Knowledge (XXG)

Numerical sign problem

Source đź“ť

86:). So unless there are cancellations arising from some symmetry of the system, the quantum-mechanical sum over all multi-particle states involves an integral over a function that is highly oscillatory, hence hard to evaluate numerically, particularly in high dimension. Since the dimension of the integral is given by the number of particles, the sign problem becomes severe in the 1317: 73:
In physics the sign problem is typically (but not exclusively) encountered in calculations of the properties of a quantum mechanical system with large number of strongly interacting fermions, or in field theories involving a non-zero density of strongly interacting fermions. Because the particles are
1395:
is a highly oscillatory function in the configuration space, so if one uses Monte Carlo methods to evaluate the numerator and denominator, each of them will evaluate to a very small number, whose exact value is swamped by the noise inherent in the Monte Carlo sampling process. The "badness" of the
945:
A field theory with a non-positive weight can be transformed to one with a positive weight by incorporating the non-positive part (sign or complex phase) of the weight into the observable. For example, one could decompose the weighting function into its modulus and phase:
1062: 1885:
In systems with a moderate sign problem, such as field theories at a sufficiently high temperature or in a sufficiently small volume, the sign problem is not too severe and useful results can be obtained by various methods, such as more carefully tuned reweighting,
711: 1881:
solution to the sign problem. This leaves open the possibility that there may be solutions that work in specific cases, where the oscillations of the integrand have a structure that can be exploited to reduce the numerical errors.
1873:, implying that a full and generic solution of the sign problem would also solve all problems in the complexity class NP in polynomial time. If (as is generally suspected) there are no polynomial-time solutions to NP problems (see 1856: 1615:
The decomposition of the weighting function into modulus and phase is just one example (although it has been advocated as the optimal choice since it minimizes the variance of the denominator). In general one could write
1546: 1611:
is an energy density. The number of Monte Carlo sampling points needed to obtain an accurate result therefore rises exponentially as the volume of the system becomes large, and as the temperature goes to zero.
2058:
These achieve an exponential speed-up by decomposing the fermion world lines into clusters that contribute independently. Cluster algorithms have been developed for certain theories, but not for the
1312:{\displaystyle \langle A\rangle _{\rho }={\frac {\int D\sigma A\exp(i\theta )\,p}{\int D\sigma \exp(i\theta )\,p}}={\frac {\langle A\exp(i\theta )\rangle _{p}}{\langle \exp(i\theta )\rangle _{p}}}.} 488: 1451: 2108:
One fixes the location of nodes (zeros) of the multiparticle wavefunction, and uses Monte Carlo methods to obtain an estimate of the energy of the ground state, subject to that constraint.
2119:
Stochastically and strategically sampling Feynman diagrams can also render the sign problem more tractable for a Monte Carlo approach which would otherwise be computationally unworkable.
1696: 776: 1022: 341: 902: 546: 1393: 931: 2172:
Loh, E. Y.; Gubernatis, J. E.; Scalettar, R. T.; White, S. R.; Scalapino, D. J.; Sugar, R. L. (1990). "Sign problem in the numerical simulation of many-electron systems".
858: 396: 612: 367: 238: 286: 1754: 2045: 1998: 812: 743: 604: 2787:
Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong (2016). "Majorana-Time-Reversal Symmetries: A Fundamental Principle for Sign-Problem-Free Quantum Monte Carlo Simulations".
1952: 1928: 1908: 832: 180: 2288:
Anagnostopoulos, K. N.; Nishimura, J. (2002). "New approach to the complex-action problem and its application to a nonperturbative study of superstring theory".
2018: 1728: 1609: 1589: 1569: 1349: 1054: 575: 511: 258: 203: 1322:
Note that the desired expectation value is now a ratio where the numerator and denominator are expectation values that both use a positive weighting function
1762: 183: 289: 2734:
Li, Zi-Xiang; Jiang, Yi-Fan; Yao, Hong (2015). "Solving the fermion sign problem in quantum Monte Carlo simulations by Majorana representation".
2516:
Troyer, Matthias; Wiese, Uwe-Jens (2005). "Computational Complexity and Fundamental Limitations to Fermionic Quantum Monte Carlo Simulations".
2999: 1459: 42:
fail because of the near-cancellation of the positive and negative contributions to the integral. Each has to be integrated to very high
2097: 2084:. So far, the algorithm has been found to evade the sign problem in test models that have a sign problem but do not involve fermions. 2673:
Aarts, Gert (2009). "Can Stochastic Quantization Evade the Sign Problem? The Relativistic Bose Gas at Finite Chemical Potential".
2912:
Houcke, Kris Van; Kozik, Evgeny; Prokof'ev, Nikolay V.; Svistunov, Boris Vladimirovich (2010-01-01). "Diagrammatic Monte Carlo".
93:
The sign problem is one of the major unsolved problems in the physics of many-particle systems, impeding progress in many areas:
2152:
Sources for this section include Chandrasekharan & Wiese (1999) and Kieu & Griffin (1994), in addition to those cited.
2989: 404: 2463:
Barbour, I. M.; Morrison, S. E.; Klepfish, E. G.; Kogut, J. B.; Lombardo, M.-P. (1998). "Results on Finite Density QCD".
2994: 2849: 1399: 2853: 264:
of the configuration. The sum over fermion fields can be performed analytically, and one is left with a sum over the
2636:
Alexandru, Andrei; Basar, Gokce; Bedaque, Paulo; Warrington, Neill (2022). "Complex paths around the sign problem".
