Knowledge

Nucleosynthesis

Source đź“ť

465:, a Belgian physicist, who suggested that the evident expansion of the Universe in time required that the Universe, if contracted backwards in time, would continue to do so until it could contract no further. This would bring all the mass of the Universe to a single point, a "primeval atom", to a state before which time and space did not exist. Hoyle is credited with coining the term "Big Bang" during a 1949 BBC radio broadcast, saying that Lemaître's theory was "based on the hypothesis that all the matter in the universe was created in one big bang at a particular time in the remote past." It is popularly reported that Hoyle intended this to be pejorative, but Hoyle explicitly denied this and said it was just a striking image meant to highlight the difference between the two models. Lemaître's model was needed to explain the existence of deuterium and nuclides between helium and carbon, as well as the fundamentally high amount of helium present, not only in stars but also in interstellar space. As it happened, both Lemaître and Hoyle's models of nucleosynthesis would be needed to explain the elemental abundances in the universe. 1596: 772: 1591:{\displaystyle {\begin{array}{ll}{\ce {n^{0}->p+{}+e^{-}{}+{\overline {\nu }}_{e}}}&{\ce {p+{}+n^{0}->_{1}^{2}D{}+\gamma }}\\{\ce {^{2}_{1}D{}+p+->_{2}^{3}He{}+\gamma }}&{\ce {^{2}_{1}D{}+_{1}^{2}D->_{2}^{3}He{}+n^{0}}}\\{\ce {^{2}_{1}D{}+_{1}^{2}D->_{1}^{3}T{}+p+}}&{\ce {^{3}_{1}T{}+_{1}^{2}D->_{2}^{4}He{}+n^{0}}}\\{\ce {^{3}_{1}T{}+_{2}^{4}He->_{3}^{7}Li{}+\gamma }}&{\ce {^{3}_{2}He{}+n^{0}->_{1}^{3}T{}+p+}}\\{\ce {^{3}_{2}He{}+_{1}^{2}D->_{2}^{4}He{}+p+}}&{\ce {^{3}_{2}He{}+_{2}^{4}He->_{4}^{7}Be{}+\gamma }}\\{\ce {^{7}_{3}Li{}+p+->_{2}^{4}He{}+_{2}^{4}He}}&{\ce {^{7}_{4}Be{}+n^{0}->_{3}^{7}Li{}+p+}}\end{array}}} 257: 482: 1779:
fuses nuclei that themselves have equal numbers of protons and neutrons to produce nuclides which consist of whole numbers of helium nuclei, up to 15 (representing Ni). Such multiple-alpha-particle nuclides are totally stable up to Ca (made of 10 helium nuclei), but heavier nuclei with equal and even numbers of protons and neutrons are tightly bound but unstable. The quasi-equilibrium produces radioactive
486:
stellar-produced elements are: (1) an alternation of abundance of elements according to whether they have even or odd atomic numbers, and (2) a general decrease in abundance, as elements become heavier. Within this trend is a peak at abundances of iron and nickel, which is especially visible on a logarithmic graph spanning fewer powers of ten, say between logA=2 (A=100) and logA=6 (A=1,000,000).
1980: 501: 196: 38: 1751:, which inadvertently obscured Hoyle's 1954 theory. Further nucleosynthesis processes can occur, in particular the r-process (rapid process) described by the BFH paper and first calculated by Seeger, Fowler and Clayton, in which the most neutron-rich isotopes of elements heavier than nickel are produced by rapid absorption of free neutrons. The creation of free neutrons by 86:. Nucleosynthesis in stars and their explosions later produced the variety of elements and isotopes that we have today, in a process called cosmic chemical evolution. The amounts of total mass in elements heavier than hydrogen and helium (called 'metals' by astrophysicists) remains small (few percent), so that the universe still has approximately the same composition. 1786:, Cr, Fe, and Ni, which (except Ti) are created in abundance but decay after the explosion and leave the most stable isotope of the corresponding element at the same atomic weight. The most abundant and extant isotopes of elements produced in this way are Ti, Cr, and Fe. These decays are accompanied by the emission of gamma-rays (radiation from the nucleus), whose 1653:. It is responsible for the galactic abundances of elements from carbon to iron. Stars are thermonuclear furnaces in which H and He are fused into heavier nuclei by increasingly high temperatures as the composition of the core evolves. Of particular importance is carbon because its formation from He is a bottleneck in the entire process. Carbon is produced by the 1938:. These impacts fragment carbon, nitrogen, and oxygen nuclei present. The process results in the light elements beryllium, boron, and lithium in the cosmos at much greater abundances than they are found within solar atmospheres. The quantities of the light elements H and He produced by spallation are negligible relative to their primordial abundance. 1797:. Gamma-ray lines identifying Co and Co nuclei, whose half-lives limit their age to about a year, proved that their radioactive cobalt parents created them. This nuclear astronomy observation was predicted in 1969 as a way to confirm explosive nucleosynthesis of the elements, and that prediction played an important role in the planning for NASA's 2159: 369:, and by nucleosynthesis in exotic events such as neutron star collisions. Other nuclides, such as Ar, formed later through radioactive decay. On Earth, mixing and evaporation has altered the primordial composition to what is called the natural terrestrial composition. The heavier elements produced after the Big Bang range in 431:'s original work on nucleosynthesis of heavier elements in stars, occurred just after World War II. His work explained the production of all heavier elements, starting from hydrogen. Hoyle proposed that hydrogen is continuously created in the universe from vacuum and energy, without need for universal beginning. 2323:. He saw an analogy between the plutonium fission reaction and the newly discovered supernovae, and he was able to show that exploding super novae produced all of the elements in the same proportion as existed on Earth. He felt that he had accidentally fallen into a subject that would make his career. 1673:
The first direct proof that nucleosynthesis occurs in stars was the astronomical observation that interstellar gas has become enriched with heavy elements as time passed. As a result, stars that were born from it late in the galaxy, formed with much higher initial heavy element abundances than those
306:
could be formed, as this element requires a far higher product of helium density and time than were present in the short nucleosynthesis period of the Big Bang. That fusion process essentially shut down at about 20 minutes, due to drops in temperature and density as the universe continued to expand.
2122:
nuclides. This process happens when an energetic particle from radioactive decay, often an alpha particle, reacts with a nucleus of another atom to change the nucleus into another nuclide. This process may also cause the production of further subatomic particles, such as neutrons. Neutrons can also
409:
were created at the beginning of the universe, but no rational physical scenario for this could be identified. Gradually it became clear that hydrogen and helium are much more abundant than any of the other elements. All the rest constitute less than 2% of the mass of the Solar System, and of other
1778:
Explosive nucleosynthesis occurs too rapidly for radioactive decay to decrease the number of neutrons, so that many abundant isotopes with equal and even numbers of protons and neutrons are synthesized by the silicon quasi-equilibrium process. During this process, the burning of oxygen and silicon
1767:
was still small, that nonetheless contain their complement of r-process nuclei; thereby demonstrating that the metallicity is a product of an internal process. The r-process is responsible for our natural cohort of radioactive elements, such as uranium and thorium, as well as the most neutron-rich
1682:
star in 1952, by spectroscopy, provided the first evidence of nuclear activity within stars. Because technetium is radioactive, with a half-life much less than the age of the star, its abundance must reflect its recent creation within that star. Equally convincing evidence of the stellar origin of
477:
that was based on the unfractionated abundances of the non-volatile elements found within unevolved meteorites. Such a graph of the abundances is displayed on a logarithmic scale below, where the dramatically jagged structure is visually suppressed by the many powers of ten spanned in the vertical
468:
The goal of the theory of nucleosynthesis is to explain the vastly differing abundances of the chemical elements and their several isotopes from the perspective of natural processes. The primary stimulus to the development of this theory was the shape of a plot of the abundances versus the atomic
1804:
Other proofs of explosive nucleosynthesis are found within the stardust grains that condensed within the interiors of supernovae as they expanded and cooled. Stardust grains are one component of cosmic dust. In particular, radioactive Ti was measured to be very abundant within supernova stardust
1734:
except for a high abundance of the Si nuclei in the feverishly burning mix. This concept was the most important discovery in nucleosynthesis theory of the intermediate-mass elements since Hoyle's 1954 paper because it provided an overarching understanding of the abundant and chemically important
485:
Abundances of the chemical elements in the Solar System. Hydrogen and helium are most common, residuals within the paradigm of the Big Bang. The next three elements (Li, Be, B) are rare because they are poorly synthesized in the Big Bang and also in stars. The two general trends in the remaining
2040:
Tiny amounts of certain nuclides are produced on Earth by artificial means. Those are our primary source, for example, of technetium. However, some nuclides are also produced by a number of natural means that have continued after primordial elements were in place. These often act to create new
334:. These lighter elements in the present universe are therefore thought to have been produced through thousands of millions of years of cosmic ray (mostly high-energy proton) mediated breakup of heavier elements in interstellar gas and dust. The fragments of these cosmic-ray collisions include 420:
first suggested in 1920 that stars obtain their energy by fusing hydrogen into helium and raised the possibility that the heavier elements may also form in stars. This idea was not generally accepted, as the nuclear mechanism was not understood. In the years immediately before World War II,
260:
Periodic table showing the currently believed origins of each element. Elements from carbon up to sulfur may be made in stars of all masses by charged-particle fusion reactions. Iron group elements originate mostly from the nuclear-statistical equilibrium process in thermonuclear supernova
330:, and boron – which were found in the initial composition of the interstellar medium and hence the star. Interstellar gas therefore contains declining abundances of these light elements, which are present only by virtue of their nucleosynthesis during the Big Bang, and also 1821:
of binary neutron stars (BNSs) is now believed to be the main source of r-process elements. Being neutron-rich by definition, mergers of this type had been suspected of being a source of such elements, but definitive evidence was difficult to obtain. In 2017 strong evidence emerged, when
410:
star systems as well. At the same time it was clear that oxygen and carbon were the next two most common elements, and also that there was a general trend toward high abundance of the light elements, especially those with isotopes composed of whole numbers of helium-4 nuclei (
393:. The stability of atomic nuclei of different sizes and composition (i.e. numbers of neutrons and protons) plays an important role in the possible reactions among nuclei. Cosmic nucleosynthesis, therefore, is studied among researchers of astrophysics and nuclear physics (" 1729:
occurs in the energetic environment in supernovae, in which the elements between silicon and nickel are synthesized in quasiequilibrium established during fast fusion that attaches by reciprocating balanced nuclear reactions to Si. Quasiequilibrium can be thought of as
1965:
abundances and comparing those results with observed abundances. Isotope abundances are typically calculated from the transition rates between isotopes in a network. Often these calculations can be simplified as a few key reactions control the rate of other reactions.
