Knowledge (XXG)

Nash embedding theorems

Source 📝

570:. Any such embedding can be scaled by an arbitrarily small constant so as to become short, relative to any given Riemannian metric on the surface. It follows from the Nash–Kuiper theorem that there are continuously differentiable isometric embeddings of any such Riemannian surface where the radius of a circumscribed ball is arbitrarily small. By contrast, no negatively curved closed surface can even be smoothly isometrically embedded in 558:
in the Nash–Kuiper theorem. For example, the image of any smooth isometric hypersurface immersion of the round sphere must itself be a round sphere. By contrast, the Nash–Kuiper theorem ensures the existence of continuously differentiable isometric hypersurface immersions of the round sphere which
378: 97:≀ ∞. These two theorems are very different from each other. The first theorem has a very simple proof but leads to some counterintuitive conclusions, while the second theorem has a technical and counterintuitive proof but leads to a less surprising result. 958:
of the manifold. The proof of the global embedding theorem relies on Nash's implicit function theorem for isometric embeddings. This theorem has been generalized by a number of other authors to abstract contexts, where it is known as
629:. In analytical terms, the Euler equations have a formal similarity to the isometric embedding equations, via the quadratic nonlinearity in the first derivatives of the unknown function. The ideas of Nash's proof were abstracted by 580:) isometric embedding of an arbitrary closed Riemannian surface, there is a quantitative (positive) lower bound on the radius of a circumscribed ball in terms of the surface area and curvature of the embedded metric. 249: 888: 602:-dimensional Euclidean space. Although Whitney's theorem also applies to noncompact manifolds, such embeddings cannot simply be scaled by a small constant so as to become short. Nash proved that every 613:
At the time of Nash's work, his theorem was considered to be something of a mathematical curiosity. The result itself has not found major applications. However, Nash's method of proof was adapted by
511:
The isometric embeddings produced by the Nash–Kuiper theorem are often considered counterintuitive and pathological. They often fail to be smoothly differentiable. For example, a
120:
in the 1920s.) In the real analytic case, the smoothing operators (see below) in the Nash inverse function argument can be replaced by Cauchy estimates. Nash's proof of the
413:, then there are more equations than unknowns. From this perspective, the existence of isometric embeddings given by the following theorem is considered surprising. 3020: 2211: 1915: 3015: 512: 2302: 2078: 1928: 971:
to make the Newton iteration converge: this is Newton's method with postconditioning. The fact that this technique furnishes a solution is in itself an
2326: 2521: 3073: 2108: 2083: 2391: 1970: 1875: 967:
to construct solutions. The standard Newton's method fails to converge when applied to the system; Nash uses smoothing operators defined by
373:{\displaystyle g_{ij}(x)=\sum _{\alpha =1}^{n}{\frac {\partial f^{\alpha }}{\partial x^{i}}}{\frac {\partial f^{\alpha }}{\partial x^{j}}}.