159:
In a field-theory approach to multi-particle systems, the fermion density is controlled by the value of the fermion
2129: 78:
is inapplicable, and one is forced to use brute-force numerical methods. Because the particles are fermions, their
100:— It prevents the numerical solution of systems with a high density of strongly correlated electrons, such as the 778:
can be calculated by performing the sum over field configurations numerically, using standard techniques such as
1622: 2114: 748: 97: 952: 548:
is a matrix that encodes how the fermions were coupled to the bosons. The expectation value of an observable
298: 2075: 779: 2402:
Kieu, T. D.; Griffin, C. J. (1994). "Monte Carlo simulations with indefinite and complex-valued measures".
863: 2063: 47: 43: 35: 2080:
The sum over configurations is obtained as the equilibrium distribution of states explored by a complex
1887: 82:
changes sign when any two fermions are interchanged (due to the anti-symmetry of the wave function, see
2346:
Chandrasekharan, Shailesh; Wiese, Uwe-Jens (1999). "Meron-Cluster Solution of Fermion Sign Problems".
2931: 2868: 2806: 2753: 2692: 2600: 2535: 2482: 2421: 2365: 2307: 2234: 2181: 2134: 516: 143: 131: 54: 1354: 907: 1970: 1874: 814:
is non-positive. This typically occurs in theories of fermions when the fermion chemical potential
87: 75: 20: 706:{\displaystyle \langle A\rangle _{\rho }={\frac {\int D\sigma \,A\,\rho }{\int D\sigma \,\rho }}.} 2965: 2921: 2830: 2796: 2769: 2743: 2716: 2682: 2645: 2618: 2590: 2559: 2525: 2498: 2472: 2445: 2411: 2381: 2355: 2323: 2297: 2224: 160: 58: 837: 372: 2957: 2894: 2822: 2708: 2551: 2437: 2197: 2081: 349: 208: 39: 271: 2947: 2939: 2884: 2876: 2814: 2761: 2700: 2655: 2608: 2543: 2490: 2429: 2373: 2315: 2268: 2189: 2093: 1733: 261: 2023: 1976: 788: 719: 580: 2053: 1937: 1913: 1893: 817: 165: 107: 83: 2935: 2872: 2810: 2757: 2696: 2604: 2539: 2486: 2425: 2369: 2311: 2238: 2185: 2003: 1704: 1594: 1574: 1554: 1325: 1030: 934: 551: 496: 243: 188: 121: 117: 2494: 65:, or in field theories involving a non-zero density of strongly interacting fermions. 2983: 2385: 2327: 2059: 1931: 1851:{\displaystyle \left\langle {\frac {\rho }{p}}\right\rangle _{p}\propto \exp(-fV/T),} 101: 2969: 2834: 2773: 2720: 2622: 2563: 2502: 2449: 2100:
can help to solve the fermion sign problem in a class of fermionic many-body models.
2818: 2704: 1730:
can be any positive weighting function (for example, the weighting function of the
1453:: if it is much less than 1, then the sign problem is severe. It can be shown that 139: 125: 79: 2547: 2659: 2943: 2880: 2377: 135: 32: 2765: 2319: 288:(which may have been originally part of the theory, or have been produced by a 937:, so Monte Carlo importance sampling cannot be used to evaluate the integral. 2961: 2433: 2193: 2257:"Lattice calculations at non-zero chemical potential: The QCD phase diagram" 1962:
There are various proposals for solving systems with a severe sign problem:
834:
is nonzero, i.e. when there is a nonzero background density of fermions. If
112: 90:. The field-theoretic manifestation of the sign problem is discussed below. 2952: 2898: 2826: 2712: 2555: 2441: 2201: 2530: 2360: 53:
The sign problem is one of the major unsolved problems in the physics of
28: 2613: 2595: 2578: 2477: 2416: 2273: 2256: 2302: 1870: 62: 1541:{\displaystyle \langle \exp(i\theta )\rangle _{p}\propto \exp(-fV/T),} 745:
is positive, then it can be interpreted as a probability measure, and
2889: 2801: 2650: 2926: 2748: 2687: 2229: 2215:
de Forcrand, Philippe (2010). "Simulating QCD at finite density".
1861:
which again goes to zero exponentially in the large-volume limit.
