Knowledge (XXG)

Nanoflare

Source 📝

273: 269:
covering very large areas on the Sun: if nanoflares would have heated the whole corona, then they should be distributed so uniformly so as to look like a steady heating. Flares themselves – and microflares, which when studied in detail seem to have the same physics – are highly intermittent in space and time, and would not therefore be relevant to any requirement for continuous heating. On the other hand, in order to explain very rapid and energetic phenomena such as solar flares, the magnetic field should be structured on distances of the order of the metre.
202: 115: 166:
reconnection, occurring at nearly the same time on small length-scales wherever in the corona, are very numerous, each providing an imperceptibly small fraction of the total energy required in a macroscopic event. These nanoflares might themselves resemble very tiny flares, close one to each other, both in time and in space, effectively heating the corona and underlying many of the phenomena of solar magnetic activity.
304:. Anyway, wavetrain periods observed in the high chromosphere and in the lower transition region are of the order of 3-5 min. These times are longer than the time taken by Alfvén waves to cross a typical coronal loop. This means that most of the dissipative mechanisms may provide enough energy only at distances further from the solar corona. More probably, the Alfvén waves are responsible for the acceleration of the 1751: 20: 370: 384: 398: 154:. These macroscopic signs of solar activity are considered by astrophysicists as the phenomenology related to events of relaxation of stressed magnetic fields, during which part of the energy they have stored is released ultimately into particle kinetic energy (heating); this could be via current dissipation, 233:
where the temperature is about 10 -10 K, radiative losses are too high to be balanced by any form of mechanical heating. The very high temperature gradient observed in this range of temperatures increases the conductive flux in order to supply for the irradiated power. In other words, the transition
224:
is highly ionized and the magnetic field is well organized, the thermal conduction is a competitive process. The energy losses due to the thermal conduction are of the same order of coronal radiative losses. The energy released in the corona which is not radiated externally is conducted back towards
188:
One of the experimental results often cited in supporting the nanoflare theory is the fact that the distribution of the number of flares observed in the hard X-rays is a function of their energy, following a power law with negative spectral index. A sufficiently large power-law index would allow the
97:
emission, over an area of one square arcsec on the Sun, a nanoflare of 10 J should happen every 20 seconds, and 1000 nanoflares per second should occur in a large active region of 10 x 10 km. On the basis of this theory, the emission coming from a big flare could be caused by a series of nanoflares,
315:
The theory initially developed by Parker of micro-nanoflares is one of those explaining the heating of the corona as the dissipation of electric currents generated by a spontaneous relaxation of the magnetic field towards a configuration of lower energy. The magnetic energy is thus transformed into
268:
The problem of coronal heating is complicated by the fact that different coronal features require very different amounts of energy. It is difficult to believe that very dynamic and energetic phenomena such as flares and coronal mass ejections share the same source of energy with stable structures
165:
to explain these outbursts. Rather than a single large-scale episode of such a process, though, modern thinking suggests that a multitude of small-scale versions reconnection, cascading together, might be a better description. The theory of nanoflares then supposes that these events of magnetic
241:
The solar convection can supply the required heating, but in a way not yet known in detail. Actually, it is still unclear how this energy is transmitted from the chromosphere(where it could be absorbed or reflected), and then dissipated into the corona instead of dispersing into the solar wind.
106:, are not adequately sensitive to the range in which this faint emission occurs, making a confident detection impossible. Recent evidence from the EUNIS sounding rocket has provided some spectral evidence for non-flaring plasma at temperatures near 9 MK in active region cores. 358:. These loops were observed to undergo rapid heating from temperatures of a few thousand degrees Celsius to several million degrees within a span of tens of seconds, followed by a gradual cooldown, delivering enough energy to heat the corona to multi-million degree Celsius. 101:
The nanoflare model has long suffered from a lack of observational evidence. Simulations predict that nanoflares produce a faint, hot (~10 MK) component of the emission measure. Current instruments, such as the Extreme-Ultraviolet Imaging Spectrometer on board
234:
region is so steep (the temperature increases from 10kK to 1MK in a distance of the order of 100 km) because the thermal conduction from the superior hotter atmosphere must balance the high radiative losses, as indicated to the numerous
189:
smallest events to dominate the total energy. In the energy range of normal flares, the index has a value of approximately -1.8 . This falls short of the power-law index which would be required order to maintain the heating of the
149:
Many flux tubes are relatively stable as seen in soft X-ray images, emitting at steady rate. However flickerings, brightenings, small explosions, bright points, flares and mass eruptions are observed very frequently, especially in
1067:
Poletto G; Vaiana GS; Zombeck MV; Krieger AS; et al. (Sep 1975). "A comparison of coronal X-ray structures of active regions with magnetic fields computed from photospheric observations".