469:
number of the elements. Those abundances, when plotted on a graph as a function of atomic number, have a jagged sawtooth structure that varies by factors up to ten million. A very influential stimulus to nucleosynthesis research was an abundance table created by
2041:
elements in ways that can be used to date rocks or to trace the source of geological processes. Although these processes do not produce the nuclides in abundance, they are assumed to be the entire source of the existing natural supply of those nuclides.
1763:. This promising scenario, though generally supported by supernova experts, has yet to achieve a satisfactory calculation of r-process abundances. The primary r-process has been confirmed by astronomers who had observed old stars born when galactic 265:), and by rapid neutron capture in the r-process, with origins being debated among rare supernova variants and compact-star collisions. Note that this graphic is a first-order simplification of an active research field with many open questions. 357:. These processes began as hydrogen and helium from the Big Bang collapsed into the first stars after about 500 million years. Star formation has been occurring continuously in galaxies since that time. The primordial nuclides were created by 458:, Fowler and Hoyle is a well-known summary of the state of the field in 1957. That paper defined new processes for the transformation of one heavy nucleus into others within stars, processes that could be documented by astronomers. 1657:
in all stars. Carbon is also the main element that causes the release of free neutrons within stars, giving rise to the s-process, in which the slow absorption of neutrons converts iron into elements heavier than iron and nickel.
1687:
stars. Observation of barium abundances some 20–50 times greater than found in unevolved stars is evidence of the operation of the s-process within such stars. Many modern proofs of stellar nucleosynthesis are provided by the
1850:
decays and cools. The first detection of the merger of a neutron star and black hole (NSBHs) came in July 2021 and more after but analysis seem to favor BNSs over NSBHs as the main contributors to heavy metal production.
2104:. This is not cluster decay, as the fission products may be split among nearly any type of atom. Thorium-232, uranium-235, and uranium-238 are primordial isotopes that undergo spontaneous fission. Natural technetium and 67:. After about 20 minutes, the universe had expanded and cooled to a point at which these high-energy collisions among nucleons ended, so only the fastest and simplest reactions occurred, leaving our universe containing 135:: from the ejection of elements produced during stellar nucleosynthesis; through explosive nucleosynthesis during the supernova explosion; and from the r-process (absorption of multiple neutrons) during the explosion. 1881:
Cosmic ray spallation process reduces the atomic weight of interstellar matter by the impact with cosmic rays, to produce some of the lightest elements present in the universe (though not a significant amount of
141:
are a recently discovered major source of elements produced in the r-process. When two neutron stars collide, a significant amount of neutron-rich matter may be ejected which then quickly forms heavy elements.
1661:
The products of stellar nucleosynthesis are generally dispersed into the interstellar gas through mass loss episodes and the stellar winds of low mass stars. The mass loss events can be witnessed today in the
756:
froze out to form protons and neutrons. Because of the very short period in which nucleosynthesis occurred before it was stopped by expansion and cooling (about 20 minutes), no elements heavier than
152:
impact nuclei and fragment them. It is a significant source of the lighter nuclei, particularly He, Be and B, that are not created by stellar nucleosynthesis. Cosmic ray spallation can occur in the
1704:. The measured isotopic compositions in stardust grains demonstrate many aspects of nucleosynthesis within the stars from which the grains condensed during the star's late-life mass-loss episodes. 565:
processes which are believed to be responsible for nucleosynthesis. The majority of these occur within stars, and the chain of those nuclear fusion processes are known as hydrogen burning (via the
1805:
grains at the time they condensed during the supernova expansion. This confirmed a 1975 prediction of the identification of supernova stardust (SUNOCONs), which became part of the pantheon of
3283: 730:
and certain types of radioactive decay, most of the mass of the isotopes in the universe are thought to have been produced in the Big Bang. The nuclei of these elements, along with some
3653: 2138:
nuclides. Cosmic rays continue to produce new elements on Earth by the same cosmogenic processes discussed above that produce primordial beryllium and boron. One important example is
434:
Hoyle's work explained how the abundances of the elements increased with time as the galaxy aged. Subsequently, Hoyle's picture was expanded during the 1960s by contributions from
2996:
Chakrabarti, S. K.; Jin, L.; Arnett, W. D. (1987). "Nucleosynthesis Inside Thick Accretion Disks Around Black Holes. I – Thermodynamic Conditions and Preliminary Analysis".
2848: 2131:. For example, some stable isotopes such as neon-21 and neon-22 are produced by several routes of nucleogenic synthesis, and thus only part of their abundance is primordial. 3390: 109:
in the most massive stars. Products of stellar nucleosynthesis remain trapped in stellar cores and remnants except if ejected through stellar winds and explosions. The
3489:
Meneguzzi, M.; Audouze, J.; Reeves, H. (1971). "The Production of the Elements Li, Be, B by Galactic Cosmic Rays in Space and Its Relation with Stellar Observations".
593:. These processes are able to create elements up to and including iron and nickel. This is the region of nucleosynthesis within which the isotopes with the highest 2465: 338:
and the stable isotopes of the light elements lithium, beryllium, and boron. Carbon was not made in the Big Bang, but was produced later in larger stars via the
3681: 3423: 2768: 2682: 2638: 1790:
can be used to identify the isotope created by the decay. The detection of these emission lines were an important early product of gamma-ray astronomy.
3163:
Arai, K.; Matsuba, R.; Fujimoto, S.; Koike, O.; Hashimoto, M. (2003). "Nucleosynthesis Inside Accretion Disks Around Intermediate-mass Black Holes".
3052: 2172: 1696:, solid grains that have condensed from the gases of individual stars and which have been extracted from meteorites. Stardust is one component of 640:
Big Bang nucleosynthesis occurred within the first three minutes of the beginning of the universe and is responsible for much of the abundance of
3087: 2090:
is produced by alpha-decay, and the helium trapped in Earth's crust is also mostly non-primordial. In other types of radioactive decay, such as
764:) could be formed. Elements formed during this time were in the plasma state, and did not cool to the state of neutral atoms until much later. 3598: 3575: 3552: 3529: 3340:"A New Approach for Calculating the Alpha-Decay Half-Life for the Heavy and Super-heavy Elements and an Exact A Priori Result for Beyllium-8" 3108:; Ruffert, M.; Janka, H.-Th.; Hix, W. R. (2008). "Process Nucleosynthesis in Hot Accretion Disk Flows from Black Hole-Neutron Star Mergers". 2580: 2503: 1793:
The most convincing proof of explosive nucleosynthesis in supernovae occurred in 1987 when those gamma-ray lines were detected emerging from
2070:
produce many intermediate daughter nuclides before they too finally decay to isotopes of lead. The Earth's natural supply of elements like
1601: 385:). Synthesis of these elements occurred through nuclear reactions involving the strong and weak interactions among nuclei, and called 3253: 2431: 2027: 548: 243: 1775:(rapid proton) involves the rapid absorption of free protons as well as neutrons, but its role and its existence are less certain. 1755:
during the rapid compression of the supernova core along with the assembly of some neutron-rich seed nuclei makes the r-process a
2001: 522: 217: 3674: 2134:
Nuclear reactions due to cosmic rays. By convention, these reaction-products are not termed "nucleogenic" nuclides, but rather
1831: 2807: 2677: 2763: 2005: 526: 221: 2906:"The Relative Contribution to Heavy Metals Production from Binary Neutron Star Mergers and Neutron Star–Black Hole Mergers" 3421:
Hoyle, F. (1954). "On Nuclear Reactions Occurring in Very Hot STARS. I. The Synthesis of Elements from Carbon to Nickel".