265: 205:
by summing over all classical field configurations, weighted by
1756:
theory). The badness of the sign problem is then measured by
1396:
sign problem is measured by the smallness of the denominator
2854:"Fixed-Node Quantum Monte Carlo Method for Lattice Fermions" 2848:
Van Bemmel, H. J. M.; Ten Haaf, D. F. B.; Van Saarloos, W.;
577:
is therefore an average over all configurations weighted by
369:
represents the measure for the sum over all configurations
57:. It often arises in calculations of the properties of a 46:
in order for their difference to be obtained with useful
2026: 2006: 1979: 1940: 1916: 1896: 1765: 1736: 1707: 1625: 1597: 1577: 1557: 1462: 1402: 1357: 1328: 1065: 1033: 955: 910: 866: 840: 820: 791: 751: 722: 615: 583: 554: 519: 499: 407: 375: 352: 301: 274: 246: 211: 191: 168: 483:{\displaystyle \rho =\det(M(\mu ,\sigma ))\exp(-S),} 2039: 2012: 1992: 1946: 1922: 1902: 1850: 1748: 1722: 1690: 1603: 1583: 1563: 1540: 1446:{\displaystyle \langle \exp(i\theta )\rangle _{p}} 1445: 1387: 1343: 1311: 1048: 1016: 925: 896: 860:, there is no particle–antiparticle symmetry, and 852: 826: 806: 770: 737: 705: 598: 569: 540: 505: 482: 390: 361: 335: 280: 252: 232: 197: 174: 61:system with large number of strongly interacting 867: 423: 2341: 2339: 2337: 513:is now the action of the bosonic fields, and 27:is the problem of numerically evaluating the 8: 1494: 1463: 1434: 1403: 1294: 1263: 1252: 1209: 1073: 1066: 759: 752: 623: 616: 2465:Nuclear Physics B - Proceedings Supplements 2250: 2248: 2020:-dimensional manifold embedded in complex 1691:{\displaystyle \rho =p{\frac {\rho }{p}},} 2951: 2925: 2888: 2800: 2747: 2686: 2649: 2612: 2594: 2529: 2476: 2415: 2359: 2301: 2272: 2228: 2031: 2025: 2005: 1984: 1978: 1939: 1915: 1895: 1834: 1807: 1771: 1764: 1735: 1706: 1653: 1624: 1596: 1576: 1556: 1524: 1497: 1461: 1437: 1401: 1356: 1327: 1297: 1255: 1206: 1187: 1136: 1085: 1076: 1064: 1032: 983: 954: 909: 865: 839: 819: 790: 771:{\displaystyle \langle A\rangle _{\rho }} 762: 750: 721: 684: 660: 647: 635: 626: 614: 582: 553: 518: 498: 406: 374: 351: 317: 300: 273: 245: 210: 190: 167: 1969:The field space is complexified and the 1017:{\displaystyle \rho =p\,\exp(i\theta ),} 138:to predict the phases and properties of 2164: 2145: 336:{\displaystyle Z=\int D\sigma \,\rho ,} 2397: 2395: 292:to make the fermion action quadratic) 120:and hence limits our understanding of 1865:Methods for reducing the sign problem 897:{\displaystyle \det(M(\mu ,\sigma ))} 7: 2098:Hubbard-Stratonovich transformations 398:of the bosonic fields, weighted by 290:Hubbard–Stratonovich transformation 146:, the problem is also known as the 14: 155:The sign problem in field theory 38:of a large number of variables. 2579:"Lattice QCD at Finite Density" 780:Monte Carlo importance sampling 541:{\displaystyle M(\mu ,\sigma )} 2819:10.1103/PhysRevLett.117.267002 2705:10.1103/PhysRevLett.102.131601 1842: 1822: 1797: 1791: 1783: 1777: 1717: 1711: 1679: 1673: 1665: 1659: 1650: 1644: 1635: 1629: 1532: 1512: 1490: 1487: 1481: 1472: 1430: 1427: 1421: 1412: 1388:{\displaystyle \exp(i\theta )} 1382: 1379: 1373: 1364: 1338: 1332: 1290: 1287: 1281: 1272: 1248: 1245: 1239: 1230: 1221: 1215: 1197: 1191: 1184: 1181: 1175: 1166: 1146: 1140: 1133: 1130: 1124: 1115: 1106: 1100: 1043: 1037: 1008: 1005: 999: 990: 980: 974: 965: 959: 926:{\displaystyle \rho (\sigma )} 920: 914: 891: 888: 876: 870: 801: 795: 732: 726: 694: 688: 670: 664: 657: 651: 593: 587: 564: 558: 535: 523: 474: 471: 465: 456: 447: 444: 432: 426: 417: 411: 385: 379: 327: 321: 227: 218: 16:Problem in applied mathematics 1: 2548:10.1103/PhysRevLett.94.170201 2495:10.1016/S0920-5632(97)00484-2 1571:is the volume of the system, 785:The sign problem arises when 116:calculation of properties of 3000:Unsolved problems in physics 2660:10.1103/RevModPhys.94.015006 2944:10.1016/j.phpro.2010.09.034 2881:10.1103/PhysRevLett.72.2442 2577:Schmidt, Christian (2006). 