} 2617: 1538: 470:. This map is not required to be isometric. Then there is a sequence of continuously differentiable isometric embeddings (or immersions) 2670: 2198: 2954: 1943: 1908: 1551: 1413: 1329: 1223: 554:. Furthermore, some smooth isometric embeddings exhibit rigidity phenomena which are violated by the largely unrestricted choice of 811: 2719: 1649: 642: 2311: 2702: 1309: 650: 1389: 630: 108:-theorem in 1956. The real analytic theorem was first treated by Nash in 1966; his argument was simplified considerably by 3068: 2914: 1313: 940: 236: 137: 3063: 2899: 2622: 2396: 2005: 1901: 1467: 1206:. Grundlehren der mathematischen Wissenschaften. Vol. 285. Translated from the Russian by A. B. SosinskiÄ­. Berlin: 2944: 141: 74: 2949: 2919: 2627: 2583: 2564: 2331: 2275: 2026: 1544: 1801: 2486: 2351: 2155: 1620: 1580: 1437: 951: 584: 2088: 2871: 2736: 2428: 2270: 1948: 1246: 646: 2568: 2538: 2462: 2452: 2408: 2238: 2191: 2134: 452: 2336: 2093: 960: 129: 2909: 2528: 2423: 2243: 2165: 2160: 2098: 2031: 1990: 654: 1543:. Interscience Tracts in Pure and Applied Mathematics. Vol. 15. Reprinted in 1996. New York–London: 2558: 2553: 1814: 1809: 1765: 1760: 1722: 1711: 1662: 1472: 1352: 1347: 181: 1653: 2889: 2827: 2675: 2379: 2369: 2341: 2316: 2226: 1995: 1858:. Applied Mathematical Sciences. Vol. 117 (Second edition of 1996 original ed.). New York: 1265: 946:
The Nash embedding theorem is a global theorem in the sense that the whole manifold is embedded into
39: 3027: 3000: 2709: 2587: 2572: 2501: 2260: 2052: 2021: 2009: 1980: 1963: 1924: 1859: 1530: 1432: 980: 976: 786: 725: 591:-dimensional Riemannian manifold admits an continuously differentiable isometric embedding into an 547: 482: 63: 43: 2969: 2924: 2821: 2692: 2496: 2321: 2184: 2150: 2047: 2016: 1831: 1782: 1739: 1699: 1671: 1507: 1481: 1369: 1289: 1255: 2506: 2057: 964: 606:-dimensional Riemannian manifold admits a continuously differentiable isometric embedding into 2904: 2884: 2879: 2786: 2697: 2511: 2491: 2346: 2285: 2062: 1871: 1851: 1547: 1409: 1325: 1241: 1219: 972: 614: 536: 528: 82: 3042: 2836: 2791: 2714: 2685: 2543: 2476: 2471: 2466: 2456: 2248: 2231: 2129: 2124: 2000: 1953: 1863: 1823: 1774: 1731: 1681: 1629: 1589: 1491: 1446: 1401: 1361: 1317: 1301: 1273: 1211: 1199: 532: 520: 203: 59: 1885: 1843: 1794: 1751: 1695: 1641: 1601: 1561: 1503: 1458: 1423: 1381: 1339: 1285: 1233: 2985: 2894: 2724: 2680: 2446: 1958: 1881: 1839: 1790: 1747: 1691: 1637: 1609: 1597: 1569: 1557: 1499: 1454: 1419: 1397: 1377: 1335: 1281: 1229: 1207: 767: 626: 540: 505: 86: 51: 559:
are arbitrarily close to (for instance) a topological embedding of the sphere as a small
1812:(1966). "Analyticity of the solutions of implicit function problem with analytic data". 1269: 2851: 2776: 2746: 2644: 2637: 2577: 2548: 2418: 2413: 2374: 1534: 798: 622: 618: 113: 1633: 1593: 3057: 3037: 2861: 2856: 2841: 2831: 2781: 2758: 2632: 2592: 2533: 2481: 2280: 1985: 1511: 771: 516: 117: 62:. For instance, bending but neither stretching nor tearing a page of paper gives an 1703: 2964: 2959: 2801: 2768: 2741: 2649: 2290: 1293: 17: 66:
of the page into Euclidean space because curves drawn on the page retain the same
1893: 27:
Every Riemannian manifold can be isometrically embedded into some Euclidean space
2807: 2796: 2753: 2654: 2255: 1686: 1657: 1495: 1195: 968: 963:. The basic idea in the proof of Nash's implicit function theorem is the use of 638: 125: 3032: 2990: 2816: 2729: 2361: 2265: 2103: 1867: 1405: 1277: 1215: 757: 617:
and Låszló Székelyhidi to construct low-regularity solutions, with prescribed
535:
cannot be smoothly isometrically immersed as a hypersurface, and a theorem of
1658:"Convex integration for Lipschitz mappings and counterexamples to regularity" 1515: 1450: 1396:. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Vol. 9. Berlin: 668:
The technical statement appearing in Nash's original paper is as follows: if
566:
Any closed and oriented two-dimensional manifold can be smoothly embedded in
2846: 2811: 2516: 2403: 741: 560: 493:
The theorem was originally proved by John Nash with the stronger assumption
