Knowledge

General number field sieve

Source 📝

1104: 334: 388:. Since these numbers are smaller, they are more likely to be smooth than the numbers inspected in previous algorithms. This is the key to the efficiency of the number field sieve. In order to achieve this speed-up, the number field sieve has to perform computations and factorizations in 948: 749: 89: 1702:
developed a faster implementation of final processing as part of msieve, which is in the public domain. Both implementations feature the ability to be distributed among several nodes in a cluster with a sufficiently fast interconnect.
1623:
One such method was suggested by Murphy and Brent; they introduce a two-part score for polynomials, based on the presence of roots modulo small primes and on the average value that the polynomial takes over the sieving area.
1478: 1477:, with a "square root" which also can be computed. It should be remarked that the use of Gaussian elimination does not give the optimal run time of the algorithm. Instead, sparse matrix solving algorithms such as 2537: 572: 94: 798: 2541: 1022: 567: 2049: 329:{\displaystyle {\begin{aligned}&\exp \left(\left((64/9)^{1/3}+o(1)\right)\left(\log n\right)^{1/3}\left(\log \log n\right)^{2/3}\right)\\={}&L_{n}\left\end{aligned}}} 1088: 1053: 786: 473: 2082: 1552:, and these homomorphisms will map each "square root" (typically not represented as a rational number) into its integer representative. Now the product of the factors 1612:
The choice of polynomial can dramatically affect the time to complete the remainder of the algorithm. The method of choosing polynomials based on the expansion of
2597: 2406: 2042: 1710:
software written by Kleinjung, or by msieve, and lattice sieving by GPL software written by Franke and Kleinjung; these are distributed in GGNFS.
2274: 1806: 384:(see below). The general number field sieve, on the other hand, manages to search for smooth numbers that are subexponential in the size of 2216: 2035: 2145: 2322: 351:: while the latter can only factor numbers of a certain special form, the general number field sieve can factor any number apart from 2120: 2015: 1737:(which contains final-processing code, a polynomial selection optimized for smaller numbers and an implementation of the line sieve) 1144: 1695: 2231: 2269: 2206: 2150: 2113: 2411: 2302: 2221: 2211: 1126: 65: 2087: 2239: 2492: 1392:, and we have a better chance for them to be smooth at the same time. The current best-known approach for this search is 2487: 2416: 2317: 2454: 2368: 1865: 358:
The principle of the number field sieve (both special and general) can be understood as an improvement to the simpler
953:
The product of any two such values can be computed by taking the product as polynomials, then reducing any powers of
2533: 2523: 2482: 2258: 2226: 2097: 1752: 1672: 943:{\displaystyle a_{k-1}r^{k-1}+\cdots +a_{1}r^{1}+a_{0}r^{0},{\text{ where }}a_{0},\ldots ,a_{k-1}\in \mathbb {Q} .} 348: 2518: 2459: 1482: 1966: 2421: 2294: 2140: 2092: 1122: 392:. This results in many rather complicated aspects of the algorithm, as compared to the simpler rational sieve. 1679:. A project called NFSNET ran from 2002 through at least 2007. It used volunteer distributed computing on the 744:{\displaystyle {\begin{aligned}(a+bi)(c+di)&=ac+(ad+bc)i+(bd)i^{2}\\&=(ac-bd)+(ad+bc)i.\end{aligned}}} 987: 2436: 2327: 1589: 2547: 2497: 2477: 1188: 1177: 978: 755: 43: 2003:(eds.). "The development of the number field sieve". Lecture Notes in Math. (1993) 1554. Springer-Verlag. 1209:. An optimal strategy for choosing these polynomials is not known; one simple method is to pick a degree 2198: 2173: 2102: 1699: 1628: 51: 2557: 1620:
shown above is suboptimal in many practical situations, leading to the development of better methods.