2378:10.1103/PhysRevLett.83.3116 3016: 2766:10.1103/PhysRevB.91.241117 2320:10.1103/PhysRevD.66.106008 2130:Method of stationary phase 2096:representation to perform 853:{\displaystyle \mu \neq 0} 391:{\displaystyle \sigma (x)} 2638:Reviews of Modern Physics 1056:is real and positive, so 134:— It prevents the use of 2434:10.1103/PhysRevE.49.3855 2194:10.1103/PhysRevB.41.9301 2115:Diagrammatic Monte Carlo 1958:List: Current Approaches 1591:is the temperature, and 362:{\displaystyle D\sigma } 233:{\displaystyle \exp(-S)} 98:Condensed matter physics 2861:Physical Review Letters 2789:Physical Review Letters 2675:Physical Review Letters 2518:Physical Review Letters 2348:Physical Review Letters 2106:Fixed-node Monte Carlo: 2076:Stochastic quantization 904:, and hence the weight 281:{\displaystyle \sigma } 2261:Proceedings of Science 2255:Philipsen, O. (2008). 2062:of electrons, nor for 2041: 2014: 1994: 1948: 1924: 1904: 1852: 1750: 1749:{\displaystyle \mu =0} 1724: 1692: 1605: 1585: 1565: 1542: 1447: 1389: 1345: 1313: 1050: 1018: 927: 898: 854: 828: 808: 772: 739: 707: 600: 571: 542: 507: 484: 392: 363: 337: 282: 254: 234: 199: 176: 148:complex action problem 74:strongly interacting, 25:numerical sign problem 2990:Statistical mechanics 2850:Van Leeuwen, J. M. J. 2069:the theory of quarks. 2042: 2040:{\displaystyle C^{N}} 2015: 1995: 1993:{\displaystyle R^{N}} 1971:path integral contour 1949: 1925: 1905: 1888:analytic continuation 1853: 1751: 1725: 1693: 1606: 1586: 1566: 1543: 1448: 1390: 1351:. However, the phase 1346: 1314: 1051: 1019: 941:Reweighting procedure 928: 899: 855: 829: 809: 807:{\displaystyle \rho } 773: 740: 738:{\displaystyle \rho } 708: 601: 599:{\displaystyle \rho } 572: 543: 508: 485: 393: 364: 338: 283: 255: 235: 200: 177: 55:many-particle systems 2135:Oscillatory integral 2090:Majorana algorithms: 2056:-cluster algorithms: 2024: 2004: 1977: 1967:Contour deformation: 1947:{\displaystyle \mu } 1938: 1923:{\displaystyle \mu } 1914: 1903:{\displaystyle \mu } 1894: 1877:), then there is no 1869:The sign problem is 1763: 1734: 1705: 1623: 1595: 1575: 1555: 1460: 1400: 1355: 1326: 1063: 1031: 953: 908: 864: 838: 827:{\displaystyle \mu } 818: 789: 749: 720: 613: 581: 552: 517: 497: 405: 373: 350: 299: 272: 244: 209: 189: 182:. One evaluates the 175:{\displaystyle \mu } 166: 144:lattice field theory 132:Quantum field theory 2995:Numerical artifacts 2936:2010PhPro...6...95V 2873:1994PhRvL..72.2442V 2811:2016PhRvL.117z7002L 2758:2015PhRvB..91x1117L 2697:2009PhRvL.102m1601A 2614:10.22323/1.032.0021 2605:2006slft.confE..21S 2540:2005PhRvL..94q0201T 2487:1998NuPhS..60..220B 2426:1994PhRvE..49.3855K 2370:1999PhRvL..83.3116C 2312:2002PhRvD..66j6008A 2274:10.22323/1.077.0011 2239:2010arXiv1005.0539D 2186:1990PhRvB..41.9301L 1875:P versus NP problem 88:thermodynamic limit 76:perturbation theory 21:applied mathematics 2037: 2010: 1990: 1944: 1920: 1900: 1848: 1746: 1720: 1688: 1601: 1581: 1561: 1538: 1443: 1385: 1341: 1309: 1046: 1014: 933:, is in general a 923: 894: 850: 824: 804: 768: 735: 703: 596: 567: 538: 503: 480: 388: 359: 333: 278: 250: 230: 195: 184:partition function 172: 161:chemical potential 110:— It prevents the 59:quantum mechanical 2867:(15): 2442–2445. 2852:; An, G. (1994). 2736:Physical Review B 2471:(1998): 220–233. 