3197-2 3461:978-3-662-46320-8 3426:978-3-030-80115-1 3382:Nuclear chemistry 3158:(12): 1969–1970. 2734:Watkins, Thayer. 2652: 2541:"1911 performed " 2461: 1993:978-0-470-01999-3 1952:Nuclear structure 1932:Nuclear chemistry 1783:, Gabon, Africa, 1760:may also undergo 1534:Ab initio methods 1509:J. Hans D. Jensen 1482:liquid-drop model 1464:Nuclear structure 1456:Liquid-drop model 1403:, later called a 1144:Ernest Rutherford 1103:in these decays. 1064:Ernest Rutherford 999:Since the 1920s, 876: 875: 562: 308:Radioactive decay 264:Nuclear stability 91:Nuclear structure 18:Nuclear scientist 16:(Redirected from 5225: 5195: 5171:Virtual particle 4942:Mesonic molecule 4876: 4872: 4717:Bottom eta meson 4625: 4616: 4588:W′ and Z′ bosons 4578:Sterile neutrino 4563:Majorana fermion 4430: 4421: 4344: 4323:Tau antineutrino 4178: 4169: 4149: 4142: 4135: 4126: 4048:Chemical physics 3988:Particle physics 3914:Classical optics 3797: 3790: 3783: 3774: 3769:, Jan. 10, 2002) 3680: 3661: 3659: 3658: 3626: 3608: 3606: 3605: 3573: 3571: 3570: 3526: 3520: 3512: 3510: 3509: 3471: 3469: 3468: 3436: 3434: 3433: 3366: 3365: 3363: 3361: 3341: 3335: 3334: 3332: 3331: 3283: 3277: 3274: 3268: 3267: 3257: 3217: 3211: 3210: 3182: 3176: 3175: 3147: 3141: 3138: 3132: 3131: 3125: 3101: 3095: 3094: 3077:(1–3): 259–262. 3066: 3060: 3059: 3033: 3024:(7): 2471–2478. 3013: 3007: 3006: 2980: 2960: 2954: 2948: 2942: 2941: 2931: 2907:Europhysics News 2897: 2891: 2884: 2878: 2877: 2875: 2858:(830): 692–708. 2838: 2832: 2831: 2829: 2797: 2791: 2790: 2762: 2756: 2755: 2753: 2751: 2742:. Archived from 2731: 2725: 2724: 2718: 2716: 2706: 2695: 2684: 2683: 2678: 2676: 2670: 2657: 2650: 2644: 2635: 2632: 2627: 2625: 2544:1911 discovers: 2540: 2538: 2536: 2518: 2516: 2514: 2487: 2485: 2483: 2459: 2452: 2450: 2448: 2427:. micro.magnet. 2419: 2413: 2411: 2409: 2407: 2389: 2383: 2382: 2373:(125): 669–688. 2362: 2356: 2355: 2353: 2351: 2331: 2325: 2324: 2319: 2317: 2295: 2286: 2277: 2255: 2249: 2248: 2246: 2229:(565): 492–504. 2209: 2203: 2202: 2200: 2159: 2153: 2152: 2150: 2133:(546): 174–177. 2113: 2107: 2106: 2104: 2103: 2066: 2060: 2059: 2038: 2032: 2031: 2029: 2028: 2004: 1998: 1997: 1979: 1915: 1910: 1909: 1908: 1901: 1896: 1895: 1616:weak interaction 1557:phase transition 1476:, rather than a 1474:classical system 1436:particle physics 1401:virtual particle 1339: 1338: 1334: 1328: 1327: 1323: 1280: 1279: 1275: 1270: 1269: 1265: 1262: 1205:Arthur Eddington 959:Particle physics 933:ion implantation 925:nuclear medicine 881:is the field of 868: 861: 854: 841: 836: 835: 828: 824: 823: 700:Skłodowska-Curie 560: 376:Neutron emission 144:' classification 96:Nuclear reaction 51: 37: 21: 5233: 5232: 5228: 5227: 5226: 5224: 5223: 5222: 5218:Nuclear physics 5208: 5207: 5206: 5201: 5185: 5139:Nuclear physics 5088: 5052: 4988:Davydov soliton 4961: 4926: 4900: 4861: 4789: 4761: 4688: 4597: 4497: 4456: 4410: 4388: 4370: 4329: 4249: 4158: 4153: 4123: 4118: 4082: 4068:Medical physics 4019: 3978:Nuclear physics 3947: 3941:Non-equilibrium 3863: 3835: 3807: 3801: 3763:Wayback Machine 3756:Nuclear Physics 3751:Wayback Machine 3739:Wayback Machine 3722:Wayback Machine 3710:Wayback Machine 3698:Wayback Machine 3687: 3677: 3664: 3656: 3654: 3652: 3629: 3618: 3615: 3603: 3601: 3599: 3576: 3568: 3566: 3559: 3536: 3533: 3513: 3507: 3505: 3503: 3481: 3478: 3476:Reference works 3466: 3464: 3462: 3439: 3431: 3429: 3427: 3396: 3393: 3388: 3374: 3369: 3359: 3357: 3343: 3342: 3338: 3329: 3327: 3285: 3284: 3280: 3275: 3271: 3219: 3218: 3214: 3187:Physical Review 3184: 3183: 3179: 3152:Physical Review 3149: 3148: 3144: 3139: 3135: 3103: 3102: 3098: 3068: 3067: 3063: 3015: 3014: 3010: 2962: 2961: 2957: 2949: 2945: 2899: 2898: 2894: 2888:, Nobel lecture 2885: 2881: 2842:Chadwick, James 2840: 2839: 2835: 2799: 2798: 2794: 2764: 2763: 2759: 2749: 2747: 2733: 2732: 2728: 2714: 2712: 2704: 2697: 2696: 2687: 2674: 2672: 2668: 2655: 2646: 2645: 2638: 2623: 2621: 2608: 2599:Wayback Machine 2580:Wayback Machine 2556:Wayback Machine 2534: 2532: 2522: 2512: 2510: 2505:(5). May 2006. 