2552: 2444: 2426: 2401: 2363: 2107: 1880: 1400: 1940: 1846: 2562: 2528: 2449: 2353: 2312: 2307: 2284: 2188: 1114: 1694:
Until 2007, the gold-standard implementation was a suite of software developed and distributed by
1564:
can be obtained as a square in two ways—one for each homomorphism. Thus, one can find two numbers
2393: 2340: 2337: 2178: 2077: 1676: 1528: 1203: 1196: 2134: 2127: 2513: 2469: 2183: 2160: 2011: 1802: 1698:
in the Netherlands, which was available only under a relatively restrictive license. In 2007,
1415:
of squares in our number fields, but that condition can be achieved by this method too. Each
1062: 1027: 760: 456: 969:
as described above, yielding a value in the same form. To ensure that this field is actually
2358: 1888: 1456: 1056: 982: 2348: 2247: 2000: 1393: 1192: 1059:
with integer coefficients. In some cases, this ring of integers is equivalent to the ring
363: 1884: 1823: 2378: 2279: 2264: 2168: 2069: 2007: 1772: 1688: 789: 359: 340: 1411:
to be squares at the same time. A slightly stronger condition is needed—that they are
2591: 2373: 2058: 1996: 1671:
Some implementations focus on a certain smaller class of numbers. These are known as
1369: 371: 31: 2383: 1776: 1724: 1719: 1684: 1505: 973:-dimensional and does not collapse to an even smaller field, it is sufficient that 440: 389: 1893: 1451:, with a "square root" which can be determined (as a product of known factors in 352: 2027: 1915: 1412: 1158: 344: 2061: 2010:. Prime Numbers: A Computational Perspective (2001). 2nd edition, Springer. 61: 47: 2024:
Matthew E. Briggs: An Introduction to the General Number Field Sieve, 1998
1734: 1680: 1396:; to get acceptable yields, it is necessary to use a large factor base. 1714: 17: 1970: 55: 1218: 1584:
and again with probability at least one half we get a factor of
2031: 1707: 1097: 1920:
Presentation at EIDMA-CWI Workshop on Factoring Large Numbers
1866:"On polynomial selection for the general number field sieve" 1729: 1944: 1627:
The best reported results were achieved by the method of
508:. This equation can be used to reduce away any powers of 380:. The size of these values is exponential in the size of 1433:
and hence that the product of the corresponding factors
2578:
indicate that algorithm is for numbers of special forms
1740: 1653:
composed of small prime factors congruent to 1 modulo 2
1353:) is an integer. The goal is to find integer values of 1248:) as the polynomial with the smallest coefficients and 1187:
are chosen, which have integer coefficients, which are
1065: 1030: 990: 763: 459: 406:
or the number of bits in the binary representation of
366:. When using such algorithms to factor a large number 1824:"On quadratic polynomials for the number field sieve" 1119:. In particular, there are no examples or pseudocode. 801: 570: 92: 2018:. Section 6.2: Number field sieve, pp. 278–301. 1455:)—it will typically be represented as an irrational 2506: 2468: 2435: 2392: 2336: 2293: 2197: 2159: 2068: 1082: 1047: 1016: 981:over the rationals. Similarly, one may define the 942: 780: 743: 467: 328: 427:. The running time of the number field sieve is 374:(i.e. numbers with small prime factors) of order 1786:. Vol. 43, no. 12. pp. 1473–1485. 