2404:Physical Review E 2354:(16): 3116–3119. 2290:Physical Review D 2180:(13): 9301–9307. 2174:Physical Review B 2082:Langevin equation 2013:{\displaystyle N} 1973:is deformed from 1801: 1723:{\displaystyle p} 1683: 1604:{\displaystyle f} 1584:{\displaystyle T} 1564:{\displaystyle V} 1344:{\displaystyle p} 1304: 1201: 1049:{\displaystyle p} 698: 570:{\displaystyle A} 506:{\displaystyle S} 253:{\displaystyle S} 198:{\displaystyle Z} 40:Numerical methods 3007: 2974: 2973: 2955: 2929: 2914:Physics Procedia 2909: 2903: 2902: 2892: 2858: 2845: 2839: 2838: 2804: 2784: 2778: 2777: 2751: 2731: 2725: 2724: 2690: 2670: 2664: 2663: 2653: 2633: 2627: 2626: 2616: 2598: 2574: 2568: 2567: 2533: 2531:cond-mat/0408370 2513: 2507: 2506: 2480: 2460: 2454: 2453: 2419: 2410:(5): 3855–3859. 2399: 2390: 2389: 2363: 2361:cond-mat/9902128 2343: 2332: 2331: 2305: 2285: 2279: 2278: 2276: 2252: 2243: 2242: 2232: 2212: 2206: 2205: 2169: 2153: 2150: 2094:Majorana fermion 2046: 2044: 2043: 2038: 2036: 2035: 2019: 2017: 2016: 2011: 1999: 1997: 1996: 1991: 1989: 1988: 1953: 1951: 1950: 1945: 1932:Taylor expansion 1929: 1927: 1926: 1921: 1909: 1907: 1906: 1901: 1857: 1855: 1854: 1849: 1838: 1812: 1811: 1806: 1802: 1800: 1786: 1772: 1755: 1753: 1752: 1747: 1729: 1727: 1726: 1721: 1697: 1695: 1694: 1689: 1684: 1682: 1668: 1654: 1610: 1608: 1607: 1602: 1590: 1588: 1587: 1582: 1570: 1568: 1567: 1562: 1547: 1545: 1544: 1539: 1528: 1502: 1501: 1452: 1450: 1449: 1444: 1442: 1441: 1394: 1392: 1391: 1386: 1350: 1348: 1347: 1342: 1318: 1316: 1315: 1310: 1305: 1303: 1302: 1301: 1261: 1260: 1259: 1207: 1202: 1200: 1149: 1086: 1081: 1080: 1055: 1053: 1052: 1047: 1023: 1021: 1020: 1015: 932: 930: 929: 924: 903: 901: 900: 895: 859: 857: 856: 851: 833: 831: 830: 825: 813: 811: 810: 805: 777: 775: 774: 769: 767: 766: 744: 742: 741: 736: 712: 710: 709: 704: 699: 697: 673: 636: 631: 630: 605: 603: 602: 597: 576: 574: 573: 568: 547: 545: 544: 539: 512: 510: 509: 504: 489: 487: 486: 481: 397: 395: 394: 389: 368: 366: 365: 360: 342: 340: 339: 334: 287: 285: 284: 279: 259: 257: 256: 251: 239: 237: 236: 231: 204: 202: 201: 196: 181: 179: 178: 173: 3015: 3014: 3010: 3009: 3008: 3006: 3005: 3004: 2980: 2979: 2978: 2977: 2953:1854/LU-3234513 2911: 2910: 2906: 2856: 2847: 2846: 2842: 2786: 2785: 2781: 2733: 2732: 2728: 2672: 2671: 2667: 2635: 2634: 2630: 2596:hep-lat/0610116 2576: 2575: 2571: 2515: 2514: 2510: 2478:hep-lat/9705042 2462: 2461: 2457: 2417:hep-lat/9311072 2401: 2400: 2393: 2345: 2344: 2335: 2287: 2286: 2282: 2254: 2253: 2246: 2214: 2213: 2209: 2171: 2170: 2166: 2161: 2156: 2151: 2147: 2143: 2126: 2027: 2022: 2021: 2002: 2001: 1980: 1975: 1974: 1960: 1936: 1935: 1912: 1911: 1892: 1891: 1890:from imaginary 1867: 1787: 1773: 1767: 1766: 1761: 1760: 1732: 1731: 1703: 1702: 1669: 1655: 1621: 1620: 1593: 1592: 1573: 1572: 1553: 1552: 1493: 1458: 1457: 1433: 1398: 1397: 1353: 1352: 1324: 1323: 1293: 1262: 1251: 1208: 1150: 1087: 1072: 1061: 1060: 1029: 1028: 951: 950: 943: 906: 905: 862: 861: 836: 835: 816: 815: 787: 786: 758: 747: 746: 718: 717: 674: 637: 622: 611: 610: 579: 578: 550: 549: 515: 514: 495: 494: 403: 402: 371: 370: 348: 347: 297: 296: 270: 269: 242: 241: 207: 206: 187: 186: 164: 163: 157: 108:Nuclear physics 84:Pauli principle 71: 17: 12: 11: 5: 3013: 3011: 3003: 3002: 2997: 2992: 2982: 2981: 2976: 2975: 2904: 2840: 2795:(26): 267002. 2779: 2742:(24): 241117. 2726: 2681:(13): 131601. 2665: 2628: 2569: 2524:(17): 170201. 2508: 2455: 2391: 2333: 2303:hep-th/0108041 2296:(10): 106008. 