146:, which can be seen in the EUV and X-ray images (see the figure on the left), often confine very hot plasmas, with emissions characteristic of temperature of a one to a few million degrees. 209:
The problem of coronal heating is still unsolved, although research is ongoing and other evidence of nanoflares has been found in the solar corona. The amount of energy stored in the
350:
In 2020, a study published in Nature reported the first observation of the complete lifecycle of a nanoflare. The researchers documented the process of selective ion heating via
185:, the stressing of the magnetic field should be enhanced until a small perturbation switches on many small instabilities, happening together as it occurs in avalanches. 181:
could be provoked by cascade effects, similar to those described by the mathematical theories of catastrophes. In the hypothesis that the solar corona is in a state of
93:, and conducted by the free electrons along the magnetic field lines closer to the place where the nanoflare switches on. In order to heat a region of very high 347:, while more energy is released in turbulent regimes when nanoflares happen at much smaller scale-lengths, where non-linear effects are not negligible. 546:(2042). The original reference to Gold's discussion is not available online, but is the second reference made within the paper itself: 20140260. 328:
at small length-scales without a simultaneous alteration of the magnetic field lines at large length-scales. In this way it can be explained why
1281: 1575: 1261: 193:
via the nanoflare hypothesis, . A power-law index greater than -2 is required to maintain the temperature observed in the corona.
1110:
Rappazzo, A. F.; Velli, M.; Einaudi, G.; Dahlburg, R. B. (2008). "Nonlinear Dynamics of the Parker Scenario for Coronal Heating".
1210: 939:
Porter, J. G.; Fontenla, J. M.; Simnett, G. M. (1995). "Simultaneous ultraviolet and X-ray observations of solar microflares".
1731: 272: 54:
The hypothesis of small impulsive heating events as a possible explanation of the coronal heating was first suggested by
1736: 814:
Datlowe, D.W.; Elcan, M. J.; Hudson, H. S. (1974). "OSO-7 observations of solar x-rays in the energy range 10?100 keV".
724:
Winebarger, Amy; Warren, Harry; Schmelz, Joan; Cirtain, Jonathan; Mulu-Moor, Fana; Golub, Leon; Kobayashi, Ken (2012).
261:
The importance of the magnetic field is recognized by all the scientists: there is a strict correspondence between the
1534: 775:"Pervasive Faint Fe XIX Emission from a Solar Active Region Observed with EUNIS-13: Evidence for Nanoflare Heating" 335:
The Ohmic dissipation by currents could be a valid alternative to explain the coronal activity. For many years the
182: 1712: 1775: 437: 214: 857:
Lin, R. P.; Schwartz, R. A.; Kane, S. R.; Pelling, R. M.; et al. (1984). "Solar hard X-ray microflares".
265:, where the irradiated flux is higher (especially in the X-rays), and the regions of intense magnetic field. 77:. The plasma motion (thought as fluid motion) occurs at length-scales so small that it is soon damped by the 1407: 472: 297: 230: 262: 1706: 1549: 1442: 178: 27:
AR10923, observed close to center of the sun's disk. Blue regions indicate plasma near 10 million degrees
1602: 1422: 1254: 447: 432: 351: 336: 321: 213:
can account for the coronal heating necessary to maintain the plasma at this temperature and to balance
162: 66: 1686: 1656: 1474: 1291: 1176: 1129: 1076: 1026: 983: 948: 905: 866: 823: 786: 737: 690: 604: 547: 210: 131: 70: 1506: 1017:
Withbroe, G. L.; Noyes, R. W. (1977). "Mass and energy flow in the solar chromosphere and corona".