1691:and Richard Wackerbarth of Texas were involved. 561:. This allows us to define the complex product: 355:(which are trivial to factor by taking roots). 1706:Polynomial selection is normally performed by 2043: 8: 1213:for a polynomial, consider the expansion of 1125:. There might be a discussion about this on 1372:relative to the chosen basis of primes. If 2050: 2036: 2028: 1828:Australian Computer Science Communications 395:The size of the input to the algorithm is 1892: 1459:. Similarly, the product of the factors 1145:Learn how and when to remove this message 1067: 1066: 1064: 1032: 1031: 1029: 999: 998: 997: 993: 992: 989: 933: 932: 917: 898: 889: 880: 870: 857: 847: 822: 806: 800: 765: 764: 762: 670: 571: 569: 461: 460: 458: 307: 303: 291: 274: 260: 252: 230: 226: 190: 186: 136: 132: 120: 93: 91: 1017:{\textstyle \mathbb {O} _{\mathbb {Q} }} 1764: 754:In general, this leads directly to the 1090:. However, there are many exceptions. 1388:will be small too, about the size of 788:, which can be defined as the set of 500:as a linear combination of powers of 494:, which can be rearranged to express 7: 1864:Kleinjung, Thorsten (October 2006). 429:super-polynomial but sub-exponential 1914:Paul Leyland (December 12, 2003). 1403:, one can get products of certain 25: 2259:Special number field sieve (SNFS) 2253:General number field sieve (GNFS) 1822:Murphy, B.; Brent, R. P. (1998), 1659:and over leading coefficients of 2598:Integer factorization algorithms 1943:. April 23, 2007. Archived from 1675:techniques, such as used in the 1399:Having enough such pairs, using 1267:Consider the number field rings 1102: 370:, it is necessary to search for 347:. It is a generalization of the 1848:On RSA 200 and larger projects 1313:are integers, then so will be 1305:with integer coefficients, if 1195:, and which, when interpreted 1077: 1071: 1042: 1036: 1009: 1003: 775: 769: 728: 710: 704: 686: 663: 654: 645: 627: 608: 593: 590: 575: 300: 285: 158: 152: 129: 114: 1: 1894:10.1090/S0025-5718-06-01870-9 1289:are roots of the polynomials 2217:Lenstra elliptic curve (ECM) 1232:) for a number of different 552: + 1 = 0 475:(the rational numbers), and 1663:which are divisible by 60. 1608:Improving polynomial choice 410:. Any element of the order 2614: 2524:Exponentiation by squaring 2207:Continued fraction (CFRAC) 1873:Mathematics of Computation 1753:Special number field sieve 1673:special number field sieve 1224:(allowing digits between − 438: 431:in the size of the input. 349:special number field sieve 36:general number field sieve 2571: 1797:Ribenboim, Paulo (1972). 1407:and of the corresponding 1361:that simultaneously make 1083:{\textstyle \mathbb {Z} } 1048:{\textstyle \mathbb {Q} } 781:{\textstyle \mathbb {Q} } 468:{\textstyle \mathbb {Q} } 68:for factoring an integer 1916:"NFSNET: the first year" 1202:, have a common integer 453:-degree polynomial over 2437:Greatest common divisor 1590:greatest common divisor 27:Factorization algorithm 2548:Modular exponentiation 1801:. Wiley-Interscience. 