2519:
Clayton, D. D.; Fowler, W. A.; Hull, T. E.; Zimmerman, B. A. (1961). "Neutron Capture Chains in Heavy Element Synthesis".
1798: 389:(including both rapid and slow multiple neutron capture), and include also nuclear fission and radioactive decays such as 1759:, and one that can occur even in a star of pure H and He. This is in contrast to the BFH designation of the process as a 609:, by a number of other processes. Some of those others include the r-process, which involves rapid neutron captures, the 59:(protons and neutrons) and nuclei. According to current theories, the first nuclei were formed a few minutes after the 3567: 3521: 2568: 2491: 2448: 2094:, larger species of nuclei are ejected (for example, neon-20), and these eventually become newly formed stable atoms. 3667: 3544: 3491: 597:
per nucleon are created. Heavier elements can be assembled within stars by a neutron capture process known as the
3458: 3110: 2998: 2971: 2812: 2598: 2381: 2342: 2222: 1886:). Most notably spallation is believed to be responsible for the generation of almost all of He and the elements 1726: 1721: 366: 124: 2324: 3954: 3944: 1990: 1809:. Other unusual isotopic ratios within these grains reveal many specific aspects of explosive nucleosynthesis. 635: 511: 417: 358: 318:
A star formed in the early universe produces heavier elements by combining its lighter nuclei –
308: 206: 64: 3798: 1624: 566: 3833: 3778: 3733: 2009: 1994: 1684: 1620: 590: 530: 515: 362: 225: 210: 98: 1649:
Stellar nucleosynthesis is the nuclear process by which new nuclei are produced. It occurs in stars during
753: 275: 3828: 3818: 3231: 2853: 2455: 1818: 586: 578: 439: 349: â‰Ą 6, carbon and heavier elements) requires the extreme temperatures and pressures found within 3045: 3949: 1876: 331: 145: 3070: 1683:
heavy elements is the large overabundances of specific stable elements found in stellar atmospheres of
752:
are considered to have been formed between 100 and 300 seconds after the Big Bang when the primordial
3823: 3813: 3500: 3467: 3432: 3399: 3302: 3223: 3174: 3129: 3007: 2927: 2821: 2777: 2691: 2647: 2607: 2530: 2390: 2351: 2280: 2231: 1930:
are thought to have been produced in the Big Bang. The spallation process results from the impact of
1827: 1654: 1628: 582: 574: 394: 339: 3236: 2460: 3877: 3768: 3748: 3743: 2101: 1935: 1787: 1644: 618: 606: 462: 153: 138: 256: 3320: 3292: 3279:"Light element variations in globular clusters via nucleosynthesis in black hole accretion discs" 3259: 3213: 3145: 3119: 2953: 2917: 2744: 1839: 312: 176: 165: 27:
Process that creates new atomic nuclei from pre-existing nucleons, primarily protons and neutrons
3201: 164:, or on Earth in the atmosphere or in the ground. This contributes to the presence on Earth of 3758: 3728: 3698: 3631: 3594: 3571: 3548: 3525: 3355: 3249: 3165: 3023: 2945: 2736: 2719: 2576: 2521: 2499: 2427: 2320: 2298: 2247: 2115: 2111: 2097: 2048: 1847: 1650: 455: 451: 443: 435: 406: 2572: 2561: 2495: 2484: 2192: 2127:. These neutrons can then go on to produce other nuclides via neutron-induced fission, or by 2086:
in the time since the formation of the Earth. Little of the atmospheric argon is primordial.
3788: 3753: 3738: 3690: 3621: 3504: 3475: 3440: 3407: 3347: 3310: 3241: 3209: 3182: 3137: 3079: 3015: 2935: 2829: 2785: 2728: 2699: 2655: 2651: 2615: 2538: 2417: 2398: 2359: 2288: 2271: 2239: 2124: 2055: 1780: 1752: 1663: 2876: 2659: 1846:, and subsequently detected signals of numerous heavy elements such as gold as the ejected 3898: 3793: 3763: 3105: 3083: 3041: 2128: 1806: 1794: 1701: 110: 3649: 3471: 3436: 3403: 3306: 3227: 3178: 3133: 3011: 2931: 2825: 2781: 2695: 2611: 2534: 2394: 2355: 2284: 2235: 261:
explosions. Elements beyond iron are made in high-mass stars with slow neutron capture (
3919: 3903: 3514: 2315:
Actually, before the war ended, he learned about the problem of spherical implosion of
1860: 1605: 594: 386: 311:, was the first type of nucleogenesis to occur in the universe, creating the so-called 90: 3186: 1941:
Beryllium and boron are not significantly produced by stellar fusion processes, since
481: 282:
as it cooled below two trillion degrees. A few minutes afterwards, starting with only
3938: 3808: 3723: 3263: 2957: 2748: 2542: 2091: 1744: 562: 411: 370: 52: 42: 3324: 3149: 101:. Nuclear fusion reactions create many of the lighter elements, up to and including 3882: 2083: 1838:, along with a collaboration of many observatories around the world, detected both 179: 172: 94: 425:
first elucidated those nuclear mechanisms by which hydrogen is fused into helium.
3708: 2243: 2164: 2119: 2067: 2063: 2059: 1979: 1942: 1931: 1783: 1764: 1697: 1693: 712: 500: 474: 195: 149: 31: 3626: 3609: 3245: 2940: 2905: 37: 17: 3859: 3713: 3480: 3453: 3412: 3385: 2849:"All the Gold in the Universe Could Come from the Collisions of Neutron Stars" 2636:
Clayton, D. D.; Nittler, L. R. (2004). "Astrophysics with Presolar Stardust".
2364: 2337: 2154: 2143: 2135: 2105: 2052: 1864: 1772: 1748: 1717: 1675: 777: 727: 652: 610: 470: 447: 428: 422: 390: 302:
may have been formed at this time, but the process stopped before significant
3635: 3339: 2949: 2402: 3854: 3846: 3838: 3803: 3718: 3590: 3346:. U.S. Department of Energy Office of Scientific and Technical Information. 3315: 3278: 2732: 2423: 2316: 2139: 1891: 1883: 1713: 1679: 1667: 1666:
phase of low-mass star evolution, and the explosive ending of stars, called
1640: 1636: 1632: 757: 667: 614: 602: 598: 570: 382: 354: 327: 295: 262: 161: 157: 118: 114: 83: 2740: 2302: 2251: 461:
The Big Bang itself had been proposed in 1931, long before this period, by
298:(both with mass number 7) were formed, but hardly any other elements. Some 274:
It is thought that the primordial nucleons themselves were formed from the
2596:
Merrill, S. P. W. (1952). "Spectroscopic Observations of Stars of Class".
3218: 2972:"Neutron star collisions are a "goldmine" of heavy elements, study finds" 2087: 2079: 2075: 1843: 1835: 1689: 697: 682: 335: 319: 279: 132: 68: 60: 3206:
Proceedings of the Ninth Marcel Grossmann Meeting on General Relavitity
2884: 2058:. The nuclear decay of many long-lived primordial isotopes, especially 1962: 1887: 291: 287: 127:
within exploding stars is largely responsible for the elements between
80: 76: 56: 3359: 3027: 2379:
Suess, Hans E.; Urey, Harold C. (1956). "Abundances of the Elements".
2293: 2266: 323: 303: 283: 128: 106: 72: 3659: 3351: 3202:"Nucleonsynthesis in Advective Accretion Disk Around Compact Object" 2217: 3452:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957).
3444: 3297: 3141: 3019: 2922: 2833: 2789: 2703: 2619: 2336:
Burbidge, E. M.; Burbidge, G. R.; Fowler, W. A.; Hoyle, F. (1957).
2158: 3124: 2904:
Chen, Hsin-Yu; Vitale, Salvatore; Foucart, Francois (2021-10-01).
2071: 761: 480: 299: 36: 2880: 1842:
and electromagnetic signatures of a likely neutron star merger,
1823: 350: 102: 3663: 3652:– nucleosynthesis explained in terms of the nuclide chart, by 2142:, produced from nitrogen-14 in the atmosphere by cosmic rays. 1973: 494: 189: 30:"Nucleogenesis" redirects here. For the song by Vangelis, see 617:(sometimes known as the gamma process), which results in the 3204:. In Jantzen, R. T.; Ruffini, R.; Gurzadyan, V. G. (eds.). 1670:, of those with more than eight times the mass of the Sun. 3284:
Monthly Notices of the Royal Astronomical Society: Letters
2419:
From First Light to Reionization the End of the Dark Ages
841: 41:
Diagram illustration the creation of new elements by the
405:
The first ideas on nucleosynthesis were simply that the
2806:
Clayton, D. D.; Colgate, S. A.; Fishman, G. J. (1969).