375: 24: 1233: 540:
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
513: 1592: 1324: 1145: 1119: 1092: 999: 921: 839: 755: 706: 680: 103: 1726: 1641: 1447: 1192: 653: 573: 1432: 1341: 1247: 1184: 1137: 1084: 1034: 1030: 991: 956: 913: 874: 831: 794: 745: 698: 645: 612: 563: 555: 389: 221: 201: 135: 74: 1165:"The origin of reconnection-mediated transient brightenings in the solar transition region" 1666: 1646: 1621: 1516: 1461: 1437: 1314: 492: 19: 285: 1180: 1133: 1080: 1038: 987: 952: 909: 870: 827: 790: 741: 694: 608: 551: 536:"Modelling nanoflares in active regions and implications for coronal heating mechanisms" 320:. The braiding of the field lines of the coronal magnetic flux tubes provokes events of 1636: 1616: 1611: 1399: 1304: 568: 535: 462: 452: 417: 344: 325: 235: 799: 774: 750: 725: 1769: 1681: 1676: 1651: 1580: 1570: 1491: 1486: 1481: 1384: 1361: 1346: 1164: 1096: 1003: 925: 843: 759: 710: 442: 427: 422: 355: 329: 317: 309: 155: 143: 119: 59: 1149: 1780: 1754: 1661: 1631: 1626: 1587: 1417: 1412: 1389: 1371: 1351: 974:
Hudson; H.S. (1991). "Solar flares, microflares, nanoflares, and coronal heating".
412: 340: 301: 293: 255: 246:
or mainly in the higher corona, where the magnetic field lines open into the space
243: 226: 190: 114: 40: 1163:
Bahauddin, Shah Mohammad; Bradshaw, Stephen J.; Winebarger, Amy R. (March 2021).
1597: 1544: 1539: 1526: 1511: 1496: 1469: 1379: 1333: 467: 457: 403: 289: 247: 220:
The radiation is not the only mechanism of energy loss in the corona: since the
174: 139: 55: 1188: 633: 1671: 1501: 1309: 1299: 702: 477: 365: 305: 251: 78: 44: 1196: 657: 1554: 82: 577: 559: 1696: 685: 726:"Defining the Blind-Spot of Hinode EIS and XRT Temperature Measurements" 238:, which are formed from ionized atoms (oxygen, carbon, iron and so on). 1356: 1088: 995: 917: 835: 593:"Topological Dissipation and the Small-scale Fields in Turbulent Gases" 487: 170: 151: 514:"NASA - Tiny Flares Responsible for Outsized Heat of Sun's Atmosphere" 300:, carrying an energy flux comparable to that required to sustain the 277: 86: 28: 893: 142:, expands into roughly semicircular structures in the corona. These 1141: 960: 878: 649: 617: 592: 397: 1211:"This May Be the First Complete Observation of a Nanoflare - NASA" 1124: 271: 200: 123: 113: 94: 18: 1691: 671:
Klimchuk, Jim (2006). "On Solving the Coronal Heating Problem".
343:. However this heating mechanism is not very efficient in large 90: 1243: 1056:. D.Reidel Publishing Company, Dordrecht, Holland. p. 208. 1270: 1236:
Tiny Flares Responsible for Outsized Heat of Sun's Atmosphere.
482: 48: 534:
Cargill, P. J.; Warren, H. P.; Bradshaw, S. J. (2015-05-28).
39:
is a very small episodic heating event which happens in the
1239: 65:
According to Parker a nanoflare arises from an event of
134:, which theoretically is "frozen" into the gas of the 242:
Furthermore, where does it occur exactly? In the low
58:
and then later developed and dubbed "nanoflares" by