1777:"A Tale of Two Sieves" 1084: 1049: 1018: 979:irreducible polynomial 944: 782: 756:algebraic number field 745: 543:is the imaginary unit 469: 330: 2275:Shanks's square forms 2199:Integer factorization 2174:Sieve of Eratosthenes 2006:Richard Crandall and 1845:Franke, Jens (2006), 1085: 1050: 1019: 945: 783: 746: 479:is a complex root of 470: 331: 83:bits) is of the form 2553:Montgomery reduction 2427:Function field sieve 2402:Baby-step giant-step 2248:Quadratic sieve (QS) 1649:, and searches over 1401:Gaussian elimination 1115:confusing or unclear 1063: 1028: 988: 799: 761: 568: 457: 90: 2563:Trachtenberg system 2529:Integer square root 2470:Modular square root 2189:Wheel factorization 2141:Quadratic Frobenius 2121:Lucas–Lehmer–Riesel 1947:on October 22, 2007 1941:"Welcome to NFSNET" 1885:2006MaCom..75.2037K 1123:clarify the section 1055:which are roots of 2455:Extended Euclidean 2394:Discrete logarithm 2323:Schönhage–Strassen 2179:Sieve of Pritchard 2001:H. W. Lenstra, Jr. 1879:(256): 2037–2047. 1784:Notices of the AMS 1700:Jason Papadopoulos 1677:Cunningham project 1629:Thorsten Kleinjung 1492:is a root of both 1080: 1045: 1014: 940: 778: 741: 739: 524:. For example, if 465: 420:is exponential in 326: 324: 52:factoring integers 2585: 2584: 2184:Sieve of Sundaram 1808:978-0-471-71804-8 1799:Algebraic Numbers 1775:(December 1996). 1329:), which we call 1155: 1154: 1147: 1057:monic polynomials 1024:as the subset of 892: 891: where  16:(Redirected from 2605: 2534:Integer relation 2507:Other algorithms 2412:Pollard kangaroo 2303:Ancient Egyptian 2161:Prime-generating 2146:Solovay–Strassen 2059:Number-theoretic 2052: 2045: 2038: 2029: 1997:Arjen K. Lenstra 1983: 1982: 1980: 1978: 1969:. Archived from 1963: 1957: 1956: 1954: 1952: 1937: 1931: 1930: 1928: 1926: 1911: 1905: 1904: 1902: 1901: 1896: 1870: 1861: 1855: 1854: 1853: 1842: 1836: 1835: 1819: 1813: 1812: 1794: 1788: 1787: 1781: 1769: 1662: 1658: 1652: 1648: 1619: 1615: 1457:algebraic number 1380:are small, then 1150: 1143: 1139: 1136: 1130: 1106: 1105: 1098: 1089: 1087: 1086: 1081: 1070: 1054: 1052: 1051: 1046: 1035: 1023: 1021: 1020: 1015: 1013: 1012: 1002: 996: 983:ring of integers 976: 972: 968: 958: 949: 947: 946: 941: 936: 928: 927: 903: 902: 893: 890: 885: 884: 875: 874: 862: 861: 852: 851: 833: 832: 817: 816: 787: 785: 784: 779: 768: 750: 748: 747: 742: 740: 679: 675: 674: 560: 553: 546: 542: 538: 523: 513: 507: 503: 499: 493: 482: 478: 474: 472: 471: 466: 464: 452: 448: 426: 419: 415: 409: 405: 387: 383: 379: 369: 335: 333: 332: 327: 325: 321: 317: 316: 315: 311: 295: 278: 265: 264: 253: 244: 240: 239: 238: 234: 225: 221: 199: 198: 194: 185: 181: 165: 161: 145: 144: 140: 124: 96: 82: 80: 71: 58: 21: 2613: 2612: 2608: 2607: 2606: 2604: 2603: 2602: 2588: 2587: 2586: 2581: 2567: 2502: 2464: 2431: 2388: 2332: 2289: 2193: 2155: 2128:Proth's theorem 2070:Primality tests 2064: 2056: 2021: 1992: 1987: 1986: 1976: 1974: 1965: 1964: 1960: 1950: 1948: 1939: 1938: 1934: 1924: 1922: 1913: 1912: 1908: 1899: 1897: 1868: 1863: 1862: 1858: 1851: 1844: 1843: 1839: 1821: 1820: 1816: 1809: 1796: 1795: 1791: 1779: 1773:Pomerance, Carl 1771: 1770: 1766: 1761: 1749: 1669: 1667:Implementations 1660: 1654: 1650: 1632: 1631:, which allows 1617: 1613: 1610: 1588:by finding the 1547: 1540: 1508:from