2447:
Fields, B.D.; Molaro, P.; Sarkar, S. (September 2017).
2764:"Nucleosynthesis of Heavy Elements by Neutron Capture" 1961:
Theories of nucleosynthesis are tested by calculating
3072:
Nucleosynthesis in Accretion Disks Around Black Holes
2762:
Seeger, P. A.; Fowler, W. A.; Clayton, D. D. (1965).
1743:= 60). It replaced the incorrect although much cited 775: 2676:
Bodansky, D.; Clayton, D. D.; Fowler, W. A. (1968).
345:
The subsequent nucleosynthesis of heavier elements (
3912: 3891: 3868: 3777: 3697: 3516:
Principles of Stellar Evolution and Nucleosynthesis
2563:
Principles of Stellar Evolution and Nucleosynthesis
2554: 2552: 2486:
Principles of Stellar Evolution and Nucleosynthesis
2114:. Naturally occurring nuclear reactions powered by 3513: 2678:"Nuclear Quasi-Equilibrium during Silicon Burning" 2560: 2483: 2078:is via this mechanism. The atmosphere's supply of 1590: 3391:Monthly Notices of the Royal Astronomical Society 3046:"Nucleosynthesis from Black Hole Accretion Disks" 2976:MIT News | Massachusetts Institute of Technology 63:, through nuclear reactions in a process called 2808:"Gamma-Ray Lines from Young Supernova Remnants" 2671: 2669: 711:continues to be produced by stellar fusion and 75:. The rest is traces of other elements such as 2801: 2799: 2631: 2629: 3675: 3564:Cauldrons in the Cosmos: Nuclear Astrophysics 3386:"The Synthesis of the Elements from Hydrogen" 8: 1600:Chief nuclear reactions responsible for the 182:such as uranium, thorium, and potassium-40. 121:create heavier elements, from iron upwards. 97:, giving off energy in the process known as 3424:The Astrophysical Journal Supplement Series 2769:The Astrophysical Journal Supplement Series 2717:Clayton, D. D. (2007). "Hoyle's Equation". 2683:The Astrophysical Journal Supplement Series 2639:Annual Review of Astronomy and Astrophysics 2008:. Unsourced material may be challenged and 529:. Unsourced material may be challenged and 224:. Unsourced material may be challenged and 3888: 3682: 3668: 3660: 2123:be produced in spontaneous fission and by 2082:is due mostly to the radioactive decay of 1674:that had formed earlier. The detection of 3625: 3479: 3411: 3314: 3296: 3235: 3217: 3123: 2939: 2921: 2459: 2363: 2292: 2028:Learn how and when to remove this message 1855:Black hole accretion disk nucleosynthesis 1577: 1568: 1559: 1554: 1544: 1535: 1520: 1508: 1503: 1497: 1488: 1483: 1473: 1464: 1449: 1436: 1427: 1422: 1409: 1404: 1398: 1383: 1374: 1365: 1356: 1351: 1338: 1333: 1327: 1312: 1301: 1292: 1283: 1278: 1268: 1259: 1244: 1233: 1224: 1219: 1206: 1201: 1195: 1180: 1169: 1160: 1151: 1146: 1133: 1128: 1122: 1107: 1098: 1089: 1080: 1075: 1062: 1057: 1051: 1036: 1025: 1016: 1007: 1002: 989: 984: 978: 963: 952: 943: 938: 928: 919: 904: 891: 882: 877: 867: 858: 852: 847: 840: 835: 825: 819: 813: 804: 798: 785: 780: 776: 774: 549:Learn how and when to remove this message 278:around 13.8 billion years ago during the 244:Learn how and when to remove this message 171:On Earth new nuclei are also produced by 2267:"The Internal Constitution of the Stars" 2218:"The Internal Constitution of the Stars" 255: 93:light elements to heavier ones in their 3608:Arcones, A.; Thielemann, F. K. (2022). 2184: 2173:Extinct isotopes of superheavy elements 3338:Surdoval, Wayne; Berry, David (2021). 2660:10.1146/annurev.astro.42.053102.134022 601:or in explosive environments, such as 3614:The Astronomy and Astrophysics Review 7: 3562:Rolfs, C. E.; Rodney, W. S. (2005). 3454:"Synthesis of the Elements in Stars" 2338:"Synthesis of the Elements in Stars" 2006:adding citations to reliable sources 1945:has an extremely short half-life of 527:adding citations to reliable sources 222:adding citations to reliable sources 3541:Handbook of Isotopes in the Cosmos 2847:Stromberg, Joseph (16 July 2013). 1934:(mostly fast protons) against the 25: 3520:(Reprint ed.). Chicago, IL: 2910:The Astrophysical Journal Letters 2567:(Reprint ed.). Chicago, IL: 2490:(Reprint ed.). Chicago, IL: 1608:observed throughout the universe. 401:History of nucleosynthesis theory 3093:from the original on 2020-03-24. 3058:from the original on 2016-09-10. 2471:from the original on 2022-04-01. 2193:"DOE Explains...Nucleosynthesis" 2157: 1978: 1768:isotopes of each heavy element. 499: 194: 51:is the process that creates new 3650:The Valley of Stability (video) 2325:Autobiography William A. Fowler 1832:Fermi Gamma-ray Space Telescope 446:, followed by many others. The 2449:"23. Big-Bang Nucleosynthesis" 1970:Minor mechanisms and processes 1859:Nucleosynthesis may happen in 1551: 1480: 1419: 1348: 1275: 1216: 1143: 1072: 999: 935: 874: 791: 1: 3187:10.1016/S0375-9474(03)00856-X 3044:; Surman, R. (2 April 2007). 1799:Compton Gamma-Ray Observatory 2543:10.1016/0003-4916(61)90067-7 2108:are produced in this manner. 830: 3568:University of Chicago Press 3522:University of Chicago Press 2569:University of Chicago Press 2492:University of Chicago Press 2416:Stiavelli, Massimo (2009). 2244:10.1126/science.52.1341.233 1894:, and boron, although some 726:continue to be produced by 377: = 6 (carbon) to 175:, the decay of long-lived, 3971: 3627:10.1007/s00159-022-00146-x 3545:Cambridge University Press 3492:Astronomy and Astrophysics 3246:10.1142/9789812777386_0544 2044:These mechanisms include: 1874: 1735:elements between silicon ( 1711: 1618: 633: 29: 3481:10.1103/RevModPhys.29.547 3459:Reviews of Modern Physics 3200:Mukhopadhyay, B. (2018). 3111:The Astrophysical Journal 2999:The Astrophysical Journal 2813:The Astrophysical Journal 2599:The Astrophysical Journal 2382:Reviews of Modern Physics 2365:10.1103/RevModPhys.29.547 2343:Reviews of Modern Physics 2265:Eddington, A. S. (1920). 2216:Eddington, A. S. (1920). 1727:Supernova nucleosynthesis 1722:Supernova nucleosynthesis 1708:Explosive nucleosynthesis 1700:and is frequently called 1534: 1463: 1397: 1326: 1258: 1194: 1121: 1050: 977: 918: 448:seminal 1957 review paper 367:supernova nucleosynthesis 125:Supernova nucleosynthesis 3610:"Origin of the elements" 3587:Nuclear Physics of Stars 2941:10.3847/2041-8213/ac26c6 2877:"GW170817 Press Release" 2403:10.1103/RevModPhys.28.53 1527: 1521: 1456: 1450: 1390: 1384: 1319: 1313: 1251: 1245: 1187: 1181: 1114: 1108: 1043: 1037: 970: 964: 911: 905: 636:Big Bang nucleosynthesis 630:Big Bang nucleosynthesis 418:Arthur Stanley Eddington 359:Big Bang nucleosynthesis 309:Big Bang nucleosynthesis 65:Big Bang nucleosynthesis 3734:Double electron capture 3539:Clayton, D. D. (2003). 