448: 67: 47: 3010: 3005: 2995: 2386: 2207: 1975: 955: 950:. A local embedding theorem is much simpler and can be proved using the 195: 55: 1244:; Székelyhidi, Låszló Jr. (2013). "Dissipative continuous Euler flows". 132:. A simpler proof of the second Nash embedding theorem was obtained by 2176: 1835: 1786: 1743: 1373: 1321: 2602: 1676: 1827: 1778: 1735: 1365: 1486: 1260: 202:. In analytical terms, this may be viewed (relative to a smooth 2180: 1897: 1350:; Jacobowitz, Howard (1971). "Analytic isometric embeddings". 653:, constructing minimizers of minimal differentiability in the 883:{\displaystyle \langle u,v\rangle =df_{p}(u)\cdot df_{p}(v)} 1763:(1956). "The imbedding problem for Riemannian manifolds". 1856:
Partial differential equations III. Nonlinear equations
676:-dimensional Riemannian manifold (analytic or of class 814: 252: 1138: 975:
and of independent interest. In other contexts, the
81:) embeddings and the second for embeddings that are 2978: 2937: 2870: 2767: 2663: 2610: 2601: 2437: 2360: 2299: 2219: 2143: 2117: 2071: 2040: 1936: 1010: 882: 372: 587:, the Nash–Kuiper theorem shows that any closed 112:. (A local version of this result was proved by 109: 1435:[On the embedding theorem of J. Nash]. 1114: 1102: 1090: 1078: 1066: 1054: 523:cannot be smoothly isometrically immersed into 2192: 1909: 550:cannot be smoothly isometrically immersed in 8: 1540:Foundations of differential geometry. Vol II 1166: 827: 815: 977:convergence of the standard Newton's method 2607: 2199: 2185: 2177: 2079:Fundamental theorem of Riemannian geometry 1916: 1902: 1894: 1685: 1675: 1485: 1259: 865: 840: 813: 583:In higher dimension, as follows from the 358: 343: 333: 324: 309: 299: 293: 282: 257: 251: 1621:Indagationes Mathematicae (Proceedings) 1581:Indagationes Mathematicae (Proceedings) 1042: 1038: 991: 939:, this is an underdetermined system of 133: 124:- case was later extrapolated into the 1154: 1014: 998: 1142: 546:-dimensional manifold of nonpositive 436:-dimensional Riemannian manifold and 58:means preserving the length of every 7: 1178: 1126: 1026: 574:. Moreover, for any smooth (or even 140:to an elliptic system, to which the 130:Nash–Moser implicit function theorem 785:which is compatible with the given 104:theorem was published in 1954, the 724:is a non-compact manifold) and an 351: 336: 317: 302: 25: 1468:"A proof of Onsager's conjecture" 1433:"Zum Einbettungssatz von J. Nash" 684:≀ ∞), then there exists a number 243:unknown (real-valued) functions: 180:is a continuously differentiable 164:-dimensional Riemannian manifold 136:who reduced the set of nonlinear 1312:. Vol. 48. Providence, RI: 1139:De Lellis & SzĂ©kelyhidi 2013 1093:, Corollary VII.5.4 and Note 15. 704:is a compact manifold, and with 3074:Theorems in Riemannian geometry 1310:Graduate Studies in Mathematics 1306:Introduction to the h-principle 1011:Eliashberg & Mishachev 2002 625:from the mathematical study of 198:of the Euclidean metric equals 2239:Differentiable/Smooth manifold 1394:Partial differential relations 941:partial differential equations 877: 871: 852: 846: 748:manifolds and for every point 593:arbitrarily small neighborhood 539:and Kuiper even says that any 272: 266: 237:partial differential equations 138:partial differential equations 110:Greene & Jacobowitz (1971) 1: 1634:10.1016/S1385-7258(55)50093-X 1594:10.1016/S1385-7258(55)50075-8 1314:American Mathematical Society 508:to obtain the theorem above. 504:. His method was modified by 2006:Raising and lowering indices 1618:-isometric imbeddings. II". 1188:General and cited references 651:Hilbert's nineteenth problem 2945:Classification of manifolds 1687:10.4007/annals.2003.157.715 1578:-isometric imbeddings. I". 