2491: 2481: 2479: 2456: 2446: 2444: 2422: 2420: 2416: 2405: 2403: 2391: 2390: 2386: 2364: 2363: 2359: 2349: 2347: 2333: 2332: 2328: 2315: 2313: 2293: 2288: 2287: 2280: 2270:Wayback Machine 2256: 2252: 2211: 2210: 2206: 2167:Marsden, Ernest 2161: 2160: 2156: 2115: 2114: 2110: 2101: 2099: 2086:(68): 134–146. 2068: 2067: 2063: 2040: 2039: 2035: 2026: 2024: 2006: 2005: 2001: 1994: 1981: 1980: 1976: 1972: 1967: 1911: 1906: 1904: 1897: 1890: 1887: 1800: 1798:nucleosynthesis 1794: 1722:nuclear fission 1716:The process of 1710:Nuclear fission 1707: 1705:Nuclear fission 1666: 1583: 1575:Main articles: 1573: 1563:, in which the 1494:nuclear fission 1486:surface tension 1466: 1454:Main articles: 1452: 1385: 1364:field equations 1357:Alexandru Proca 1354: 1336: 1332: 1331: 1325: 1321: 1320: 1317:Dmitri Ivanenko 1293: 1287: 1277: 1273: 1272: 1267: 1263: 1260: 1258: 1243: 1215:, in his paper 1201: 1175:helium 4 nuclei 1140: 1116:Albert Einstein 1086:in 1911 and by 1033:phosphorescence 1029:Henri Becquerel 990:Henri Becquerel 983: 921:nuclear weapons 879:Nuclear physics 872: 831: 818: 817: 810: 809: 645: 635: 634: 615: 605: 604: 549: 545: 542:Nucleosynthesis 534: 533: 512: 504: 503: 453: 445: 444: 418: 416:Nuclear fission 408: 407: 381:Proton emission 310: 300: 299: 265: 257: 256: 158: 145: 134: 133: 109: 41:Nuclear physics 35: 28: 23: 22: 15: 12: 11: 5: 5231: 5229: 5221: 5220: 5210: 5209: 5203: 5202: 5198:Physics portal 5190: 5187: 5186: 5184: 5183: 5178: 5173: 5168: 5163: 5158: 5153: 5152: 5151: 5141: 5136: 5131: 5126: 5121: 5120: 5119: 5112:Standard Model 5109: 5108: 5107: 5096: 5094: 5090: 5089: 5087: 5086: 5081: 5079:Quasiparticles 5076: 5071: 5066: 5060: 5058: 5054: 5053: 5051: 5050: 5045: 5040: 5035: 5030: 5025: 5020: 5015: 5010: 5005: 5000: 4995: 4990: 4985: 4979: 4977: 4975:Quasiparticles 4971: 4970: 4967: 4966: 4963: 4962: 4960: 4959: 4954: 4949: 4944: 4938: 4936: 4932: 4931: 4928: 4927: 4925: 4924: 4919: 4914: 4908: 4906: 4902: 4901: 4899: 4898: 4893: 4888: 4882: 4880: 4869: 4863: 4862: 4860: 4859: 4854: 4849: 4848: 4847: 4842: 4837: 4832: 4827: 4822: 4812: 4807: 4801: 4799: 4795: 4794: 4791: 4790: 4788: 4787: 4782: 4771: 4769: 4767:Exotic hadrons 4763: 4762: 4760: 4759: 4754: 4749: 4744: 4739: 4734: 4729: 4724: 4719: 4714: 4709: 4704: 4698: 4696: 4690: 4689: 4687: 4686: 4681: 4676: 4671: 4666: 4661: 4660: 4659: 4654: 4649: 4644: 4633: 4631: 4622: 4613: 4607: 4606: 4603: 4602: 4599: 4598: 4596: 4595: 4593:X and Y bosons 4590: 4585: 4580: 4575: 4570: 4565: 4560: 4555: 4550: 4545: 4540: 4535: 4530: 4525: 4520: 4515: 4509: 4507: 4503: 4502: 4499: 4498: 4496: 4495: 4485: 4480: 4475: 4470: 4464: 4462: 4458: 4457: 4455: 4454: 4449: 4444: 4438: 4436: 4427: 4418: 4412: 4411: 4409: 4408: 4402: 4400: 4394: 4393: 4390: 4389: 4387: 4386: 4380: 4378: 4372: 4371: 4369: 4368: 4366:W and Z bosons 4363: 4358: 4352: 4350: 4341: 4335: 4334: 4331: 4330: 4328: 4327: 4326: 4325: 4320: 4315: 4310: 4305: 4300: 4290: 4285: 4280: 4275: 4270: 4265: 4259: 4257: 4251: 4250: 4248: 4247: 4242: 4237: 4232: 4227: 4222: 4220:Strange (quark 4217: 4212: 4207: 4202: 4197: 4192: 4186: 4184: 4175: 4166: 4160: 4159: 4154: 4152: 4151: 4144: 4137: 4129: 4120: 4119: 4117: 4116: 4111: 4106: 4101: 4096: 4090: 4088: 4084: 4083: 4081: 4080: 4075: 4070: 4065: 4060: 4055: 4050: 4045: 4040: 4035: 4029: 4027: 4021: 4020: 4018: 4017: 4012: 4011: 4010: 4005: 4000: 3990: 3985: 3980: 3975: 3974: 3973: 3968: 3957: 3955: 3949: 3948: 3946: 3945: 3944: 3943: 3938: 