3512:Clayton, D. D. (1983). 3505:1971A&A....15..337M 3413:10.1093/mnras/106.5.343 2733:10.1126/science.1151167 2652:2004ARA&A..42...39C 2559:Clayton, D. D. (1983). 2482:Clayton, D. D. (1983). 2118:give rise to so-called 1685:asymptotic giant branch 1678:in the atmosphere of a 1621:Stellar nucleosynthesis 1615:Stellar nucleosynthesis 363:stellar nucleosynthesis 99:stellar nucleosynthesis 3212:. pp. 2261–2262. 1592: 561:There are a number of 487: 440:Alastair G. W. Cameron 266: 45: 3589:. Weinheim, Germany: 3316:10.1093/mnrasl/sly169 3277:Breen, P. G. (2018). 2422:. Weinheim, Germany: 1877:Cosmic ray spallation 1871:Cosmic ray spallation 1593: 715:and trace amounts of 484: 478:scale of this graph. 332:cosmic ray spallation 259: 148:is a process wherein 146:Cosmic ray spallation 40: 3585:Iliadis, C. (2007). 3069:Frankel, N. (2017). 2002:improve this section 1813:Neutron star mergers 1655:triple-alpha process 1629:Triple-alpha process 773: 621:of existing nuclei. 607:neutron star mergers 523:improve this section 395:nuclear astrophysics 340:triple-alpha process 307:This first process, 218:improve this section 139:Neutron star mergers 3878:Photodisintegration 3799:Proton–proton chain 3769:Spontaneous fission 3749:Isomeric transition 3744:Internal conversion 3472:1957RvMP...29..547B 3437:1954ApJS....1..121H 3404:1946MNRAS.106..343H 3307:2018MNRAS.481L.110B 3228:2002nmgm.meet.2261M 3179:2003NuPhA.718..572A 3134:2008ApJ...679L.117S 3012:1987ApJ...313..674C 2932:2021ApJ...920L...3C 2826:1969ApJ...155...75C 2782:1965ApJS...11..121S 2727:(5858): 1876–1877. 2696:1968ApJS...16..299B 2612:1952ApJ...116...21M 2535:1961AnPhy..12..331C 2395:1956RvMP...28...53S 2356:1957RvMP...29..547B 2285:1920Natur.106...14E 2236:1920Obs....43..341E 2146:is another example. 2102:spontaneous fission 1936:interstellar medium 1788:spectroscopic lines 1645:photodisintegration 1625:Proton–proton chain 1602:relative abundances 1564: 1513: 1493: 1432: 1414: 1361: 1343: 1288: 1229: 1211: 1156: 1138: 1085: 1067: 1012: 994: 948: 887: 843: 619:photodisintegration 567:proton–proton chain 313:primordial elements 166:cosmogenic nuclides 154:interstellar medium 3384:Hoyle, F. (1946). 1957:Empirical evidence 1840:gravitational wave 1739:= 28) and nickel ( 1732:almost equilibrium 1588: 1586: 1550: 1499: 1479: 1418: 1400: 1347: 1329: 1274: 1215: 1197: 1142: 1124: 1071: 1053: 998: 980: 934: 873: 824: 754:quark–gluon plasma 488: 276:quark–gluon plasma 267: 55:from pre-existing 46: 3932: 3931: 3928: 3927: 3759:Positron emission 3729:Double beta decay 3691:Nuclear processes 3600:978-3-527-40602-9 3577:978-0-226-72457-7 3554:978-0-521-82381-4 3543:. Cambridge, UK: 3531:978-0-226-10952-7 3166:Nuclear Physics A 3106:McLaughlin, G. C. 2978:. 25 October 2021 2582:978-0-226-10952-7 2522:Annals of Physics 2505:978-0-226-10952-7 2321:Manhattan project 2116:radioactive decay 2112:Nuclear reactions 2098:Radioactive decay 2056:daughter nuclides 2049:Radioactive decay 2038: 2037: 2030: 1848:degenerate matter 1761:secondary process 1664:planetary nebulae 1651:stellar evolution 1576: 1567: 1543: 1526: 1525: 1524: 1516: 1496: 1472: 1455: 1454: 1453: 1435: 1417: 1389: 1388: 1387: 1373: 1364: 1346: 1318: 1317: 1316: 1300: 1291: 1267: 1250: 1249: 1248: 1232: 1214: 1186: 1185: 1184: 1168: 1159: 1141: 1113: 1112: 1111: 1097: 1088: 1070: 1042: 1041: 1040: 1024: 1015: 997: 969: 968: 967: 951: 927: 910: 909: 908: 890: 866: 851: 838: 833: 812: 797: 784: 559: 558: 551: 444:Donald D. Clayton 436:William A. Fowler 407:chemical elements 381: = 94 ( 254: 253: 246: 113:reactions of the 79:and the hydrogen 16:(Redirected from 3962: 3889: 3789:Deuterium fusion 3754:Neutron emission 3739:Electron capture 3684: 3677: 3670: 3661: 3639: 3629: 3604: 3581: 3558: 3535: 3519: 3508: 3485: 3483: 3448: 3417: 3415: 3371: 3370: 3368: 3366: 3335: 3329: 3328: 3318: 3300: 3274: 3268: 3267: 3239: 3221: 3219:astro-ph/0103162 3210:World Scientific 3197: 3191: 3190: 3160: 3154: 3153: 3127: 3118:(2): L117–L120. 3101: 3095: 3094: 3092: 3080:Lund Observatory 3077: 3066: 3060: 3059: 3057: 3050: 3038: 3032: 3031: 2993: 2987: 2986: 2984: 2983: 2968: 2962: 2961: 2943: 2925: 2901: 2895: 2894: 2892: 2891: 2875:Chu, J. (n.d.). 2872: 2866: 2865: 2863: 2861: 2844: 2838: 2837: 2803: 2794: 2793: 2759: 2753: 2752: 2714: 2708: 2707: 2673: 2664: 2663: 2633: 2624: 2623: 2593: 2587: 2586: 2566: 2556: 2547: 2546: 2516: 2510: 2509: 2489: 2479: 2473: 2472: 2470: 2463: 2453: 2444: 2438: 2437: 2413: 2407: 2406: 2376: 2370: 2369: 2367: 2333: 2327: 2313: 2307: 2306: 2296: 2294:10.1038/106014a0 2262: 2256: 2255: 2230:(1341): 233–40. 2213: 2207: 2206: 2204: 2203: 2189: 2167: 2162: 2161: 2125:neutron emission 2033: 2026: 2022: 2019: 2013: 1982: 1974: 1952: 1950: 1929: 1928: 1927: 1920: 1919: 1911: 1910: 1909: 1902: 1901: 1753:electron capture 1692:compositions of 1597: 1595: 1594: 1589: 1587: 1583: 1582: 1581: 1574: 1569: 1565: 1563: 1558: 1549: 1548: 1541: 1536: 1522: 1517: 1514: 1512: 1507: 1498: 1494: 1492: 1487: 1478: 1477: 1470: 1465: 1451: 1444: 1437: 1433: 1431: 1426: 1415: 1413: 1408: 1399: 1385: 1380: 1379: 1378: 1371: 1366: 1362: 1360: 1355: 1344: 1342: 1337: 1328: 1314: 1307: 1306: 1305: 1298: 1293: 1289: 1287: 1282: 1273: 1272: 1265: 1260: 1246: 1241: 1234: 1230: 1228: 1223: 1212: 1210: 1205: 1196: 1182: 1175: 1174: 1173: 1166: 1161: 1157: 1155: 1150: 1139: 1137: 1132: 1123: 1109: 1104: 1103: 1102: 1095: 1090: 1086: 1084: 1079: 1068: 1066: 1061: 1052: 1038: 1031: 1030: 1029: 1022: 1017: 1013: 1011: 1006: 995: 993: 988: 979: 965: 960: 953: 949: 947: 942: 933: 932: 925: 920: 906: 899: 892: 888: 886: 881: 872: 871: 864: 859: 857: 856: 849: 844: 842: 839: 836: 834: 826: 820: 818: 817: 810: 805: 803: 802: 795: 790: 789: 782: 751: 749: 748: 740: 738: 737: 725: 723: 722: 710: 708: 707: 695: 693: 692: 680: 678: 677: 665: 663: 662: 650: 648: 647: 554: 547: 543: 540: 534: 503: 495: 463:Georges LemaĂ®tre 249: 242: 238: 235: 229: 198: 190: 21: 3970: 3969: 3965: 3964: 3963: 3961: 3960: 3959: 3955:Nuclear physics 3945:Nucleosynthesis 3935: 3934: 3933: 3924: 3908: 3899:Neutron capture 3887: 3870: 3864: 3781:nucleosynthesis 3780: 3773: 3764:Proton emission 3719:Gamma radiation 3700: 3693: 3688: 3646: 3607: 3601: 3584: 3578: 3566:. Chicago, IL: 3561: 3555: 3538: 3532: 3511: 3488: 3451: 3420: 3383: 3380: 3378:Further reading 3375: 3374: 3364: 3362: 3352:10.2172/1773479 3337: 3336: 3332: 3291:(1): L110–114. 