2280: 2244: 2207: 2163: 2162: 2160: 2157: 2155: 2154: 2144: 2142: 2139: 2138: 2137: 2132: 2125: 2122: 2121: 2120: 2110: 2109: 2102: 2101: 2086: 2085: 2071: 2070: 2049: 2048: 2034: 2030: 2009: 1987: 1983: 1959: 1956: 1943: 1919: 1899: 1866: 1863: 1859: 1858: 1847: 1844: 1841: 1837: 1833: 1830: 1827: 1824: 1821: 1818: 1815: 1810: 1805: 1799: 1796: 1793: 1790: 1785: 1782: 1779: 1776: 1770: 1745: 1742: 1739: 1719: 1716: 1713: 1710: 1699: 1698: 1687: 1681: 1678: 1675: 1672: 1667: 1664: 1661: 1658: 1652: 1649: 1646: 1643: 1640: 1637: 1634: 1631: 1628: 1600: 1580: 1560: 1549: 1548: 1537: 1534: 1531: 1527: 1523: 1520: 1517: 1514: 1511: 1508: 1505: 1500: 1496: 1492: 1489: 1486: 1483: 1480: 1477: 1474: 1471: 1468: 1465: 1440: 1436: 1432: 1429: 1426: 1423: 1420: 1417: 1414: 1411: 1408: 1405: 1384: 1381: 1378: 1375: 1372: 1369: 1366: 1363: 1360: 1340: 1337: 1334: 1331: 1320: 1319: 1308: 1300: 1296: 1292: 1289: 1286: 1283: 1280: 1277: 1274: 1271: 1268: 1265: 1258: 1254: 1250: 1247: 1244: 1241: 1238: 1235: 1232: 1229: 1226: 1223: 1220: 1217: 1214: 1211: 1205: 1199: 1196: 1193: 1190: 1186: 1183: 1180: 1177: 1174: 1171: 1168: 1165: 1162: 1159: 1156: 1153: 1148: 1145: 1142: 1139: 1135: 1132: 1129: 1126: 1123: 1120: 1117: 1114: 1111: 1108: 1105: 1102: 1099: 1096: 1093: 1090: 1084: 1079: 1075: 1071: 1068: 1045: 1042: 1039: 1036: 1025: 1024: 1013: 1010: 1007: 1004: 1001: 998: 995: 992: 989: 986: 982: 979: 976: 973: 970: 967: 964: 961: 958: 942: 939: 935:complex number 922: 919: 916: 913: 893: 890: 887: 884: 881: 878: 875: 872: 869: 849: 846: 843: 823: 803: 800: 797: 794: 765: 761: 757: 754: 734: 731: 728: 725: 714: 713: 702: 696: 693: 690: 687: 683: 680: 677: 672: 669: 666: 663: 659: 656: 653: 650: 646: 643: 640: 634: 629: 625: 621: 618: 595: 592: 589: 586: 566: 563: 560: 557: 537: 534: 531: 528: 525: 522: 502: 491: 490: 479: 476: 473: 470: 467: 464: 461: 458: 455: 452: 449: 446: 443: 440: 437: 434: 431: 428: 425: 422: 419: 416: 413: 410: 387: 384: 381: 378: 358: 355: 344: 343: 332: 329: 326: 323: 320: 316: 313: 310: 307: 304: 277: 249: 229: 226: 223: 220: 217: 214: 194: 171: 156: 153: 152: 151: 129: 118:nuclear matter 105: 70: 67: 15: 13: 10: 9: 6: 4: 3: 2: 3012: 3001: 2998: 2996: 2993: 2991: 2988: 2987: 2985: 2971: 2967: 2963: 2959: 2954: 2949: 2945: 2941: 2937: 2933: 2928: 2923: 2919: 2915: 2908: 2905: 2900: 2896: 2891: 2886: 2882: 2878: 2874: 2870: 2866: 2862: 2855: 2851: 2844: 2841: 2836: 2832: 2828: 2824: 2820: 2816: 2812: 2808: 2803: 2798: 2794: 2790: 2783: 2780: 2775: 2771: 2767: 2763: 2759: 2755: 2750: 2745: 2741: 2737: 2730: 2727: 2722: 2718: 2714: 2710: 2706: 2702: 2698: 2694: 2689: 2684: 2680: 2676: 2669: 2666: 2661: 2657: 2652: 2647: 2643: 2639: 2632: 2629: 2624: 2620: 2615: 2610: 2606: 2602: 2597: 2592: 2588: 2584: 2580: 2573: 2570: 2565: 2561: 2557: 2553: 2549: 2545: 2541: 2537: 2532: 2527: 2523: 2519: 2512: 2509: 2504: 2500: 2496: 2492: 2488: 2484: 2479: 2474: 2470: 2466: 2459: 2456: 2451: 2447: 2443: 2439: 2435: 2431: 2427: 2423: 2418: 2413: 2409: 2405: 2398: 2396: 2392: 2387: 2383: 2379: 2375: 2371: 2367: 2362: 2357: 2353: 2349: 2342: 2340: 2338: 2334: 2329: 2325: 2321: 2317: 2313: 2309: 2304: 2299: 2295: 2291: 2284: 2281: 2275: 2270: 2266: 2262: 2258: 2251: 2249: 2245: 2240: 2236: 2231: 2226: 2222: 2218: 2211: 2208: 2203: 2199: 2195: 2191: 2187: 2183: 2179: 2175: 2168: 2165: 2158: 2149: 2146: 2140: 2136: 2133: 2131: 2128: 2127: 2123: 2118: 2116: 2112: 2111: 2107: 2104: 2103: 2099: 2095: 2091: 2088: 2087: 2083: 2079: 2077: 2073: 2072: 2068: 2065: 2061: 2060:Hubbard model 2057: 2055: 2051: 2050: 2032: 2028: 2007: 1985: 1981: 1972: 1968: 1965: 1964: 1963: 1957: 1955: 1941: 1934:in powers of 1933: 1917: 1897: 1889: 1883: 1880: 1876: 1872: 1864: 1862: 1845: 1839: 