3931:Thermodynamics 3928: 3927: 3926: 3921: 3911: 3906: 3901: 3900: 3899: 3894: 3889: 3884: 3873: 3871: 3865: 3864: 3862: 3861: 3860: 3859: 3849: 3843: 3841: 3837: 3836: 3834: 3833: 3832: 3831: 3821: 3815: 3813: 3809: 3808: 3802: 3800: 3799: 3792: 3785: 3777: 3771: 3770: 3753: 3741: 3729: 3724: 3712: 3700: 3686: 3685:External links 3683: 3682: 3681: 3675: 3662: 3650: 3627: 3614: 3611: 3610: 3609: 3597: 3574: 3557: 3532: 3529: 3528: 3527: 3501: 3477: 3474: 3473: 3472: 3460: 3437: 3425: 3392: 3389: 3378:Radiochemistry 3373: 3370: 3368: 3367: 3336: 3278: 3269: 3212: 3177: 3142: 3133: 3112:. 3rd Series. 3096: 3061: 3008: 2955: 2943: 2892: 2879: 2833: 2792: 2773:(4): 297–303. 2757: 2726: 2685: 2664:. p. 21. 2636: 2634: 2633: 2606: 2589: 2588: 2587: 2571:Rizvi, Eram – 2569: 2542: 2520: 2489: 2474:. 8 May 2019. 2472:IOP Publishing 2414: 2384: 2357: 2326: 2278: 2250: 2204: 2154: 2108: 2061: 2046:"Cathode Rays" 2033: 2013:Comptes Rendus 1999: 1992: 1973: 1971: 1968: 1966: 1965: 1960: 1954: 1949: 1944: 1939: 1937:Nuclear matter 1934: 1929: 1924: 1922:Isomeric shift 1918: 1917: 1916: 1902: 1899:Physics portal 1886: 1883: 1796:Main article: 1793: 1790: 1730:chain reaction 1706: 1703: 1674:nuclear forces 1670:nuclear fusion 1665: 1664:Nuclear fusion 1662: 1652:is involved). 1587:stable isotope 1572: 1569: 1490:binding energy 1451: 1448: 1384: 1381: 1376:Wolfgang Pauli 1372:nuclear forces 1353: 1350: 1345:binding energy 1301:Herbert Becker 1289:Main article: 1286: 1283: 1251:Franco Rasetti 1242: 1239: 1209:nuclear fusion 1200: 1197: 1156:Ernest Marsden 1139: 1136: 1088:James Chadwick 1021:atomic physics 1001:cloud chambers 982: 979: 898:atomic physics 891:nuclear matter 874: 873: 871: 870: 863: 856: 848: 845: 844: 843: 842: 829: 812: 811: 808: 807: 802: 797: 792: 787: 782: 777: 772: 767: 762: 757: 752: 747: 742: 737: 732: 727: 722: 717: 712: 707: 702: 697: 692: 687: 682: 677: 672: 667: 662: 657: 652: 646: 641: 640: 637: 636: 633: 632: 627: 622: 616: 611: 610: 607: 606: 603: 602: 601: 600: 595: 590: 581: 580: 579: 578: 573: 568: 557: 556: 554:Nuclear fusion 550: 540: 539: 536: 535: 532: 531: 526: 525: 524: 513: 510: 509: 506: 505: 502: 501: 500: 499: 494: 484: 483: 482: 477: 467: 466: 465: 454: 451: 450: 447: 446: 443: 442: 437: 436: 435: 425: 419: 414: 413: 410: 409: 406: 405: 400: 395: 390: 384: 383: 378: 373: 368: 363: 362: 361: 356: 346: 341: 340: 339: 334: 333: 332: 317: 311: 306: 305: 302: 301: 298: 297: 295:Stable nuclide 292: 287: 282: 277: 272: 270:Binding energy 266: 263: 262: 259: 258: 255: 254: 253: 252: 242: 237: 232: 226: 225: 211: 210: 203: 202: 186: 185: 173: 172: 160: 159: 146: 140: 139: 136: 135: 132: 131: 126: 121: 116: 110: 105: 104: 101: 100: 99: 98: 93: 88: 83: 81:Nuclear matter 78: 77: 76: 71: 61: 53: 52: 44: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 5230: 5219: 5216: 5215: 5213: 5200: 5199: 5194: 5188: 5182: 5179: 5177: 5174: 5172: 5169: 5167: 5164: 5162: 5159: 5157: 5156:Exotic matter 5154: 5150: 5147: 5146: 5145: 5144:Eightfold way 5142: 5140: 5137: 5135: 5134:Antiparticles 5132: 5130: 5127: 5125: 5122: 5118: 5115: 5114: 5113: 5110: 5106: 5103: 5102: 5101: 5098: 5097: 5095: 5091: 5085: 5082: 5080: 5077: 5075: 5072: 5070: 5067: 5065: 5062: 5061: 5059: 5055: 5049: 5046: 5044: 5041: 5039: 5036: 5034: 5031: 5029: 5026: 5024: 5021: 5019: 5016: 5014: 5011: 5009: 5006: 5004: 5001: 4999: 4996: 4994: 4991: 4989: 4986: 4984: 4981: 4980: 4978: 4976: 4972: 4958: 4955: 4953: 4950: 4948: 4945: 4943: 4940: 4939: 4937: 4933: 4923: 4920: 4918: 4915: 4913: 4910: 4909: 4907: 4903: 4897: 4894: 4892: 4889: 4887: 4884: 4883: 4881: 4877: 4873: 4870: 4868: 4864: 4858: 4855: 4853: 4850: 4846: 4843: 4841: 4838: 4836: 4833: 4831: 4828: 4826: 4823: 4821: 4818: 4817: 4816: 4813: 4811: 4808: 4806: 4805:Atomic nuclei 