3276: 3275: 3271: 3256: 3237:10.1.1.254.7490 3199: 3198: 3194: 3162: 3161: 3157: 3103: 3102: 3098: 3090: 3084:Lund University 3075: 3068: 3067: 3063: 3055: 3048: 3040: 3039: 3035: 2995: 2994: 2990: 2981: 2979: 2970: 2969: 2965: 2903: 2902: 2898: 2889: 2887: 2874: 2873: 2869: 2859: 2857: 2846: 2845: 2841: 2805: 2804: 2797: 2761: 2760: 2756: 2716: 2715: 2711: 2675: 2674: 2667: 2635: 2634: 2627: 2595: 2594: 2590: 2583: 2558: 2557: 2550: 2518: 2517: 2513: 2506: 2481: 2480: 2476: 2468: 2461:10.1.1.729.1183 2451: 2446: 2445: 2441: 2434: 2415: 2414: 2410: 2378: 2377: 2373: 2335: 2334: 2330: 2314: 2310: 2279:(2653): 14–20. 2264: 2263: 2259: 2223:The Observatory 2215: 2214: 2210: 2201: 2199: 2191: 2190: 2186: 2181: 2163: 2156: 2153: 2129:neutron capture 2034: 2023: 2017: 2014: 1999: 1983: 1972: 1959: 1948: 1946: 1926: 1924: 1923: 1922: 1918: 1916: 1915: 1914: 1913: 1908: 1906: 1905: 1904: 1900: 1898: 1897: 1896: 1895: 1879: 1873: 1861:accretion disks 1857: 1815: 1807:presolar grains 1795:supernova 1987A 1757:primary process 1724: 1712:Main articles: 1710: 1702:presolar grains 1647: 1619:Main articles: 1617: 1612: 1611: 1610: 1609: 1598: 1585: 1584: 1573: 1540: 1518: 1469: 1446: 1445: 1381: 1370: 1309: 1308: 1297: 1264: 1242: 1177: 1176: 1165: 1105: 1094: 1033: 1032: 1021: 961: 924: 901: 900: 863: 848: 845: 809: 794: 781: 771: 770: 747: 745: 744: 743: 742: 736: 734: 733: 732: 731: 721: 719: 718: 717: 716: 706: 704: 703: 702: 701: 691: 689: 688: 687: 686: 676: 674: 673: 672: 671: 661: 659: 658: 657: 656: 646: 644: 643: 642: 641: 638: 632: 627: 591:silicon burning 555: 544: 538: 535: 520: 504: 493: 403: 290:, nuclei up to 272: 250: 239: 233: 230: 215: 199: 188: 111:neutron capture 49:Nucleosynthesis 35: 28: 23: 22: 18:Nucleosynthetic 15: 12: 11: 5: 3968: 3966: 3958: 3957: 3952: 3947: 3937: 3936: 3930: 3929: 3926: 3925: 3923: 3922: 3920:(n-p) reaction 3916: 3914: 3910: 3909: 3907: 3906: 3904:Proton capture 3901: 3895: 3893: 3886: 3885: 3880: 3874: 3872: 3866: 3865: 3863: 3862: 3857: 3852: 3844: 3836: 3831: 3826: 3821: 3816: 3811: 3806: 3801: 3796: 3791: 3785: 3783: 3775: 3774: 3772: 3771: 3766: 3761: 3756: 3751: 3746: 3741: 3736: 3731: 3726: 3721: 3716: 3711: 3705: 3703: 3695: 3694: 3689: 3687: 3686: 3679: 3672: 3664: 3658: 3657: 3645: 3644:External links 3642: 3641: 3640: 3605: 3599: 3582: 3576: 3559: 3553: 3536: 3530: 3509: 3486: 3466:(4): 547–650. 3449: 3445:10.1086/190005 3418: 3398:(5): 343–383. 3379: 3376: 3373: 3372: 3330: 3269: 3254: 3192: 3155: 3142:10.1086/589507 3096: 3061: 3042:McLaughlin, G. 3033: 3020:10.1086/165006 2988: 2963: 2896: 2867: 2839: 2834:10.1086/149849 2795: 2790:10.1086/190111 2754: 2709: 2704:10.1086/190176 2665: 2625: 2620:10.1086/145589 2588: 2581: 2548: 2529:(3): 331–408. 2511: 2504: 2474: 2439: 2432: 2408: 2371: 2350:(4): 547–650. 2328: 2308: 2257: 2208: 2183: 2182: 2180: 2177: 2176: 2175: 2169: 2168: 2152: 2149: 2148: 2147: 2132: 2109: 2095: 2036: 2035: 1986: 1984: 1977: 1971: 1968: 1958: 1955: 1925: 1917: 1907: 1899: 1875:Main article: 1872: 1869: 1856: 1853: 1814: 1811: 1709: 1706: 1616: 1613: 1599: 1580: 1572: 1562: 1557: 1553: 1547: 1539: 1533: 1530: 1519: 1511: 1506: 1502: 1491: 1486: 1482: 1476: 1468: 1462: 1459: 1448: 1447: 1443: 1440: 1430: 1425: 1421: 1412: 1407: 1403: 1396: 1393: 1382: 1377: 1369: 1359: 1354: 1350: 1341: 1336: 1332: 1325: 1322: 1311: 1310: 1304: 1296: 1286: 1281: 1277: 1271: 1263: 1257: 1254: 1243: 1240: 1237: 1227: 1222: 1218: 1209: 1204: 1200: 1193: 1190: 1179: 1178: 1172: 1164: 1154: 1149: 1145: 1136: 1131: 1127: 1120: 1117: 1106: 1101: 1093: 1083: 1078: 1074: 1065: 1060: 1056: 1049: 1046: 1035: 1034: 1028: 1020: 1010: 1005: 1001: 992: 987: 983: 976: 973: 962: 959: 956: 946: 941: 937: 931: 923: 917: 914: 903: 902: 898: 895: 885: 880: 876: 870: 862: 855: 846: 832: 829: 823: 816: 808: 801: 793: 788: 779: 778: 769: 768: 767: 766: 746: 735: 720: 705: 690: 675: 660: 645: 634:Main article: 631: 628: 626: 623: 595:binding energy 587:oxygen burning 579:carbon burning 575:helium burning 557: 556: 507: 505: 498: 492: 489: 456:G. R. Burbidge 452:E. M. Burbidge 412:alpha nuclides 402: 399: 387:nuclear fusion 371:atomic numbers 271: 268: 252: 251: 202: 200: 193: 187: 184: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3967: 3956: 3953: 3951: 3948: 3946: 3943: 3942: 3940: 3921: 3918: 3917: 3915: 3911: 3905: 3902: 3900: 3897: 3896: 3894: 3890: 3884: 3881: 3879: 3876: 3875: 3873: 3867: 3861: 3858: 3856: 3853: 3851: 3849: 3845: 3843: 3841: 3837: 3835: 3832: 3830: 3827: 3825: 3822: 3820: 3817: 3815: 3812: 3810: 3807: 3805: 3802: 3800: 3797: 3795: 3792: 3790: 3787: 3786: 3784: 3782: 3776: 3770: 3767: 3765: 3762: 3760: 3757: 3755: 3752: 3750: 3747: 3745: 3742: 3740: 3737: 3735: 3732: 3730: 3727: 3725: 3724:Cluster decay 3722: 3720: 3717: 3715: 3712: 3710: 3707: 3706: 3704: 3702: 3696: 3692: 3685: 3680: 3678: 3673: 3671: 3666: 3665: 3662: 3655: 3651: 3648: 3647: 3643: 3637: 3633: 3628: 3623: 3619: 3615: 3611: 3606: 3602: 3596: 3592: 3588: 3583: 3579: 3573: 3569: 3565: 3560: 3556: 3550: 3546: 3542: 3537: 3533: 3527: 3523: 3518: 3517: 3510: 3506: 3502: 3498: 3494: 3493: 3487: 3482: 3477: 3473: 3469: 3465: 3461: 3460: 3455: 3450: 3446: 3442: 3438: 3434: 3430: 3426: 3425: 3419: 3414: 3409: 3405: 3401: 3397: 3393: 3392: 3387: 3382: 3381: 3377: 3361: 3357: 3353: 3349: 3345: 3341: 3334: 3331: 3326: 3322: 3317: 3312: 3308: 3304: 3299: 3294: 3290: 3286: 3285: 3280: 3273: 3270: 3265: 3261: 3257: 3255:9789812389930 