1719: 1705: 1563: 1525: 1460: 1398: 1370: 1332: 1323: 1290: 773:Brosius, Jeffrey; Adrian, Daw; Rabin, D.M. (2014). 161:Theoretical work often appeals to the concept of 158:, or any of several non-thermal plasma effects. 354:within low-lying, previously unresolved solar 1255: 339:has been invoked as the main power source of 8: 1019:Annual Review of Astronomy and Astrophysics 1329: 1262: 1248: 1240: 1123: 798: 749: 684: 616: 567: 130:Telescopic observations suggest that the 332:are stable and so hot at the same time. 69:which converts the energy stored in the 23:"This false-color temperature map shows 634:"Nanoflares and the solar X-ray corona" 505: 288:generated by convective motions in the 276:Solar Flare and Coronal Mass Ejection ( 31:." Credit: Reale, et al. (2009), NASA. 7: 1039:10.1146/annurev.aa.15.090177.002051 169:Episodic heating often observed in 14: 730:The Astrophysical Journal Letters 173:, including major events such as 1750: 1749: 396: 382: 368: 324:with a consequent change of the 110:Nanoflares and coronal activity 197:Nanoflares and coronal heating 16:Type of episodic heating event 1: 1732:List of heliophysics missions 98:not observable individually. 1737:Category:Missions to the Sun 1054:Solar Magneto-hydrodynamics 800:10.1088/0004-637X/790/2/112 751:10.1088/2041-8205/746/2/L17 632:Parker, E. N. (July 1988). 1797: 1189:10.1038/s41550-020-01263-2 591:Parker, Eugene N. (1972). 205:Solar Magnetic Field Lines 183:self-organized criticality 89:is quickly converted into 1745: 1713:G-type main-sequence star 1277: 1112:The Astrophysical Journal 941:The Astrophysical Journal 894:"Solar hard X-ray bursts" 892:Dennis, Brian R. (1985). 859:The Astrophysical Journal 779:The Astrophysical Journal 703:10.1007/s11207-006-0055-z 638:The Astrophysical Journal 597:The Astrophysical Journal 1576:In mythology and culture 438:Coronal radiative losses 215:coronal radiative losses 1031:1977ARA&A..15..363W 473:Solar transition region 229:along the arcs. In the 73:into the motion of the 1443:Supra-arcade downflows 560:10.1098/rsta.2014.0260 281: 206: 179:coronal mass ejections 127: 32: 1423:Coronal mass ejection 1052:Priest, Eric (1982). 448:Magnetic reconnection 433:Coronal mass ejection 352:magnetic reconnection 337:magnetic reconnection 322:magnetic reconnection 275: 204: 163:magnetic reconnection 117: 67:magnetic reconnection 22: 1687:Standard solar model 1657:Solar radio emission 1475:List of solar cycles 211:solar magnetic field 132:solar magnetic field 85:. In such a way the 71:solar magnetic field 1507:Magnetic switchback 1181:2021NatAs...5..237B 1134:2008ApJ...677.1348R 1081:1975SoPh...44...83P 988:1991SoPh..133..357H 953:1995ApJ...438..472P 910:1985SoPh..100..465D 871:1984ApJ...283..421L 828:1974SoPh...39..155D 791:2014ApJ...790..112B 742:2012ApJ...746L..17W 695:2006SoPh..234...41K 609:1972ApJ...174..499P 552:2015RSPTA.37340260C 376:Solar System portal 292:can go through the 25:solar active region 1697:Sunlight radiation 1292:Internal structure 1089:10.1007/BF00156848 996:10.1007/BF00149894 918:10.1007/BF00158441 836:10.1007/BF00154978 282: 207: 128: 33: 1763: 1762: 1727:Solar observatory 1642:Solar observation 1540:Termination shock 1456: 1455: 1408:Transition region 298:transition region 231:transition region 1788: 1753: 1752: 1342:Supergranulation 1330: 1264: 1257: 1250: 1241: 1221: 1220: 1218: 1217: 1207: 1201: 1200: 1169:Nature Astronomy 1160: 1154: 1153: 1127: 1118:(2): 1348–1366. 