4803: 4802: 4800: 4796: 4786: 4783: 4780: 4776: 4773: 4772: 4770: 4768: 4764: 4758: 4755: 4753: 4750: 4748: 4745: 4743: 4740: 4738: 4737:Upsilon meson 4735: 4733: 4730: 4728: 4725: 4723: 4720: 4718: 4715: 4713: 4710: 4708: 4705: 4703: 4700: 4699: 4697: 4695: 4691: 4685: 4682: 4680: 4677: 4675: 4672: 4670: 4669:Lambda baryon 4667: 4665: 4662: 4658: 4655: 4653: 4650: 4648: 4645: 4643: 4640: 4639: 4638: 4635: 4634: 4632: 4630: 4626: 4623: 4621: 4617: 4614: 4612: 4608: 4594: 4591: 4589: 4586: 4584: 4581: 4579: 4576: 4574: 4571: 4569: 4566: 4564: 4561: 4559: 4556: 4554: 4551: 4549: 4546: 4544: 4541: 4539: 4536: 4534: 4531: 4529: 4528:Dual graviton 4526: 4524: 4521: 4519: 4516: 4514: 4511: 4510: 4508: 4504: 4493: 4489: 4486: 4484: 4481: 4479: 4476: 4474: 4471: 4469: 4466: 4465: 4463: 4459: 4453: 4450: 4448: 4445: 4443: 4440: 4439: 4437: 4435: 4431: 4428: 4426: 4425:Superpartners 4422: 4419: 4417: 4413: 4407: 4404: 4403: 4401: 4399: 4395: 4385: 4382: 4381: 4379: 4377: 4373: 4367: 4364: 4362: 4359: 4357: 4354: 4353: 4351: 4349: 4345: 4342: 4340: 4336: 4324: 4321: 4319: 4316: 4314: 4311: 4309: 4308:Muon neutrino 4306: 4304: 4301: 4299: 4296: 4295: 4294: 4291: 4289: 4286: 4284: 4281: 4279: 4276: 4274: 4271: 4269: 4266: 4264: 4261: 4260: 4258: 4256: 4252: 4246: 4243: 4241: 4240:Bottom (quark 4238: 4236: 4233: 4231: 4228: 4226: 4223: 4221: 4218: 4216: 4213: 4211: 4208: 4206: 4203: 4201: 4198: 4196: 4193: 4191: 4188: 4187: 4185: 4183: 4179: 4176: 4174: 4170: 4167: 4165: 4161: 4157: 4150: 4145: 4143: 4138: 4136: 4131: 4130: 4127: 4115: 4112: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4091: 4089: 4085: 4079: 4076: 4074: 4073:Ocean physics 4071: 4069: 4066: 4064: 4061: 4059: 4056: 4054: 4051: 4049: 4046: 4044: 4041: 4039: 4036: 4034: 4031: 4030: 4028: 4026: 4022: 4016: 4013: 4009: 4008:Modern optics 4006: 4004: 4001: 3999: 3996: 3995: 3994: 3991: 3989: 3986: 3984: 3981: 3979: 3976: 3972: 3969: 3967: 3964: 3963: 3962: 3959: 3958: 3956: 3954: 3950: 3942: 3939: 3937: 3934: 3933: 3932: 3929: 3925: 3922: 3920: 3917: 3916: 3915: 3912: 3910: 3907: 3905: 3902: 3898: 3895: 3893: 3890: 3888: 3885: 3883: 3880: 3879: 3878: 3875: 3874: 3872: 3870: 3866: 3858: 3857:Computational 3855: 3854: 3853: 3850: 3848: 3845: 3844: 3842: 3838: 3830: 3827: 3826: 3825: 3822: 3820: 3817: 3816: 3814: 3810: 3806: 3798: 3793: 3791: 3786: 3784: 3779: 3778: 3775: 3768: 3764: 3760: 3757: 3754: 3752: 3748: 3745: 3742: 3740: 3736: 3733: 3730: 3728: 3725: 3723: 3719: 3716: 3713: 3711: 3707: 3704: 3701: 3699: 3695: 3692: 3689: 3688: 3684: 3678: 3672: 3668: 3663: 3653: 3647: 3643: 3639: 3635: 3634: 3628: 3624: 3623: 3617: 3616: 3612: 3600: 3594: 3590: 3586: 3582: 3581: 3575: 3564: 3560: 3554: 3550: 3546: 3542: 3541: 3535: 3534: 3530: 3524: 3518: 3504: 3502:9789811588181 3498: 3494: 3490: 3486: 3485: 3480: 3479: 3475: 3463: 3457: 3453: 3449: 3445: 3444: 3438: 3428: 3422: 3418: 3414: 3410: 3406: 3402: 3401: 3395: 3394: 3390: 3387: 3383: 3379: 3371: 3355: 3351: 3347: 3340: 3337: 3325: 3321: 3317: 3313: 3309: 3305: 3301: 3297: 3293: 3289: 3282: 3279: 3273: 3270: 3265: 3261: 3256: 3251: 3247: 3243: 3239: 3235: 3231: 3227: 3223: 3216: 3213: 3208: 3204: 3200: 3196: 3192: 3188: 3181: 3178: 3173: 3169: 3165: 3161: 3157: 3153: 3146: 3143: 3137: 3134: 3129: 3124: 3119: 3115: 3111: 3107: 3100: 3097: 3092: 3088: 3084: 3080: 3076: 3072: 3065: 3062: 3057: 3053: 3049: 3045: 3041: 3037: 3032: 3031:gr-qc/9905022 3027: 3023: 3019: 3012: 3009: 3004: 3000: 2996: 2992: 2988: 2984: 2979: 2974: 2970: 2966: 2959: 2956: 2952: 2947: 2944: 2939: 2935: 2930: 2925: 2921: 2917: 2913: 2909: 2908: 2903: 2896: 2893: 2889: 2883: 2880: 2874: 2869: 2865: 2861: 2857: 2853: 2852: 2847: 2843: 2837: 2834: 2828: 2823: 2819: 2815: 2811: 2807: 2803: 2796: 2793: 2788: 2784: 2780: 2776: 