3251: 3247: 3243: 3238: 3233: 3229: 3225: 3220: 3215: 3211: 3207: 3203: 3196: 3193: 3188: 3184: 3180: 3176: 3172: 3168: 3167: 3159: 3156: 3151: 3147: 3143: 3139: 3135: 3131: 3126: 3121: 3117: 3113: 3112: 3107: 3100: 3097: 3089: 3085: 3081: 3074: 3073: 3065: 3062: 3054: 3047: 3043: 3037: 3034: 3029: 3025: 3021: 3017: 3013: 3009: 3005: 3001: 3000: 2992: 2989: 2977: 2973: 2967: 2964: 2959: 2955: 2951: 2947: 2942: 2937: 2933: 2929: 2924: 2919: 2915: 2911: 2907: 2900: 2897: 2886: 2882: 2878: 2871: 2868: 2856: 2855: 2850: 2843: 2840: 2835: 2831: 2827: 2823: 2819: 2815: 2814: 2809: 2802: 2800: 2796: 2791: 2787: 2783: 2779: 2775: 2771: 2770: 2765: 2758: 2755: 2750: 2746: 2742: 2738: 2734: 2730: 2726: 2722: 2721: 2713: 2710: 2705: 2701: 2697: 2693: 2689: 2685: 2684: 2679: 2672: 2670: 2666: 2661: 2657: 2653: 2649: 2645: 2641: 2640: 2632: 2630: 2626: 2621: 2617: 2613: 2609: 2605: 2601: 2600: 2592: 2589: 2584: 2578: 2574: 2570: 2565: 2564: 2555: 2553: 2549: 2544: 2540: 2536: 2532: 2528: 2524: 2523: 2515: 2512: 2507: 2501: 2497: 2493: 2488: 2487: 2478: 2475: 2467: 2462: 2457: 2450: 2443: 2440: 2435: 2433:9783527627370 2429: 2426:. p. 8. 2425: 2421: 2420: 2412: 2409: 2404: 2400: 2396: 2392: 2388: 2384: 2383: 2375: 2372: 2366: 2361: 2357: 2353: 2349: 2345: 2344: 2339: 2332: 2329: 2326: 2322: 2318: 2312: 2309: 2304: 2300: 2295: 2290: 2286: 2282: 2278: 2274: 2273: 2268: 2261: 2258: 2253: 2249: 2245: 2241: 2237: 2233: 2229: 2225: 2224: 2219: 2212: 2209: 2198: 2194: 2188: 2185: 2178: 2174: 2171: 2170: 2166: 2160: 2155: 2150: 2145: 2141: 2137: 2133: 2130: 2126: 2121: 2117: 2113: 2110: 2107: 2103: 2099: 2096: 2093: 2092:cluster decay 2089: 2085: 2081: 2077: 2073: 2069: 2065: 2061: 2057: 2054: 2050: 2047: 2046: 2045: 2042: 2032: 2029: 2021: 2011: 2007: 2003: 1997: 1996: 1992: 1987:This section 1985: 1981: 1976: 1975: 1969: 1967: 1964: 1956: 1954: 1944: 1939: 1937: 1933: 1893: 1889: 1885: 1878: 1870: 1868: 1866: 1862: 1854: 1852: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1820: 1812: 1810: 1808: 1802: 1800: 1796: 1791: 1789: 1785: 1782: 1776: 1774: 1769: 1766: 1762: 1758: 1754: 1750: 1746: 1745:alpha process 1742: 1738: 1733: 1728: 1723: 1719: 1715: 1707: 1705: 1703: 1699: 1695: 1691: 1686: 1681: 1677: 1671: 1669: 1665: 1659: 1656: 1652: 1646: 1642: 1638: 1634: 1630: 1626: 1622: 1614: 1607: 1606:atomic nuclei 1603: 1578: 1570: 1560: 1555: 1545: 1537: 1531: 1528: 1509: 1504: 1500: 1489: 1484: 1474: 1466: 1460: 1457: 1441: 1438: 1428: 1423: 1410: 1405: 1401: 1394: 1391: 1375: 1367: 1357: 1352: 1339: 1334: 1330: 1323: 1320: 1302: 1294: 1284: 1279: 1269: 1261: 1255: 1252: 1238: 1235: 1225: 1220: 1207: 1202: 1198: 1191: 1188: 1170: 1162: 1152: 1147: 1134: 1129: 1125: 1118: 1115: 1099: 1091: 1081: 1076: 1063: 1058: 1054: 1047: 1044: 1026: 1018: 1008: 1003: 990: 985: 981: 974: 971: 957: 954: 944: 939: 929: 921: 915: 912: 896: 893: 883: 878: 868: 860: 853: 827: 821: 814: 806: 799: 786: 765: 763: 760:(or possibly 759: 755: 729: 714: 699: 684: 669: 654: 637: 629: 624: 622: 620: 616: 612: 608: 604: 600: 596: 592: 588: 584: 580: 576: 572: 568: 564: 563:astrophysical 553: 550: 542: 532: 528: 524: 518: 517: 513: 508:This section 506: 502: 497: 496: 490: 483: 479: 476: 472: 466: 464: 459: 457: 453: 449: 445: 441: 437: 432: 430: 426: 424: 419: 415: 413: 408: 400: 398: 396: 392: 388: 384: 380: 376: 372: 368: 364: 360: 356: 352: 348: 343: 341: 337: 333: 329: 325: 321: 316: 314: 310: 305: 301: 297: 293: 289: 285: 281: 277: 269: 264: 258: 248: 245: 237: 227: 223: 219: 213: 212: 208: 203:This section 201: 197: 192: 191: 185: 183: 181: 180:radionuclides 178: 174: 169: 167: 163: 159: 155: 151: 147: 143: 140: 136: 134: 130: 126: 122: 120: 116: 112: 108: 104: 100: 96: 92: 87: 85: 82: 78: 74: 70: 66: 62: 58: 54: 53:atomic nuclei 50: 44: 43:alpha process 39: 33: 19: 3950:Astrophysics 3883:Photofission 3847: 3839: 3617: 3613: 3586: 3563: 3540: 3515: 3496: 3490: 3463: 3457: 3428: 3422: 3395: 3389: 3363:. Retrieved 3343: 3333: 3288: 3282: 3272: 3205: 3195: 3170: 3164: 3158: 3115: 3109: 3104:Surman, R.; 3099: 3071: 3064: 3036: 3003: 2997: 2991: 2980:. Retrieved 2975: 2966: 2913: 2909: 2899: 2888:. Retrieved 2870: 2858:. Retrieved 2852: 2842: 2817: 2811: 2773: 2767: 2757: 2724: 2718: 2712: 2687: 2681: 2646:(1): 39–78. 2643: 2637: 2603: 2597: 2591: 2562: 2526: 2520: 2514: 2485: 2477: 2442: 2418: 2411: 2389:(1): 53–74. 2386: 2380: 2374: 2347: 2341: 2331: 2311: 2276: 2270: 2260: 2227: 2221: 2211: 2200:. Retrieved 2196: 2187: 2100:may lead to 2084:potassium-40 2051:may lead to 2043: 2039: 2024: 2015: 2000:Please help 1988: 1960: 1940: 1880: 1858: 1816: 1803: 1792: 1777: 1770: 1760: 1756: 1740: 1736: 1731: 1725: 1672: 1660: 1648: 713:alpha decays 700:). Although 639: 583:neon burning 560: 545: 536: 521:Please help 509: 467: 460: 433: 427: 416: 404: 378: 374: 346: 344: 317: 273: 240: 231: 216:Please help 204: 173:radiogenesis 170: 144: 137: 123: 88: 48: 47: 3709:Alpha decay 3699:Radioactive 3499:: 337–359. 3173:: 572–574. 2854:Smithsonian 2165:Star portal 2120:nucleogenic 2068:thorium-232 2064:uranium-238 2060:uranium-235 1932:cosmic rays 1865:black holes 1765:metallicity 1698:cosmic dust 625:Major types 475:Harold Urey 326:, lithium, 150:cosmic rays 32:Albedo 0.39 3939:Categories 3860:rp-process 3834:Si burning 3824:Ne burning 3794:Li burning 3714:Beta decay 3298:1804.08877 2982:2021-12-23 2923:2107.02714 2890:2018-07-04 2202:2022-03-22 2197:Energy.gov 2179:References 2144:Iodine-129 2136:cosmogenic 2106:promethium 2053:radiogenic 2018:April 2021 1773:rp-process 1718:rp-process 1676:technetium 1668:supernovae 728:spallation 613:, and the 611:rp-process 603:supernovae 539:April 2021 471:Hans Suess 429:Fred Hoyle 423:Hans Bethe 391:beta decay 355:supernovae 234:April 2021 177:primordial 162:meteoroids 3871:processes 3855:p-process 3829:O burning 3819:C burning 3809:α process 3804:CNO cycle 3636:1432-0754 3591:Wiley-VCH 3264:118008078 3232:CiteSeerX 3125:0803.1785 2958:238198587 2950:2041-8205 2916:(1): L3. 2749:118423007 2573:Chapter 7 2496:Chapter 5 2456:CiteSeerX 2424:Wiley-VCH 2317:plutonium 2140:carbon-14 1989:does not 1953:seconds. 