the rings 1483:Block Wiedemann 1473:is a square in 1469: 1447:is a square in 1443: 1429: 1394:lattice sieving 1288: 1281: 1151: 1140: 1134: 1131: 1120: 1107: 1103: 1096: 1061: 1060: 1026: 1025: 991: 986: 985: 974: 970: 960: 954: 913: 894: 876: 866: 853: 843: 818: 802: 797: 796: 790:complex numbers 759: 758: 738: 737: 677: 676: 666: 611: 566: 565: 559: = âˆ’1 555: 548: 544: 540: 525: 515: 509: 505: 501: 495: 492:) = 0 484: 480: 476: 455: 454: 450: 446: 443: 437: 421: 417: 416:for a constant 411: 407: 400: 396: 385: 381: 375: 367: 364:quadratic sieve 323: 322: 299: 270: 266: 256: 254: 246: 245: 205: 201: 200: 171: 167: 166: 128: 113: 109: 108: 104: 88: 87: 78: 77: 73: 72:(consisting of 69: 56: 28: 23: 22: 15: 12: 11: 5: 2611: 2609: 2601: 2600: 2590: 2589: 2583: 2582: 2580: 2579: 2572: 2569: 2568: 2566: 2565: 2560: 2555: 2550: 2545: 2531: 2526: 2521: 2516: 2510: 2508: 2504: 2503: 2501: 2500: 2495: 2490: 2488:Tonelli–Shanks 2485: 2480: 2474: 2472: 2466: 2465: 2463: 2462: 2457: 2452: 2447: 2441: 2439: 2433: 2432: 2430: 2429: 2424: 2422:Index calculus 2419: 2417:Pohlig–Hellman 2414: 2409: 2404: 2398: 2396: 2390: 2389: 2387: 2386: 2381: 2376: 2371: 2369:Newton-Raphson 2366: 2361: 2356: 2351: 2345: 2343: 2334: 2333: 2331: 2330: 2325: 2320: 2315: 2310: 2305: 2299: 2297: 2295:Multiplication 2291: 2290: 2288: 2287: 2282: 2280:Trial division 2277: 2272: 2267: 2265:Rational sieve 2262: 2255: 2250: 2245: 2237: 2229: 2224: 2219: 2214: 2209: 2203: 2201: 2195: 2194: 2192: 2191: 2186: 2181: 2176: 2171: 2169:Sieve of Atkin 2165: 2163: 2157: 2156: 2154: 2153: 2148: 2143: 2138: 2131: 2124: 2117: 2110: 2105: 2100: 2095: 2093:Elliptic curve 2090: 2085: 2080: 2074: 2072: 2066: 2065: 2057: 2055: 2054: 2047: 2040: 2032: 2026: 2025: 2020: 2019: 2008:Carl Pomerance 2004: 1993: 1991: 1988: 1985: 1984: 1973:on May 9, 2008 1967:"About NFSNET" 1958: 1932: 1906: 1856: 1837: 1814: 1807: 1789: 1763: 1762: 1760: 1757: 1756: 1755: 1748: 1745: 1744: 1743: 1738: 1732: 1727: 1725:factor by gnfs 1722: 1717: 1689:United Kingdom 1668: 1665: 1609: 1606: 1545: 1538: 1527:(the integers 1467: 1441: 1427: 1286: 1279: 1153: 1152: 1110: 1108: 1101: 1095: 1092: 1079: 1076: 1073: 1069: 1044: 1041: 1038: 1034: 1011: 1008: 1005: 1001: 995: 959:with exponent 951: 950: 939: 935: 931: 926: 923: 920: 916: 912: 909: 906: 901: 897: 888: 883: 879: 873: 869: 865: 860: 856: 850: 846: 842: 839: 836: 831: 828: 825: 821: 815: 812: 809: 805: 777: 774: 771: 767: 752: 751: 736: 733: 730: 727: 724: 721: 718: 715: 712: 709: 706: 703: 700: 697: 694: 691: 688: 685: 682: 680: 678: 673: 669: 665: 662: 659: 656: 653: 650: 647: 644: 641: 638: 635: 632: 629: 626: 623: 620: 617: 614: 612: 610: 607: 604: 601: 598: 595: 592: 589: 586: 583: 580: 577: 574: 573: 537: + 1 533:) =  514:with exponent 463: 439:Main article: 436: 433: 398: 372:smooth numbers 360:rational sieve 337: 336: 320: 314: 310: 306: 302: 298: 294: 290: 287: 284: 281: 277: 273: 269: 263: 259: 255: 251: 248: 247: 243: 237: 233: 229: 224: 220: 217: 214: 211: 208: 204: 197: 193: 189: 184: 180: 177: 174: 170: 164: 160: 157: 154: 151: 148: 143: 139: 135: 131: 127: 123: 119: 116: 112: 107: 103: 100: 97: 95: 75: 42:) is the most 