1835: 1831: 1828: 1825: 1819: 1816: 1813: 1808: 1803: 1794: 1788: 1780: 1774: 1768: 1759: 1758: 1757: 1743: 1740: 1737: 1714: 1708: 1685: 1676: 1670: 1662: 1656: 1647: 1641: 1638: 1632: 1626: 1619: 1618: 1617: 1613: 1598: 1578: 1558: 1535: 1529: 1525: 1521: 1518: 1515: 1509: 1506: 1503: 1498: 1484: 1478: 1475: 1469: 1466: 1456: 1455: 1454: 1438: 1424: 1418: 1415: 1409: 1406: 1376: 1370: 1367: 1361: 1358: 1335: 1329: 1306: 1298: 1284: 1278: 1275: 1269: 1266: 1256: 1242: 1236: 1233: 1227: 1224: 1218: 1212: 1203: 1194: 1188: 1178: 1172: 1169: 1163: 1160: 1157: 1154: 1151: 1143: 1137: 1127: 1121: 1118: 1112: 1109: 1103: 1097: 1094: 1091: 1088: 1082: 1077: 1069: 1059: 1058: 1057: 1040: 1034: 1011: 1002: 996: 993: 987: 984: 977: 971: 968: 962: 956: 949: 948: 947: 940: 938: 936: 917: 911: 885: 882: 879: 873: 847: 844: 841: 821: 798: 792: 783: 781: 763: 755: 729: 723: 700: 691: 685: 681: 678: 675: 667: 661: 654: 648: 644: 641: 638: 632: 627: 619: 609: 608: 607: 590: 584: 561: 555: 532: 529: 526: 520: 500: 477: 468: 462: 459: 453: 450: 441: 438: 435: 429: 420: 414: 408: 401: 400: 399: 382: 376: 356: 353: 330: 324: 318: 314: 311: 308: 305: 302: 295: 294: 293: 291: 275: 267: 263: 247: 224: 221: 215: 212: 192: 185: 169: 162: 154: 149: 145: 141: 137: 133: 130: 127: 126:neutron stars 123: 119: 115: 114: 109: 106: 103: 102:Hubbard model 99: 96: 95: 94: 91: 89: 85: 81: 77: 68: 66: 64: 60: 56: 51: 49: 45: 41: 37: 34: 30: 26: 22: 2917: 2913: 2907: 2864: 2860: 2843: 2792: 2788: 2782: 2739: 2735: 2729: 2678: 2674: 2668: 2641: 2637: 2631: 2586: 2582: 2572: 2521: 2517: 2511: 2468: 2464: 2458: 2407: 2403: 2351: 2347: 2293: 2289: 2283: 2264: 2260: 2220: 2216: 2210: 2177: 2173: 2167: 2148: 2113: 2105: 2089: 2074: 2066: 2052: 1966: 1961: 1884: 1878: 1868: 1860: 1700: 1614: 1550: 1321: 1026: 944: 784: 715: 492: 345: 158: 147: 140:quark matter 111: 92: 80:wavefunction 72: 52: 31:of a highly 24: 18: 2000:to another 136:lattice QCD 33:oscillatory 2984:Categories 2920:: 95–105. 2802:1601.05780 2651:2007.05436 2644:: 015006. 2159:References 2962:1875-3892 2927:0802.2923 2890:1887/5478 2749:1408.2269 2688:0810.2089 2386:119061060 2328:119384615 2230:1005.0539 2141:Footnotes 1942:μ 1918:μ 1898:μ 1826:− 1820:⁡ 1814:∝ 1795:σ 1781:σ 1775:ρ 1738:μ 1715:σ 1677:σ 1663:σ 1657:ρ 1648:σ 1633:σ 1627:ρ 1516:− 1510:⁡ 1504:∝ 1495:⟩ 1485:σ 1479:θ 1470:⁡ 1464:⟨ 1435:⟩ 1425:σ 1419:θ 1410:⁡ 1404:⟨ 1377:σ 1371:θ 1362:⁡ 1336:σ 1295:⟩ 1285:σ 1279:θ 1270:⁡ 1264:⟨ 1253:⟩ 1243:σ 1237:θ 1228:⁡ 1219:σ 1210:⟨ 1195:σ 1179:σ 1173:θ 1164:⁡ 1158:σ 1152:∫ 1144:σ 1128:σ 1122:θ 1113:⁡ 1104:σ 1095:σ 1089:∫ 1078:ρ 1074:⟩ 1067:⟨ 1041:σ 1003:σ 997:θ 988:⁡ 978:σ 963:σ 957:ρ 918:σ 912:ρ 886:σ 880:μ 845:≠ 842:μ 822:μ 799:σ 793:ρ 764:ρ 760:⟩ 753:⟨ 730:σ 724:ρ 692:σ 686:ρ 682:σ 676:∫ 668:σ 662:ρ 655:σ 645:σ 639:∫ 628:ρ 624:⟩ 617:⟨ 591:σ 585:ρ 562:σ 533:σ 527:μ 469:σ 460:− 454:⁡ 442:σ 436:μ 415:σ 409:ρ 377:σ 357:σ 325:σ 319:ρ 315:σ 309:∫ 276:σ 222:− 216:⁡ 170:μ 113:ab initio 44:precision 2970:16490610 2899:10055881 2835:24661656 2827:28059531 2774:86865851 2721:12719451 2713:19392346 2623:14890549 2589:: 21.1. 2564:11394699 2556:15904269 2503:16172956 2450:46652412 2124:See also 1910:to real 1804:⟩ 1769:⟨ 240:, where 69:Overview 63:fermions 48:accuracy 36:function 29:integral 2932:Bibcode 2869:Bibcode 2807:Bibcode 2754:Bibcode 2693:Bibcode 2601:Bibcode 2583:Pos Lat 2536:Bibcode 2483:Bibcode 2442:9961673 2422:Bibcode 2366:Bibcode 2308:Bibcode 2267:: 011. 2235:Bibcode 2223:: 010. 2217:Pos Lat 2202:9993272 2182:Bibcode 1879:generic 1871:NP-hard 268:fields 266:bosonic 260:is the 2968:  2960:  2897:  2833:  2825:  2772:  2719:  2711:  2621:  2562:  2554:  2501:  2448:  2440:  2384:  2326:  2200:  2092:Using 2047:space. 