2772: 2768: 2761: 2758: 2745: 2741: 2737: 2730: 2727: 2723: 2710: 2703: 2702: 2694: 2692: 2690: 2686: 2682: 2667: 2663: 2662: 2661:CERN Courrier 2654: 2643: 2641: 2637: 2631: 2619: 2615: 2611: 2607: 2604: 2600: 2596: 2593: 2590: 2585: 2581: 2577: 2574: 2570: 2567: 2563: 2560: 2557: 2553: 2550: 2546: 2545: 2543: 2530: 2526: 2521: 2508: 2504: 2500: 2499: 2494: 2490: 2477: 2473: 2469: 2468: 2463: 2455: 2454: 2442: 2438: 2434: 2433:Florida State 2430: 2426: 2418: 2415: 2401: 2397: 2394: 2388: 2385: 2380: 2376: 2372: 2368: 2361: 2358: 2345: 2341: 2337: 2330: 2327: 2323: 2311: 2307: 2304:(1). online: 2303: 2299: 2292: 2285: 2283: 2279: 2275: 2271: 2267: 2264: 2260: 2254: 2251: 2245: 2240: 2236: 2232: 2228: 2224: 2223: 2218: 2214: 2208: 2205: 2199: 2194: 2190: 2186: 2182: 2178: 2177: 2172: 2168: 2164: 2158: 2155: 2149: 2144: 2140: 2136: 2132: 2128: 2127: 2122: 2118: 2112: 2109: 2097: 2093: 2089: 2085: 2081: 2080: 2075: 2071: 2065: 2062: 2057: 2053: 2052: 2047: 2043: 2037: 2034: 2022: 2018: 2014: 2010: 2003: 2000: 1995: 1989: 1985: 1978: 1975: 1969: 1964: 1961: 1958: 1955: 1953: 1950: 1948: 1945: 1943: 1942:Nuclear model 1940: 1938: 1935: 1933: 1930: 1928: 1925: 1923: 1920: 1919: 1914: 1903: 1900: 1894: 1889: 1884: 1882: 1880: 1876: 1872: 1868: 1866: 1861: 1857: 1855: 1850: 1845: 1840: 1838: 1834: 1830: 1826: 1822: 1821:atomic number 1816: 1814: 1810: 1805: 1799: 1791: 1789: 1786: 1782: 1778: 1777:cross-section 1774: 1770: 1769:critical mass 1765: 1763: 1759: 1755: 1751: 1747: 1743: 1739: 1738:nuclear power 1735: 1731: 1725: 1723: 1719: 1714: 1711: 1704: 1702: 1700: 1696: 1692: 1688: 1684: 1680: 1675: 1671: 1663: 1661: 1658: 1653: 1651: 1647: 1643: 1638: 1636: 1635:several steps 1632: 1628: 1623: 1621: 1617: 1613: 1609: 1605: 1599: 1597: 1592: 1588: 1582: 1578: 1577:Radioactivity 1571:Nuclear decay 1570: 1568: 1566: 1562: 1558: 1554: 1550: 1546: 1542: 1537: 1535: 1531: 1529: 1525: 1520: 1518: 1514: 1510: 1506: 1502: 1497: 1495: 1491: 1487: 1483: 1479: 1475: 1471: 1465: 1461: 1457: 1449: 1447: 1445: 1441: 1437: 1433: 1429: 1424: 1422: 1416: 1414: 1410: 1406: 1402: 1398: 1394: 1390: 1389:Hideki Yukawa 1380: 1377: 1373: 1369: 1365: 1362: 1358: 1349: 1346: 1341: 1318: 1314: 1310: 1306: 1302: 1298: 1297:Walther Bothe 1292: 1284: 1282: 1256: 1252: 1248: 1240: 1238: 1236: 1232: 1228: 1227: 1222: 1218: 1214: 1211:processes in 1210: 1206: 1203:Around 1920, 1198: 1196: 1193: 1189: 1184: 1180: 1176: 1172: 1168: 1163: 1161: 1157: 1153: 1152:Royal Society 1149: 1145: 1137: 1135: 1133: 1129: 1125: 1121: 1117: 1112: 1111:substances". 1109: 1104: 1102: 1097: 1093: 1089: 1085: 1081: 1077: 1073: 1069: 1065: 1061: 1057: 1052: 1050: 1046: 1045:J. J. Thomson 1042: 1038: 1034: 1030: 1026: 1025:radioactivity 1022: 1014: 1010: 1006: 1002: 997: 991: 987: 980: 978: 976: 972: 968: 964: 960: 956: 954: 950: 946: 942: 938: 934: 930: 926: 922: 918: 917:nuclear power 914: 909: 907: 903: 899: 894: 892: 888: 887:atomic nuclei 885:that studies 884: 880: 869: 864: 862: 857: 855: 850: 849: 847: 846: 840: 830: 827: 822: 816: 815: 814: 813: 806: 803: 801: 798: 796: 793: 791: 788: 786: 783: 781: 778: 776: 773: 771: 768: 766: 763: 761: 758: 756: 753: 751: 748: 746: 743: 741: 738: 736: 733: 731: 728: 726: 723: 721: 718: 716: 713: 711: 708: 706: 703: 701: 698: 696: 693: 691: 688: 686: 683: 681: 678: 676: 673: 671: 668: 666: 663: 661: 658: 656: 653: 651: 648: 647: 644: 639: 638: 631: 628: 626: 623: 621: 618: 617: 614: 609: 608: 599: 596: 594: 591: 589: 586: 585: 583: 582: 577: 574: 572: 569: 567: 564: 563: 559: 558: 555: 552: 551: 548: 543: 538: 537: 530: 527: 523: 522:by cosmic ray 520: 519: 518: 515: 514: 508: 507: 498: 495: 493: 490: 489: 488: 485: 481: 478: 476: 473: 472: 471: 468: 464: 461: 460: 459: 456: 455: 449: 448: 441: 438: 434: 433:pair breaking 