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 2610: 2599: 2596: 2595: 2593: 2577: 2574: 2573: 2570: 2564: 2561: 2559: 2556: 2554: 2551: 2549: 2546: 2543: 2539: 2535: 2532: 2530: 2527: 2525: 2522: 2520: 2517: 2515: 2512: 2511: 2509: 2505: 2499: 2496: 2494: 2491: 2489: 2486: 2484: 2483:Pocklington's 2481: 2479: 2476: 2475: 2473: 2471: 2467: 2461: 2458: 2456: 2453: 2451: 2448: 2446: 2443: 2442: 2440: 2438: 2434: 2428: 2425: 2423: 2420: 2418: 2415: 2413: 2410: 2408: 2405: 2403: 2400: 2399: 2397: 2395: 2391: 2385: 2382: 2380: 2377: 2375: 2372: 2370: 2367: 2365: 2362: 2360: 2357: 2355: 2352: 2350: 2347: 2346: 2344: 2342: 2339: 2335: 2329: 2326: 2324: 2321: 2319: 2316: 2314: 2311: 2309: 2306: 2304: 2301: 2300: 2298: 2296: 2292: 2286: 2283: 2281: 2278: 2276: 2273: 2271: 2268: 2266: 2263: 2261: 2260: 2256: 2254: 2251: 2249: 2246: 2244: 2242: 2238: 2236: 2234: 2230: 2228: 2227:Pollard's rho 2225: 2223: 2220: 2218: 2215: 2213: 2210: 2208: 2205: 2204: 2202: 2200: 2196: 2190: 2187: 2185: 2182: 2180: 2177: 2175: 2172: 2170: 2167: 2166: 2164: 2162: 2158: 2152: 2149: 2147: 2144: 2142: 2139: 2137: 2136: 2132: 2130: 2129: 2125: 2123: 2122: 2118: 2116: 2115: 2111: 2109: 2106: 2104: 2101: 2099: 2096: 2094: 2091: 2089: 2086: 2084: 2081: 2079: 2076: 2075: 2073: 2071: 2067: 2063: 2060: 2053: 2048: 2046: 2041: 2039: 2034: 2033: 2030: 2023: 2022: 2017: 2016:0-387-25282-7 2013: 2009: 2005: 2002: 1998: 1995: 1994: 1989: 1972: 1968: 1962: 1959: 1946: 1942: 1936: 1933: 1921: 1917: 1910: 1907: 1895: 1890: 1886: 1882: 1878: 1874: 1867: 1860: 1857: 1850: 1849: 1841: 1838: 1833: 1829: 1825: 1818: 1815: 1810: 1804: 1800: 1793: 1790: 1785: 1778: 1774: 1768: 1765: 1758: 1754: 1751: 1750: 1746: 1742: 1739: 1736: 1733: 1731: 1728: 1726: 1723: 1721: 1718: 1716: 1713: 1712: 1711: 1709: 1704: 1701: 1697: 1692: 1690: 1686: 1682: 1678: 1674: 1666: 1664: 1657: 1647: 1644: +  1643: 1639: 1635: 1630: 1625: 1621: 1607: 1605: 1603: 1600: âˆ’  1599: 1595: 1591: 1587: 1583: 1580:divisible by 1579: 1576: âˆ’  1575: 1571: 1567: 1563: 1559: 1556: âˆ’  1555: 1551: 1544: 1537: 1534:), which map 1533: 1532: 1526: 1523: 1519: 1515: 1511: 1507: 1506:homomorphisms 1503: 1499: 1495: 1491: 1486: 1484: 1480: 1479:Block Lanczos 1476: 1472: 1466: 1463: âˆ’  1462: 1458: 1454: 1450: 1446: 1440: 1437: âˆ’  1436: 1432: 1426: 1423: âˆ’  1422: 1419:is a norm of 1418: 1414: 1410: 1406: 1402: 1397: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1368: 1364: 1360: 1356: 1352: 1348: 1344: 1340: 1336: 1333:. Similarly, 1332: 1328: 1324: 1320: 1316: 1312: 1308: 1304: 1301:is of degree 1300: 1296: 1292: 1285: 1278: 1274: 1270: 1265: 1263: 1260: âˆ’  1259: 1255: 1251: 1247: 1243: 1239: 1235: 1231: 1227: 1223: 1222: 1216: 1212: 1208: 1205: 1201: 1200: 1194: 1190: 1186: 1182: 1179: 1175: 1171: 1167: 1163: 1160: 1149: 1146: 1138: 1128: 1127:the talk page 1124: 1118: 1116: 1111:This section 1109: 1100: 1099: 1093: 1091: 1074: 1058: 1039: 1006: 984: 980: 967: 963: 957: 937: 929: 924: 921: 918: 914: 910: 907: 904: 899: 895: 886: 881: 877: 871: 867: 863: 858: 854: 848: 844: 840: 837: 834: 829: 826: 823: 819: 813: 810: 807: 803: 795: 794: 793: 791: 772: 757: 734: 731: 725: 722: 719: 716: 713: 707: 701: 698: 