1701:where 1551:where 1027:where 493:where 346:where 262:action 142:. (In 122:nuclei 23:, the 2966:S2CID 2922:arXiv 2857:(PDF) 2831:S2CID 2797:arXiv 2770:S2CID 2744:arXiv 2717:S2CID 2683:arXiv 2646:arXiv 2619:S2CID 2591:arXiv 2560:S2CID 2526:arXiv 2499:S2CID 2473:arXiv 2446:S2CID 2412:arXiv 2382:S2CID 2356:arXiv 2324:S2CID 2298:arXiv 2225:arXiv 2054:Meron 1930:, or 2958:ISSN 2895:PMID 2823:PMID 2709:PMID 2552:PMID 2438:PMID 2198:PMID 2067:i.e. 124:and 2948:hdl 2940:doi 2885:hdl 2877:doi 2815:doi 2793:117 2762:doi 2701:doi 2679:102 2656:doi 2609:doi 2587:021 2544:doi 2491:doi 2430:doi 2374:doi 2316:doi 2269:doi 2221:010 2190:doi 2064:QCD 1817:exp 1507:exp 1467:exp 1407:exp 1359:exp 1267:exp 1225:exp 1161:exp 1110:exp 985:exp 868:det 716:If 451:exp 424:det 213:exp 19:In 2986:: 2964:. 2956:. 2946:. 2938:. 2930:. 2916:. 2893:. 2883:. 2875:. 2865:72 2863:. 2859:. 2829:. 2821:. 2813:. 2805:. 2791:. 2768:. 2760:. 2752:. 2740:91 2738:. 2715:. 2707:. 2699:. 2691:. 2677:. 2654:. 2642:94 2640:. 2617:. 2607:. 2599:. 2585:. 2581:. 2558:. 2550:. 2542:. 2534:. 2522:94 2520:. 2497:. 2489:. 2481:. 2469:60 2467:. 2444:. 2436:. 2428:. 2420:. 2408:49 2406:. 2394:^ 2380:. 2372:. 2364:. 2352:83 2350:. 2336:^ 2322:. 2314:. 2306:. 2294:66 2292:. 2265:77 2263:. 2259:. 2247:^ 2233:. 2219:. 2196:. 2188:. 2178:41 2176:. 1954:. 782:. 606:: 150:.) 50:. 2972:. 2950:: 2942:: 2934:: 2924:: 2918:6 2901:. 2887:: 2879:: 2871:: 2837:. 2817:: 2809:: 2799:: 2776:. 2764:: 2756:: 2746:: 2723:. 2703:: 2695:: 2685:: 2662:. 2658:: 2648:: 2625:. 2611:: 2603:: 2593:: 2566:. 2546:: 2538:: 2528:: 2505:. 2493:: 2485:: 2475:: 2452:. 2432:: 2424:: 2414:: 2388:. 2376:: 2368:: 2358:: 2330:. 2318:: 2310:: 2300:: 2277:. 2271:: 2241:. 2237:: 2227:: 2204:. 2192:: 2184:: 2117:: 2078:: 2033:N 2029:C 2008:N 1986:N 1982:R 1846:, 1843:) 1840:T 1836:/ 1832:V 1829:f 1823:( 1809:p 1798:] 1792:[ 1789:p 1784:] 1778:[ 1744:0 1741:= 1718:] 1712:[ 1709:p 1686:, 1680:] 1674:[ 1671:p 1666:] 1660:[ 1651:] 1645:[ 1642:p 1639:= 1636:] 1630:[ 1599:f 1579:T 1559:V 1536:, 1533:) 1530:T 1526:/ 1522:V 1519:f 1513:( 1499:p 1491:) 1488:] 1482:[ 1476:i 1473:( 1439:p 1431:) 1428:] 1422:[ 1416:i 1413:( 1383:) 1380:] 1374:[ 1368:i 1365:( 1339:] 1333:[ 1330:p 1307:. 1299:p 1291:) 1288:] 1282:[ 1276:i 1273:( 1257:p 1249:) 1246:] 1240:[ 1234:i 1231:( 1222:] 1216:[ 1213:A 1204:= 1198:] 1192:[ 1189:p 1185:) 1182:] 1176:[ 1170:i 1167:( 1155:D 1147:] 1141:[ 1138:p 1134:) 1131:] 1125:[ 1119:i 1116:( 1107:] 1101:[ 1098:A 1092:D 1083:= 1070:A 1044:] 1038:[ 1035:p 1012:, 1009:) 1006:] 1000:[ 994:i 991:( 981:] 975:[ 972:p 969:= 966:] 960:[ 921:) 915:( 892:) 889:) 883:, 877:( 874:M 871:( 848:0 802:] 796:[ 756:A 733:] 727:[ 701:. 695:] 689:[ 679:D 671:] 665:[ 658:] 652:[ 649:A 642:D 633:= 620:A 594:] 588:[ 565:] 559:[ 556:A 536:) 530:, 524:( 521:M 501:S 478:, 475:) 472:] 466:[ 463:S 457:( 448:) 445:) 439:, 433:( 430:M 427:( 421:= 418:] 412:[ 386:) 383:x 380:( 354:D 331:, 328:] 322:[ 312:D 306:= 303:Z 248:S 228:) 225:S 219:( 193:Z 128:. 104:.

Index

applied mathematics
integral
oscillatory
function
Numerical methods
precision
accuracy
many-particle systems
quantum mechanical
fermions
perturbation theory
wavefunction
Pauli principle
thermodynamic limit
Condensed matter physics
Hubbard model
Nuclear physics
ab initio
nuclear matter
nuclei
neutron stars
Quantum field theory
lattice QCD
quark matter
lattice field theory
chemical potential
partition function
action
bosonic
Hubbard–Stratonovich transformation

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