1892:beryllium 1884:deuterium 1749:BFH paper 1714:r-process 1680:red giant 1641:p-process 1637:s-process 1633:CNO cycle 1604:of light 1552:⟶ 1481:⟶ 1442:γ 1420:⟶ 1349:⟶ 1276:⟶ 1239:γ 1217:⟶ 1144:⟶ 1073:⟶ 1000:⟶ 958:γ 936:⟶ 897:γ 875:⟶ 831:¯ 828:ν 815:− 792:⟶ 758:beryllium 668:deuterium 615:p-process 599:s-process 571:CNO cycle 510:does not 491:Processes 383:plutonium 328:beryllium 296:beryllium 263:s-process 205:does not 158:asteroids 119:s-process 115:r-process 84:deuterium 3913:Exchange 3850:-process 3842:-process 3814:Triple-α 3656:(France) 3620:(1): 1. 3365:17 April 3344:osti.gov 3325:54001706 3150:17114805 3088:Archived 3053:Archived 2860:27 April 2741:18096793 2466:Archived 2303:17747682 2252:17747682 2151:See also 2088:Helium-4 2080:argon-40 2076:polonium 1844:GW170817 1836:INTEGRAL 1694:stardust 1690:isotopic 698:helium-4 683:helium-3 336:helium-3 320:hydrogen 288:neutrons 280:Big Bang 270:Timeline 133:rubidium 69:hydrogen 61:Big Bang 57:nucleons 3892:Capture 3779:Stellar 3501:Bibcode 3468:Bibcode 3433:Bibcode 3431:: 121. 3400:Bibcode 3360:1773479 3303:Bibcode 3224:Bibcode 3175:Bibcode 3130:Bibcode 3078:(MSc). 3028:6468841 3008:Bibcode 3006:: 674. 2928:Bibcode 2885:Caltech 2822:Bibcode 2778:Bibcode 2776:: 121. 2720:Science 2692:Bibcode 2690:: 299. 2648:Bibcode 2608:Bibcode 2531:Bibcode 2391:Bibcode 2352:Bibcode 2319:in the 2281:Bibcode 2232:Bibcode 2010:removed 1995:sources 1963:isotope 1888:lithium 1781:isobars 1747:of the 685:), and 653:protium 569:or the 531:removed 516:sources 292:lithium 284:protons 226:removed 211:sources 186:History 81:isotope 77:lithium 3634:  3597:  3574:  3551:  3528:  3358:  3323:  3262:  3252:  3234:  3148:  3026:  2956:  2948:  2820:: 75. 2747:  2739:  2606:: 21. 2579:  2502:  2458:  2430:  2301:  2272:Nature 2250:  2066:, and 1830:, the 1819:merger 1720:, and 1643:, and 442:, and 324:helium 304:carbon 129:oxygen 107:nickel 89:Stars 73:helium 3869:Other 3701:decay 3321:S2CID 3293:arXiv 3260:S2CID 3214:arXiv 3146:S2CID 3120:arXiv 3091:(PDF) 3076:(PDF) 3056:(PDF) 3049:(PDF) 2954:S2CID 2918:arXiv 2745:S2CID 2469:(PDF) 2452:(PDF) 2072:radon 1828:VIRGO 762:boron 373:from 351:stars 300:boron 156:, on 95:cores 3632:ISSN 3595:ISBN 3572:ISBN 3549:ISBN 3526:ISBN 3367:2024 3356:OSTI 3250:ISBN 3024:OSTI 2946:ISSN 2881:LIGO 2862:2014 2737:PMID 2577:ISBN 2500:ISBN 2428:ISBN 2299:PMID 2248:PMID 2074:and 1993:any 1991:cite 1912:and 1834:and 1824:LIGO 1817:The 1771:The 741:and 666:(D, 605:and 589:and 514:any 512:cite 473:and 397:"). 353:and 294:and 286:and 209:any 207:cite 160:and 131:and 117:and 105:and 103:iron 91:fuse 71:and 3654:CEA 3622:doi 3476:doi 3441:doi 3408:doi 3396:106 3348:doi 3311:doi 3289:481 3242:doi 3183:doi 3171:718 3138:doi 3116:679 3016:doi 3004:313 2936:doi 2914:920 2830:doi 2818:155 2786:doi 2729:doi 2725:318 2700:doi 2656:doi 2616:doi 2604:116 2539:doi 2399:doi 2360:doi 2289:doi 2277:106 2240:doi 2004:by 1947:8.2 1863:of 670:), 655:), 573:), 525:by 450:by 414:). 220:by 3941:: 3630:. 3618:31 3616:. 3612:. 3593:. 3570:. 3547:. 3524:. 3497:15 3495:. 3474:. 3464:29 3462:. 3456:. 3439:. 3427:. 3406:. 3394:. 3388:. 3354:. 3342:. 3319:. 3309:. 3301:. 3287:. 3281:. 3258:. 3248:. 3240:. 3230:. 3222:. 3208:. 3181:. 3169:. 3144:. 3136:. 3128:. 3114:. 3086:. 3051:. 3022:. 3014:. 3002:. 2974:. 2952:. 2944:. 2934:. 2926:. 2912:. 2908:. 2879:. 2851:. 2828:. 2816:. 2810:. 2798:^ 2784:. 2774:11 2772:. 2766:. 2743:. 2735:. 2723:. 2698:. 2688:16 2686:. 2680:. 2668:^ 2654:. 2644:42 2642:. 2628:^ 2614:. 2602:. 2575:. 2571:. 2551:^ 2537:. 2527:12 2525:. 2498:. 2494:. 2464:. 2454:. 2397:. 2387:28 2385:. 2358:. 2348:29 2346:. 2340:. 2297:. 2287:. 2275:. 2269:. 2246:. 2238:. 2228:43 2226:. 2220:. 2195:. 2062:, 1951:10 1943:Be 1921:Be 1903:Li 1890:, 1867:. 1826:, 1801:. 1784:Ti 1716:, 1639:, 1635:, 1631:, 1627:, 1623:, 1566:Li 1523:Be 1515:He 1495:He 1452:Li 1434:Be 1416:He 1386:He 1363:He 1315:He 1247:He 1231:Li 1213:He 1158:He 1014:He 950:He 750:Be 739:Li 709:He 694:He 679:He 585:, 581:, 577:, 454:, 438:, 365:, 361:, 342:. 322:, 315:. 168:. 3848:s 3840:r 3683:e 3676:t 3669:v 3638:. 3624:: 3603:. 3580:. 3557:. 3534:. 3507:. 3503:: 3484:. 3478:: 3470:: 3447:. 3443:: 3435:: 3429:1 3416:. 3410:: 3402:: 3369:. 3350:: 3327:. 3313:: 3305:: 3295:: 3266:. 3244:: 3226:: 3216:: 3189:. 3185:: 3177:: 3152:. 3140:: 3132:: 3122:: 3082:/ 3030:. 3018:: 3010:: 2985:. 2960:. 2938:: 2930:: 2920:: 2893:. 2883:/ 2864:. 2836:. 2832:: 2824:: 2792:. 2788:: 2780:: 2751:. 2731:: 2706:. 2702:: 2694:: 2662:. 2658:: 2650:: 2622:. 2618:: 2610:: 2585:. 2545:. 2541:: 2533:: 2508:. 2436:. 2405:. 2401:: 2393:: 2368:. 2362:: 2354:: 2305:. 2291:: 2283:: 2254:. 2242:: 2234:: 2205:. 2031:) 2025:( 2020:) 2016:( 2012:. 1998:. 1949:Ă— 1741:A 1737:A 1579:+ 1575:p 1571:+ 1561:7 1556:3 1546:0 1542:n 1538:+ 1532:7 1529:4 1510:4 1505:2 1501:+ 1490:4 1485:2 1475:+ 1471:p 1467:+ 1461:7 1458:3 1439:+ 1429:7 1424:4 1411:4 1406:2 1402:+ 1395:3 1392:2 1376:+ 1372:p 1368:+ 1358:4 1353:2 1345:D 1340:2 1335:1 1331:+ 1324:3 1321:2 1303:+ 1299:p 1295:+ 1290:T 1285:3 1280:1 1270:0 1266:n 1262:+ 1256:3 1253:2 1236:+ 1226:7 1221:3 1208:4 1203:2 1199:+ 1192:3 1189:1 1183:T 1171:0 1167:n 1163:+ 1153:4 1148:2 1140:D 1135:2 1130:1 1126:+ 1119:3 1116:1 1110:T 1100:+ 1096:p 1092:+ 1087:T 1082:3 1077:1 1069:D 1064:2 1059:1 1055:+ 1048:2 1045:1 1039:D 1027:0 1023:n 1019:+ 1009:3 1004:2 996:D 991:2 986:1 982:+ 975:2 972:1 966:D 955:+ 945:3 940:2 930:+ 926:p 922:+ 916:2 913:1 907:D 894:+ 889:D 884:2 879:1 869:0 865:n 861:+ 854:+ 850:p 837:e 822:+ 811:e 807:+ 800:+ 796:p 787:0 783:n 724:H 696:( 681:( 664:H 651:( 649:H 552:) 546:( 541:) 537:( 533:. 519:. 379:Z 375:Z 347:Z 247:) 241:( 236:) 232:( 228:. 214:. 34:. 20:)

Index

Nucleosynthetic
Albedo 0.39

alpha process
atomic nuclei
nucleons
Big Bang
Big Bang nucleosynthesis
hydrogen
helium
lithium
isotope
deuterium
fuse
cores
stellar nucleosynthesis
iron
nickel
neutron capture
r-process
s-process
Supernova nucleosynthesis
oxygen
rubidium
Neutron star mergers
Cosmic ray spallation
cosmic rays
interstellar medium
asteroids
meteoroids

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