695: 692: 689: 683: 681: 671: 667: 660: 657: 651: 648: 642: 639: 636: 633: 630: 624: 621: 618: 615: 613: 605: 602: 599: 596: 587: 584: 581: 578: 564: 563: 562: 558: 551: 536: 532: 528: 522: 518: 512: 498: 491: 487: 442: 435:Number fields 434: 432: 430: 425: 414: 404: 393: 391: 390:number fields 378: 373: 365: 361: 356: 354: 350: 346: 342: 318: 312: 308: 304: 296: 292: 288: 282: 279: 275: 271: 267: 261: 257: 249: 241: 235: 231: 227: 222: 218: 215: 212: 209: 206: 202: 195: 191: 187: 182: 178: 175: 172: 168: 162: 155: 149: 146: 141: 137: 133: 125: 121: 117: 110: 105: 101: 98: 86: 85: 84: 67: 63: 62:Heuristically 59: 53: 49: 45: 41: 37: 33: 32:number theory 19: 2575: 2257: 2252: 2240: 2232: 2151:Miller–Rabin 2133: 2126: 2119: 2114:Lucas–Lehmer 2112: 1975:. Retrieved 1971:the original 1961: 1949:. Retrieved 1945:the original 1935: 1923:. Retrieved 1919: 1909: 1898:. Retrieved 1876: 1872: 1859: 1847: 1840: 1831: 1827: 1817: 1798: 1792: 1783: 1767: 1705: 1693: 1685:Paul Leyland 1670: 1655: 1645: 1641: 1637: 1633: 1626: 1622: 1611: 1601: 1597: 1593: 1585: 1581: 1577: 1573: 1569: 1565: 1561: 1557: 1553: 1549: 1542: 1535: 1530: 1524: 1521: 1517: 1516:to the ring 1513: 1509: 1504:, there are 1501: 1497: 1493: 1489: 1487: 1474: 1470: 1464: 1460: 1452: 1448: 1444: 1438: 1434: 1430: 1424: 1420: 1416: 1408: 1404: 1398: 1389: 1385: 1381: 1377: 1373: 1366: 1362: 1358: 1354: 1350: 1346: 1342: 1338: 1334: 1330: 1326: 1322: 1318: 1314: 1310: 1306: 1302: 1298: 1294: 1290: 1283: 1276: 1272: 1268: 1266: 1261: 1257: 1253: 1249: 1245: 1241: 1237: 1233: 1229: 1225: 1220: 1214: 1210: 1206: 1198: 1184: 1180: 1173: 1169: 1165: 1161: 1156: 1141: 1132: 1121:Please help 1112: 965: 961: 955: 952: 753: 556: 549: 534: 530: 526: 520: 516: 510: 496: 489: 485: 444: 441:Number field 428: 423: 412: 402: 394: 376: 357: 353:prime powers 338: 54:larger than 39: 35: 29: 2407:Pollard rho 2364:Goldschmidt 2098:Pocklington 2088:Baillie–PSW 1485:are used. 1240:, and pick 1189:irreducible 1176:) of small 1159:polynomials 345:L-notations 2519:Cornacchia 2514:Chakravala 2062:algorithms 1990:References 1900:2007-12-13 1117:to readers 792:given by: 504:less than 66:complexity 50:known for 46:classical 2493:Berlekamp 2450:Euclidean 2338:Euclidean 2318:Toom–Cook 2313:Karatsuba 1977:August 9, 1951:August 9, 1925:August 9, 1834:: 199–213 1236:of order 1193:rationals 1191:over the 930:∈ 922:− 908:… 838:⋯ 827:− 811:− 696:− 422:log  216:⁡ 210:⁡ 176:⁡ 102:⁡ 48:algorithm 44:efficient 2592:Category 2460:Lehmer's 2354:Chunking 2341:division 2270:Fermat's 1747:See also 1730:CADO-NFS 1715:NFS@Home 1681:Internet 1616:in base 1297:. Since 1275:, where 1135:May 2021 483:. Then, 445:Suppose 2576:Italics 2498:Kunerth 2478:Cipolla 2359:Fourier 2328:FĂŒrer's 2222:Euler's 2212:Dixon's 2135:PĂ©pin's 1881:Bibcode 1687:of the 1572:, with 1529:modulo 1178:degrees 1113:may be 547:, then 2558:Schoof 2445:Binary 2349:Binary 2285:Shor's 2103:Fermat 2014:  1805:  1741:kmGNFS 1735:msieve 1488:Since 1370:smooth 1168:) and 1094:Method 977:is an 401:  64:, its 34:, the 18:NFSNet 2379:Short 2108:Lucas 1869:(PDF) 1852:(PDF) 1780:(PDF) 1759:Notes 1720:GGNFS 1413:norms 1256:) as 1219:base 554:, or 449:is a 81:⌋ + 