431: 430: 429: 426: 424: 421: 420: 417: 412: 411: 404: 401: 399: 398:Decay product 396: 394: 391: 389: 386: 385: 382: 379: 377: 374: 372: 371:Cluster decay 369: 367: 364: 360: 357: 355: 352: 351: 350: 347: 345: 342: 338: 335: 331: 328: 327: 326: 323: 322: 321: 318: 316: 313: 312: 309: 304: 303: 296: 293: 291: 288: 286: 283: 281: 278: 276: 273: 271: 268: 267: 261: 260: 251: 248: 247: 246: 243: 241: 238: 236: 233: 231: 228: 227: 224: 220: 216: 215:Mirror nuclei 213: 212: 208: 205: 204: 201: 200: 197: −  196: 191: 188: 187: 184: 183: 178: 175: 174: 171: 170: 165: 162: 161: 157: 156: 151: 148: 147: 143: 138: 137: 130: 127: 125: 122: 120: 117: 115: 112: 111: 108: 103: 102: 97: 94: 92: 89: 87: 86:Nuclear force 84: 82: 79: 75: 72: 70: 67: 66: 65: 62: 60: 57: 56: 55: 54: 50: 46: 45: 42: 38: 33: 19: 5196: 5138: 4867:Hypothetical 4815:Exotic atoms 4684:Omega baryon 4674:Sigma baryon 4664:Delta baryon 4416:Hypothetical 4398:Ghost fields 4384:Higgs boson 4318:Tau neutrino 4210:Charm (quark 4033:Astrophysics 3977: 3847:Experimental 3766: 3666: 3655:. Retrieved 3632: 3621: 3602:. Retrieved 3579: 3567:. Retrieved 3549:10.1142/3530 3539: 3506:. Retrieved 3483: 3465:. Retrieved 3442: 3430:. Retrieved 3399: 3391:Introductory 3372:Bibliography 3358:. Retrieved 3349: 3339: 3328:. Retrieved 3298:(5): 82–91. 3295: 3291: 3281: 3272: 3229: 3225: 3215: 3193:(11): 1766. 3190: 3186: 3180: 3155: 3151: 3145: 3136: 3113: 3109: 3099: 3074: 3070: 3064: 3021: 3017: 3011: 2968: 2964: 2958: 2950: 2946: 2914:(5): 25–27. 2911: 2905: 2895: 2887: 2882: 2855: 2849: 2836: 2809: 2805: 2795: 2770: 2766: 2760: 2748:. Retrieved 2744:the original 2729: 2720: 2713:. Retrieved 2700: 2680: 2673:. Retrieved 2659: 2629: 2622:. Retrieved 2533:. Retrieved 2511:. Retrieved 2502: 2496: 2480:. Retrieved 2467:CERN Courier 2465: 2445:. Retrieved 2428: 2417: 2404:. Retrieved 2387: 2370: 2366: 2360: 2348:. Retrieved 2339: 2329: 2321: 2314:. Retrieved 2301: 2297: 2294:(electronic) 2258: 2253: 2226: 2220: 2213:Geiger, Hans 2207: 2183:(557): 495. 2180: 2174: 2163:Geiger, Hans 2157: 2130: 2124: 2117:Geiger, Hans 2111: 2100:. Retrieved 2083: 2077: 2064: 2055: 2049: 2036: 2025:. Retrieved 2016: 2012: 2002: 1983: 1977: 1874: 1870: 1864: 1859: 1853: 1848: 1841: 1817: 1801: 1766: 1750:World War II 1726: 1715: 1708: 1667: 1654: 1639: 1624: 1620:antineutrino 1600: 1584: 1538: 1532: 1521: 1519:are filled. 1498: 1467: 1428:Enrico Fermi 1425: 1417: 1409:strong force 1393:strong force 1386: 1355: 1342: 1294: 1247:nuclear spin 1244: 1224: 1216: 1202: 1164: 1141: 1113: 1105: 1060:Pierre Curie 1053: 1018: 967:astrophysics 957: 913:applications 910: 895: 878: 877: 440:Photofission 388:Decay energy 315:Alpha α 222: 218: 198: 194: 181: 168: 154: 40: 5149:Quark model 4917:Theta meson 4820:Positronium 4732:Omega meson 4727:J/psi meson 4657:Antineutron 4568:Dark photon 4533:Graviphoton 4492:Stop squark 4200:Down (quark 3936:Statistical 3852:Theoretical 3829:Engineering 3767:In Our Time 2651:ANNIVERSARY 2603:Nobel Prize 2019:: 420–421. 1839:of a star. 1718:alpha decay 1642:gamma decay 1627:alpha decay 1553:accelerator 1545:Rugby balls 1235:metallicity 1148:Hans Geiger 1128:Marie Curie 1108:Nobel Prize 1056:Marie Curie 949:archaeology 745:Oppenheimer 423:Spontaneous 393:Decay chain 344:K/L capture 320:Beta β 190:Isodiaphers 114:Liquid drop 4891:Heptaquark 4852:Superatoms 4785:Pentaquark 4775:Tetraquark 4757:Quarkonium 4647:Antiproton 4548:Leptoquark 4483:Neutralino 4245:antiquark) 4235:antiquark) 4230:Top (quark 4225:antiquark) 4215:antiquark) 4205:antiquark) 4195:antiquark) 4164:Elementary 4053:Geophysics 4043:Biophysics 3887:Analytical 3840:Approaches 3657:2023-02-22 3604:2023-04-04 3569:2023-04-19 3508:2023-05-31 3467:2024-05-27 3432:2023-02-19 3376:See also: 3360:25 January 3330:2014-01-04 3232:(1): 932. 