1107: 1101: 1100: 1064: 1058: 1057: 1049: 1043: 1042: 1014: 1008: 1007: 971: 965: 964: 936: 930: 929: 904:(1–2): 465–490. 889: 883: 882: 854: 848: 847: 811: 805: 804: 802: 770: 764: 763: 753: 721: 715: 714: 688: 686:astro-ph/0511841 668: 662: 661: 629: 623: 622: 620: 588: 582: 581: 571: 531: 525: 524: 522: 520: 510: 406: 401: 400: 392: 390:Astronomy portal 387: 386: 385: 378: 373: 372: 371: 118:Typical flaring 81:and then by the 1796: 1795: 1791: 1790: 1789: 1787: 1786: 1785: 1776:Solar phenomena 1766: 1765: 1764: 1759: 1741: 1715: 1701: 1667:Solar telescope 1647:Solar phenomena 1622:Solar astronomy 1559: 1521: 1517:Helioseismology 1452: 1438:Helmet streamer 1394: 1366: 1319: 1315:Convection zone 1286: 1273: 1268: 1230: 1225: 1224: 1215: 1213: 1209: 1208: 1204: 1162: 1161: 1157: 1109: 1108: 1104: 1066: 1065: 1061: 1051: 1050: 1046: 1016: 1015: 1011: 973: 972: 968: 938: 937: 933: 891: 890: 886: 856: 855: 851: 813: 812: 808: 772: 771: 767: 723: 722: 718: 670: 669: 665: 631: 630: 626: 590: 589: 585: 533: 532: 528: 518: 516: 512: 511: 507: 502: 497: 493:X-ray astronomy 402: 395: 388: 383: 381: 374: 369: 367: 364: 199: 126:in the EUV rays 112: 43:, the external 17: 12: 11: 5: 1794: 1792: 1784: 1783: 1778: 1768: 1767: 1761: 1760: 1758: 1757: 1746: 1743: 1742: 1740: 1739: 1734: 1729: 1723: 1721: 1717: 1716: 1711: 1709: 1707:Spectral class 1703: 1702: 1700: 1699: 1694: 1689: 1684: 1679: 1674: 1669: 1664: 1659: 1654: 1649: 1644: 1639: 1637:Solar neutrino 1634: 1629: 1624: 1619: 1617:Solar activity 1614: 1612:Sun in fiction 1609: 1608: 1607: 1606: 1605: 1590: 1585: 1584: 1583: 1578: 1567: 1565: 1561: 1560: 1558: 1557: 1552: 1547: 1542: 1537: 1531: 1529: 1523: 1522: 1520: 1519: 1514: 1509: 1504: 1499: 1494: 1489: 1484: 1479: 1478: 1477: 1466: 1464: 1458: 1457: 1454: 1453: 1451: 1450: 1448:Alfvén surface 1445: 1440: 1435: 1430: 1425: 1420: 1415: 1410: 1404: 1402: 1396: 1395: 1393: 1392: 1387: 1382: 1376: 1374: 1368: 1367: 1365: 1364: 1359: 1354: 1349: 1344: 1338: 1336: 1327: 1321: 1320: 1318: 1317: 1312: 1307: 1305:Radiation zone 1302: 1296: 1294: 1288: 1287: 1285: 1284: 1278: 1275: 1274: 1269: 1267: 1266: 1259: 1252: 1244: 1238: 1237: 1229: 1228:External links 1226: 1223: 1222: 1202: 1175:(3): 237–245. 1155: 1142:10.1086/528786 1102: 1059: 1044: 1009: 966: 961:10.1086/175091 931: 884: 879:10.1086/162321 849: 822:(1): 155–174. 806: 765: 716: 663: 650:10.1086/166485 624: 618:10.1086/151512 583: 526: 504: 503: 501: 498: 496: 495: 490: 485: 480: 475: 470: 465: 463:Plasma physics 460: 455: 453:Neupert effect 450: 445: 440: 435: 430: 425: 420: 418:Stellar corona 415: 409: 408: 407: 393: 379: 363: 360: 345:current sheets 326:magnetic field 263:active regions 250:, driving the 236:emission lines 198: 195: 171:active regions 152:active regions 111: 108: 15: 13: 10: 9: 6: 4: 3: 2: 1793: 1782: 1779: 1777: 1774: 1773: 1771: 1756: 1748: 1747: 1744: 1738: 1735: 1733: 1730: 1728: 1725: 1724: 1722: 1718: 1714: 1710: 1708: 1704: 1698: 1695: 1693: 1690: 1688: 1685: 1683: 1682:Space weather 1680: 1678: 1677:Space climate 1675: 1673: 1670: 1668: 1665: 1663: 1660: 1658: 1655: 1653: 1652:Solar physics 1650: 1648: 1645: 1643: 1640: 1638: 1635: 1633: 1630: 1628: 