1 2374:Long 2308:Long 2012:ISBN 1999:and 1979:2011 1953:2011 1927:2011 1803:ISBN 1640:) = 1596:and 1568:and 1560:mod 1541:and 1512:and 1500:mod 1496:and 1384:and 1376:and 1365:and 1357:and 1309:and 1293:and 1282:and 1271:and 1228:and 1204:root 1197:mod 1183:and 1157:Two 539:and 343:and 74:⌊log 40:GNFS 2538:LLL 2384:SRT 2243:+ 1 2235:− 1 2083:APR 2078:AKS 1889:doi 1708:GPL 1696:CWI 1592:of 1548:to 1481:or 1217:in 397:log 362:or 339:in 213:log 207:log 173:log 99:exp 30:In 2594:: 2542:KZ 2540:; 1918:. 1887:. 1877:75 1875:. 1871:. 1832:20 1830:, 1826:, 1782:. 1683:. 1642:ax 1604:. 1558:mb 1337:= 1264:. 964:≄ 519:≄ 289:64 118:64 60:. 57:10 2544:) 2536:( 2241:p 2233:p 2051:e 2044:t 2037:v 1981:. 1955:. 1929:. 1903:. 1891:: 1883:: 1811:. 1661:f 1656:d 1651:a 1646:b 1638:x 1636:( 1634:g 1618:m 1614:n 1602:y 1598:x 1594:n 1586:n 1582:n 1578:y 1574:x 1570:y 1566:x 1562:n 1554:a 1550:m 1546:2 1543:r 1539:1 1536:r 1531:n 1525:Z 1522:n 1520:/ 1518:Z 1514:Z 1510:Z 1502:n 1498:g 1494:f 1490:m 1475:Z 1471:b 1468:2 1465:r 1461:a 1453:Z 1449:Z 1445:b 1442:1 1439:r 1435:a 1431:b 1428:1 1425:r 1421:a 1417:r 1409:s 1405:r 1390:m 1386:s 1382:r 1378:b 1374:a 1367:s 1363:r 1359:b 1355:a 1351:b 1349:/ 1347:a 1345:( 1343:g 1341:· 1339:b 1335:s 1331:r 1327:b 1325:/ 1323:a 1321:( 1319:f 1317:· 1315:b 1311:b 1307:a 1303:d 1299:f 1295:g 1291:f 1287:2 1284:r 1280:1 1277:r 1273:Z 1269:Z 1262:m 1258:x 1254:x 1252:( 1250:g 1246:x 1244:( 1242:f 1238:n 1234:m 1230:m 1226:m 1221:m 1215:n 1211:d 1207:m 1199:n 1185:e 1181:d 1174:x 1172:( 1170:g 1166:x 1164:( 1162:f 1148:) 1142:( 1137:) 1133:( 1129:. 1078:] 1075:r 1072:[ 1068:Z 1043:] 1040:r 1037:[ 1033:Q 1010:] 1007:r 1004:[ 1000:Q 994:O 975:f 971:k 966:k 962:e 956:r 938:. 934:Q 925:1 919:k 915:a 911:, 905:, 900:0 896:a 887:, 882:0 878:r 872:0 868:a 864:+ 859:1 855:r 849:1 845:a 841:+ 835:+ 830:1 824:k 820:r 814:1 808:k 804:a 776:] 773:r 770:[ 766:Q 735:. 732:i 729:) 726:c 723:b 720:+ 717:d 714:a 711:( 708:+ 705:) 702:d 699:b 693:c 690:a 687:( 684:= 672:2 668:i 664:) 661:d 658:b 655:( 652:+ 649:i 646:) 643:c 640:b 637:+ 634:d 631:a 628:( 625:+ 622:c 619:a 616:= 609:) 606:i 603:d 600:+ 597:c 594:( 591:) 588:i 585:b 582:+ 579:a 576:( 557:i 550:i 545:i 541:r 535:x 531:x 529:( 527:f 521:k 517:e 511:r 506:k 502:r 497:r 490:r 488:( 486:f 481:f 477:r 462:Q 451:k 447:f 424:n 418:c 413:n 408:n 403:n 399:2 386:n 382:n 377:n 368:n 341:O 319:] 313:3 309:/ 305:1 301:) 297:9 293:/ 286:( 283:, 280:3 276:/ 272:1 268:[ 262:n 258:L 250:= 242:) 236:3 232:/ 228:2 223:) 219:n 203:( 196:3 192:/ 188:1 183:) 179:n 169:( 163:) 159:) 156:1 153:( 150:o 147:+ 142:3 138:/ 134:1 130:) 126:9 122:/ 115:( 111:( 106:( 79:n 76:2 70:n 38:( 20:)

Index

NFSNet
number theory
efficient
algorithm
factoring integers
10
Heuristically
complexity
O
L-notations
special number field sieve
prime powers
rational sieve
quadratic sieve
smooth numbers
number fields
Number field
algebraic number field
complex numbers
irreducible polynomial
ring of integers
monic polynomials
confusing or unclear
clarify the section
the talk page
Learn how and when to remove this message
polynomials
degrees
irreducible
rationals

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