2971:(5): 689. 2525:"Timeline" 2102:2019-07-01 2058:: 419–432. 2027:2010-09-21 1970:References 1963:QCD matter 1957:Nucleonica 1773:moderation 1697:(JET) and 1689:, and two 1604:beta decay 1181:foil. The 775:Strassmann 765:Rutherford 643:Scientists 598:Artificial 593:Cosmogenic 588:Primordial 584:Nuclides: 561:Processes: 517:Spallation 5129:Particles 5074:Particles 5033:Polariton 5023:Plasmaron 4993:Dropleton 4886:Hexaquark 4857:Molecules 4845:Protonium 4722:Phi meson 4707:Rho meson 4679:Xi baryon 4611:Composite 4447:Gravitino 4190:Up (quark 4003:Molecular 3904:Acoustics 3897:Continuum 3892:Celestial 3882:Newtonian 3869:Classical 3812:Divisions 3517:cite book 3116:: 48–57. 3003:118221997 2978:1406.0497 2938:123558823 2812:: 16–35. 1858:) or the 1837:evolution 1829:CNO cycle 1742:Hiroshima 1691:neutrinos 1687:positrons 1646:gamma ray 1370:field of 1142:In 1906, 1124:Becquerel 1114:In 1905, 1106:The 1903 1096:electrons 1084:Otto Hahn 1068:radiation 906:electrons 780:Świątecki 695:Pi. Curie 690:Fr. Curie 685:Ir. Curie 680:Cockcroft 655:Becquerel 576:Supernova 280:Drip line 275:p–n ratio 250:Borromean 129:Ab initio 5212:Category 5105:timeline 4957:R-hadron 4912:Glueball 4896:Skyrmion 4830:Tauonium 4543:Inflaton 4538:Graviton 4518:Curvaton 4488:Sfermion 4478:Higgsino 4473:Chargino 4434:Gauginos 4293:Neutrino 4278:Antimuon 4268:Positron 4263:Electron 4173:Fermions 3759:Archived 3747:Archived 3735:Archived 3718:Archived 3706:Archived 3694:Archived 3563:Archived 3531:Advanced 3354:Archived 3324:Archived 3320:16318030 3264:28428625 3128:Archived 2886:W. Pauli 2844:(1932). 2705:(E-Book) 2666:Archived 2618:Archived 2595:Archived 2576:Archived 2552:Archived 2529:Archived 2507:Archived 2498:APS News 2476:Archived 2441:Archived 2400:Archived 2396:Fermilab 2344:Archived 2310:Archived 2266:Archived 2215:(1910). 2169:(1909). 2119:(1908). 2096:Archived 2072:(1906). 2044:(1897). 2021:Archived 1885:See also 1867:-process 1856:-process 1831:and the 1809:helium-4 1804:Big Bang 1746:Nagasaki 1631:helium-4 1608:nitrogen 1591:isotopes 1547:or even 1470:nucleons 1421:positron 1413:pi meson 1387:In 1935 1231:hydrogen 1132:nucleons 1092:spectrum 1041:electron 1005:positron 973:and the 839:Category 740:Oliphant 725:Lawrence 705:Davisson 675:Chadwick 571:Big Bang 458:electron 428:Products 349:Isomeric 240:Even/odd 217: – 192:– equal 179:– equal 177:Isotones 166:– equal 152:– equal 150:Isotopes 142:Nuclides 64:Nucleons 5093:Related 5064:Baryons 5038:Polaron 5028:Plasmon 5003:Fracton 4998:Exciton 4952:Diquark 4947:Pomeron 4922:T meson 4879:Baryons 4840:Pionium 4825:Muonium 4752:D meson 4747:B meson 4652:Neutron 4637:Nucleon 4629:Baryons 4620:Hadrons 4583:Tachyon 4558:Majoron 4523:Dilaton 4452:Photino 4288:Antitau 4255:Leptons 4087:Related 3971:General 3966:Special 3824:Applied 3405:Bibcode 3300:Bibcode 3255:5430567 3234:Bibcode 3195:Bibcode 3160:Bibcode 3079:Bibcode 3056:6740644 3036:Bibcode 2983:Bibcode 2916:Bibcode 2860:Bibcode 2814:Bibcode 2775:Bibcode 2750:14 June 2715:13 June 2675:13 June 2624:13 June 2535:13 June 2513:13 June 2482:13 June 2447:13 June 2406:13 June 2350:13 June 2316:13 June 2231:Bibcode 2185:Bibcode 2135:Bibcode 1844:nucleon 1758:thorium 1754:uranium 1368:mesonic 1335:⁄ 1324:⁄ 1313:neutron 1276:⁄ 1266:⁄ 1253:at the 1192:nucleus 1037:uranium 981:History 945:geology 883:physics 795:Thomson 785:Szilárd 755:Purcell 735:Meitner 670:N. Bohr 665:A. Bohr 650:Alvarez 566:Stellar 470:neutron 354:Gamma γ 207:Isomers 164:Isobars 59:Nucleus 5069:Mesons 5018:Phonon 5013:Magnon 4935:Others 4905:Mesons 4798:Others 4694:Mesons 4642:Proton 4506:Others 4461:Others 4442:Gluino 4376:Scalar 4356:Photon 4339:Bosons 4182:Quarks 3998:Atomic 3953:Modern 3803:Major 3673:  3648:  3595:  3555:  3499:  3458:  3423:  3384:, and 3318:  3262:  3252:  3054:  3001:  2936:  2785:  2259:citing 1990:  1869:. The 1827:, the 1679:nickel 1612:oxygen 1565:quarks 1528:bosons 1517:shells 1462:, and 1226:E = mc 1221:fusion 1188:bullet 1158:, and 1078:, and 939:, and 837:  805:Wigner 800:Walton 790:Teller 720:Jensen 487:proton 230:Stable 5057:Lists 5048:Trion 5043:Roton 4983:Anyon 4810:Atoms 4573:Preon 4513:Axion 4468:Axino 4361:Gluon 4348:Gauge 3052:S2CID 3026:arXiv 2999:S2CID 2973:arXiv 2934:S2CID 2783:JSTOR 2669:(PDF) 2656:(PDF) 1862:, or 1860:rapid 1683:Stars 1681:-62. 