1625: 1623: 1620: 1618: 1615: 1613: 1610: 1604: 1601: 1600: 1599: 1596: 1595: 1594: 1591: 1589: 1586: 1582: 1581:Lunar eclipse 1579: 1577: 1574: 1573: 1572: 1569: 1568: 1566: 1562: 1556: 1553: 1551: 1548: 1546: 1543: 1541: 1538: 1536: 1535:Current sheet 1533: 1532: 1530: 1528: 1524: 1518: 1515: 1513: 1510: 1508: 1505: 1503: 1500: 1498: 1495: 1493: 1492:Solar minimum 1490: 1488: 1487:Solar maximum 1485: 1483: 1482:Active region 1480: 1476: 1473: 1472: 1471: 1468: 1467: 1465: 1463: 1459: 1449: 1446: 1444: 1441: 1439: 1436: 1434: 1431: 1429: 1426: 1424: 1421: 1419: 1416: 1414: 1411: 1409: 1406: 1405: 1403: 1401: 1397: 1391: 1388: 1386: 1383: 1381: 1378: 1377: 1375: 1373: 1369: 1363: 1362:Ellerman bomb 1360: 1358: 1355: 1353: 1350: 1348: 1345: 1343: 1340: 1339: 1337: 1335: 1331: 1328: 1326: 1322: 1316: 1313: 1311: 1308: 1306: 1303: 1301: 1298: 1297: 1295: 1293: 1289: 1283: 1280: 1279: 1276: 1272: 1265: 1260: 1258: 1253: 1251: 1246: 1245: 1242: 1235: 1232: 1231: 1227: 1212: 1206: 1203: 1198: 1194: 1190: 1186: 1182: 1178: 1174: 1170: 1166: 1159: 1156: 1151: 1147: 1143: 1139: 1135: 1131: 1126: 1121: 1117: 1113: 1106: 1103: 1098: 1094: 1090: 1086: 1082: 1078: 1074: 1070: 1069:Solar Physics 1063: 1060: 1055: 1048: 1045: 1040: 1036: 1032: 1028: 1024: 1020: 1013: 1010: 1005: 1001: 997: 993: 989: 985: 981: 977: 976:Solar Physics 970: 967: 962: 958: 954: 950: 946: 942: 935: 932: 927: 923: 919: 915: 911: 907: 903: 899: 898:Solar Physics 895: 888: 885: 880: 876: 872: 868: 864: 860: 853: 850: 845: 841: 837: 833: 829: 825: 821: 817: 816:Solar Physics 810: 807: 801: 796: 792: 788: 784: 780: 776: 769: 766: 761: 757: 752: 747: 743: 739: 735: 731: 727: 720: 717: 712: 708: 704: 700: 696: 692: 687: 682: 678: 674: 673:Solar Physics 667: 664: 659: 655: 651: 647: 643: 639: 635: 628: 625: 619: 614: 610: 606: 602: 598: 594: 587: 584: 579: 575: 570: 565: 561: 557: 553: 549: 545: 541: 537: 530: 527: 515: 509: 506: 499: 494: 491: 489: 486: 484: 481: 479: 476: 474: 471: 469: 466: 464: 461: 459: 456: 454: 451: 449: 446: 444: 443:Current sheet 441: 439: 436: 434: 431: 429: 428:Coronal loops 426: 424: 423:Coronal cloud 421: 419: 416: 414: 411: 410: 405: 399: 394: 391: 380: 377: 366: 361: 359: 357: 356:coronal loops 353: 348: 346: 342: 338: 333: 331: 330:coronal loops 327: 323: 319: 318:Joule heating 313: 311: 310:coronal holes 307: 303: 299: 295: 291: 287: 279: 274: 270: 266: 264: 259: 257: 253: 249: 245: 239: 237: 232: 228: 223: 218: 216: 212: 203: 196: 194: 192: 186: 184: 180: 176: 172: 167: 164: 159: 157: 153: 147: 145: 144:coronal loops 141: 137: 133: 125: 121: 120:coronal loops 116: 109: 107: 105: 99: 96: 92: 88: 84: 80: 76: 72: 68: 63: 61: 60:Eugene Parker 57: 52: 50: 46: 42: 38: 30: 26: 21: 1662:Solar System 1632:Solar energy 1627:Solar dynamo 1588:Heliophysics 1427: 1418:Coronal loop 1413:Coronal hole 1390:Moreton wave 1372:Chromosphere 1214:. Retrieved 1205: 1172: 1168: 1158: 1115: 1111: 1105: 1075:(9): 83–99. 1072: 1068: 1062: 1053: 1047: 1022: 1018: 1012: 979: 975: 969: 944: 940: 934: 901: 897: 887: 862: 858: 852: 819: 815: 809: 782: 778: 768: 733: 729: 719: 679:(1): 41–77. 