1549:pears 1513:magic 1405:meson 1361:boson 1305:Irène 1233:(see 1213:stars 1080:gamma 1072:alpha 971:stars 770:Soddy 750:Proca 730:Mayer 710:Fermi 660:Bethe 235:Magic 5008:Hole 4835:Onia 4742:Kaon 4702:Pion 4273:Muon 3924:Wave 3819:Pure 3671:ISBN 3646:ISBN 3593:ISBN 3553:ISBN 3523:link 3497:ISBN 3456:ISBN 3421:ISBN 3362:2023 3316:PMID 3260:PMID 2787:6491 2752:2021 2717:2021 2677:2021 2626:2021 2537:2021 2515:2021 2484:2021 2449:2021 2408:2021 2352:2021 2318:2021 1988:ISBN 1849:slow 1781:Oklo 1756:and 1744:and 1699:ITER 1606:, a 1579:and 1541:spin 1507:and 1430:via 1307:and 1179:gold 1126:and 1076:beta 1013:kaon 1011:and 1009:muon 947:and 927:and 902:atom 760:Rabi 715:Hahn 625:RHIC 245:Halo 4283:Tau 3919:Ray 3638:doi 3585:doi 3545:doi 3489:doi 3448:doi 3413:doi 3308:doi 3296:293 3250:PMC 3242:doi 3203:doi 3168:doi 3118:doi 3087:doi 3044:doi 2991:doi 2924:doi 2868:doi 2856:136 2822:doi 2564:: 2375:doi 2239:doi 2193:doi 2143:doi 2088:doi 2017:122 1815:). 1668:In 1640:In 1625:In 1043:by 1035:in 1027:by 943:in 935:in 630:LHC 544:and 5214:: 3644:. 3591:. 3561:. 3551:. 3519:}} 3515:{{ 3495:. 3454:. 3419:. 3411:. 3380:, 3352:. 3348:. 3322:. 3314:. 3306:. 3294:. 3290:. 3258:. 3248:. 3240:. 3228:. 3224:. 3201:. 3191:75 3189:. 3166:. 3156:75 3154:. 3126:. 3114:17 3108:. 3085:. 3075:57 3073:. 3050:. 3042:. 3034:. 3022:16 3020:. 2997:. 2989:. 2981:. 2969:34 2967:. 2932:. 2922:. 2912:37 2910:. 2904:. 2866:. 2854:. 2848:. 2820:. 2810:77 2808:. 2804:. 2781:. 2771:11 2769:. 2738:. 2719:. 2688:^ 2679:. 2658:. 2639:^ 2628:. 2616:. 2612:. 2601:, 2503:15 2501:. 2495:. 2470:. 2464:. 2439:. 2435:: 2431:. 2398:. 2371:21 2369:. 2338:. 2320:. 2308:. 2302:33 2300:. 2296:. 2281:^ 2237:. 2227:83 2225:. 2219:. 2191:. 2181:82 2179:. 2173:. 2165:; 2141:. 2131:81 2129:. 2123:. 2094:. 2084:12 2082:. 2076:. 2056:XV 2054:. 2048:. 2015:. 2011:. 1530:. 1496:. 1458:, 1446:. 1399:a 1303:, 1299:, 1134:. 1074:, 1062:, 1007:, 977:. 955:. 923:, 919:, 908:. 893:. 497:rp 463:2× 330:0v 325:2β 221:↔ 4781:) 4777:( 4494:) 4490:( 4148:e 4141:t 4134:v 3796:e 3789:t 3782:v 3679:. 3660:. 3640:: 3607:. 3587:: 3572:. 3547:: 3525:) 3511:. 3491:: 3470:. 3450:: 3435:. 3415:: 3407:: 3364:. 3333:. 3310:: 3302:: 3266:. 3244:: 3236:: 3230:7 3209:. 3205:: 3197:: 3174:. 3170:: 3162:: 3120:: 3093:. 3089:: 3081:: 3058:. 3046:: 3038:: 3028:: 3005:. 2993:: 2985:: 2975:: 2940:. 2926:: 2918:: 2876:. 2870:: 2862:: 2830:. 2824:: 2816:: 2789:. 2777:: 2754:. 2711:) 2649:" 2539:. 2517:. 2486:. 2458:" 2451:. 2421:* 2410:. 2381:. 2377:: 2354:. 2247:. 2241:: 2233:: 2201:. 2195:: 2187:: 2151:. 2145:: 2137:: 2105:. 2090:: 2030:. 1996:. 1875:r 1871:s 1865:r 1854:s 1337:2 1333:1 1326:2 1322:1 1278:2 1274:1 1268:2 1264:1 1261:+ 1259:± 1015:. 867:e 860:t 853:v 492:p 480:r 475:s 337:β 223:N 219:Z 199:Z 195:N 182:N 169:A 155:Z 74:n 69:p 34:. 20:)

Index

Nuclear scientist
Nuclear physics (disambiguation)
Nuclear physics

Nucleus
Nucleons
p
n
Nuclear matter
Nuclear force
Nuclear structure
Nuclear reaction
Models of the nucleus
Liquid drop
Nuclear shell model
Interacting boson model
Ab initio
Nuclides
Isotopes
Z
Isobars
A
Isotones
N
Isodiaphers
N − Z
Isomers
Mirror nuclei
Stable
Magic

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.