676: 672: 666: 641: 637: 627: 600: 596: 586: 543: 539: 529: 519:23 September 517:. Retrieved 508: 413:Chromosphere 349: 341:solar flares 334: 314: 294:chromosphere 286:Alfvén waves 283: 267: 260: 256:Solar System 240: 227:chromosphere 219: 208: 191:solar corona 187: 168: 160: 156:Joule effect 148: 129: 122:observed by 100: 64: 53: 36: 34: 1720:Exploration 1598:Solar deity 1545:Heliosheath 1527:Heliosphere 1497:Wolf number 1470:Solar cycle 1334:Photosphere 1025:: 363–387. 468:Solar flare 458:Photosphere 404:Star portal 290:photosphere 248:heliosphere 140:photosphere 56:Thomas Gold 1770:Categories 1672:Solar time 1593:In culture 1550:Heliopause 1502:Solar wind 1433:Prominence 1325:Atmosphere 1310:Tachocline 1216:2023-11-01 982:(2): 357. 785:(2): 112. 736:(2): L17. 500:References 478:Solar wind 306:solar wind 252:solar wind 79:turbulence 45:atmosphere 1555:Bow shock 1462:Variation 1428:Nanoflare 1234:Nasa news 1197:2397-3366 1125:0709.3687 1097:121538547 1004:120428719 926:189827655 844:122521337 760:120517153 711:119329755 658:0004-637X 254:into the 83:viscosity 37:nanoflare 1755:Category 1150:15598925 578:25897093 362:See also 1571:Eclipse 1564:Related 1385:Spicule 1357:Sunspot 1352:Faculae 1347:Granule 1271:The Sun 1177:Bibcode 1130:Bibcode 1077:Bibcode 1027:Bibcode 984:Bibcode 949:Bibcode 947:: 472. 906:Bibcode 867:Bibcode 865:: 421. 824:Bibcode 787:Bibcode 738:Bibcode 691:Bibcode 644:: 474. 605:Bibcode 603:: 499. 569:4410551 548:Bibcode 488:Sunspot 138:in the 47:of the 1400:Corona 1195:  1148:  1095:  1002:  924:  842:  758:  709:  656:  576:  566:  302:corona 278:STEREO 244:corona 222:plasma 175:flares 136:plasma 104:Hinode 87:energy 75:plasma 41:corona 1512:Flare 1380:Plage 1146:S2CID 1120:arXiv 1093:S2CID 1000:S2CID 922:S2CID 840:S2CID 756:S2CID 707:S2CID 681:arXiv 124:TRACE 95:X-ray 1692:Star 1603:List 1300:Core 1282:List 1193:ISSN 654:ISSN 574:PMID 521:2014 296:and 284:The 225:the 177:and 91:heat 1781:Sun 1185:doi 1138:doi 1116:677 1085:doi 1035:doi 992:doi 980:133 957:doi 945:438 914:doi 902:100 875:doi 863:283 832:doi 795:doi 783:790 746:doi 734:746 699:doi 677:234 646:doi 642:330 613:doi 601:174 564:PMC 556:doi 544:373 483:Sun 308:in 49:Sun 1772:: 1191:. 1183:. 1171:. 1167:. 1144:. 1136:. 1128:. 1114:. 1091:. 1083:. 1073:44 1071:. 1033:. 1023:15 1021:. 998:. 990:. 978:. 955:. 943:. 920:. 912:. 900:. 896:. 873:. 861:. 838:. 830:. 820:39 818:. 793:. 781:. 777:. 754:. 744:. 732:. 728:. 705:. 697:. 689:. 675:. 652:. 640:. 636:. 611:. 599:. 595:. 572:. 562:. 554:. 542:. 538:. 312:. 258:. 217:. 62:. 51:. 35:A 1263:e 1256:t 1249:v 1219:. 1199:. 1187:: 1179:: 1173:5 1152:. 1140:: 1132:: 1122:: 1099:. 1087:: 1079:: 1041:. 1037:: 1029:: 1006:. 994:: 986:: 963:. 959:: 951:: 928:. 916:: 908:: 881:. 877:: 869:: 846:. 834:: 826:: 803:. 797:: 789:: 762:. 748:: 740:: 713:. 701:: 693:: 683:: 660:. 648:: 621:. 615:: 607:: 580:. 558:: 550:: 523:. 280:) 29:K

Index


solar active region
K
corona
atmosphere
Sun
Thomas Gold
Eugene Parker
magnetic reconnection
solar magnetic field
plasma
turbulence
viscosity
energy
heat
X-ray
Hinode

coronal loops
TRACE
solar magnetic field
plasma
photosphere
coronal loops
active regions
Joule effect
magnetic reconnection
active regions
flares
coronal mass ejections

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.