1545:John Wiley & Sons, Inc. 1496:10.4007/annals.2018.188.3.4 1115:Burago & Zalgaller 1988 1103:Kobayashi & Nomizu 1969 1091:Kobayashi & Nomizu 1969 1079:Kobayashi & Nomizu 1969 1067:Kobayashi & Nomizu 1969 1055:Kobayashi & Nomizu 1969 979:had earlier been proved by 736:(also analytic or of class 142:contraction mapping theorem 75:continuously differentiable 3090: 2027:Pseudo-Riemannian manifold 1431:GĂŒnther, Matthias (1989). 954:of advanced calculus in a 70:however the page is bent. 3021:over commutative algebras 2156:Geometrization conjecture 1868:10.1007/978-1-4419-7049-7 1438:Mathematische Nachrichten 1406:10.1007/978-3-662-02267-2 1278:10.1007/s00222-012-0429-9 1216:10.1007/978-3-662-07441-1 952:implicit function theorem 585:Whitney embedding theorem 73:The first theorem is for 2737:Riemann curvature tensor 1451:10.1002/mana.19891440113 1304:; Mishachev, N. (2002). 1247:Inventiones Mathematicae 1167:MĂŒller & Ć verĂĄk 2003 805:in the following sense: 1720:isometric imbeddings". 956:coordinate neighborhood 637:, with a corresponding 455:) into Euclidean space 32:Nash embedding theorems 2529:Manifold with boundary 2244:Differential structure 2166:Uniformization theorem 2099:Nash embedding theorem 2032:Riemannian volume form 1991:Levi-Civita connection 1466:Isett, Philip (2018). 1204:Geometric inequalities 884: 655:calculus of variations 641:. This was applied by 491: 374: 298: 1815:Annals of Mathematics 1800:(Erratum:   1766:Annals of Mathematics 1723:Annals of Mathematics 1663:Annals of Mathematics 1473:Annals of Mathematics 1353:Annals of Mathematics 885: 451:smooth embedding (or 415: 375: 278: 182:topological embedding 150:Nash–Kuiper theorem ( 46:can be isometrically 3069:Riemannian manifolds 2676:Covariant derivative 2227:Topological manifold 2089:Gauss–Bonnet theorem 1996:Covariant derivative 1531:Kobayashi, Shoshichi 1081:, Corollary VII.4.8. 812: 633:to the principle of 418:Nash–Kuiper theorem. 250: 40:John Forbes Nash Jr. 3064:Riemannian geometry 2710:Exterior derivative 2312:Atiyah–Singer index 2261:Riemannian manifold 2161:PoincarĂ© conjecture 2022:Riemannian manifold 2010:Musical isomorphism 1925:Riemannian geometry 1610:Kuiper, Nicolaas H. 1570:Kuiper, Nicolaas H. 1270:2013InMat.193..377D 1129:, pp. 394–395. 1001:, pp. 147–151. 981:Leonid Kantorovitch 740:). That is ƒ is an 726:isometric embedding 548:sectional curvature 178:isometric embedding 64:isometric embedding 44:Riemannian manifold 42:, state that every 18:Nash–Kuiper theorem 3016:Secondary calculus 2970:Singularity theory 2925:Parallel transport 2693:De Rham cohomology 2332:Generalized Stokes 2151:General relativity 2094:Hopf–Rinow theorem 2041:Types of manifolds 2017:Parallel transport 1852:Taylor, Michael E. 1242:De Lellis, Camillo 1117:, Corollary 6.2.2. 1105:, Theorem VII.5.6. 1069:, Theorem VII.5.3. 961:Nash–Moser theorem 880: 635:convex integration 513:well-known theorem 483:converge uniformly 370: 156:embedding theorem) 144:could be applied. 36:imbedding theorems 3051: 3050: 2933: 2932: 2698:Differential form 2352:Whitney embedding 2286:Differential form 2174: 2173: 1877:978-1-4419-7048-0 1818:. Second Series. 1769:. Second Series. 1726:. Second Series. 1666:. Second Series. 1476:. Second Series. 1356:. Second Series. 1348:Greene, Robert E. 973:existence theorem 797:and the standard 664:embedding theorem 615:Camillo De Lellis 537:Shiing-Shen Chern 529:Einstein manifold 519:asserts that the 365: 331: 235:many first-order 209:) as a system of 16:(Redirected from 3081: 3043:Stratified space 3001:FrĂ©chet manifold 2715:Interior product 2608: 2305: 2201: 2194: 2187: 2178: 1918: 1911: 1904: 1895: 1889: 1847: 1805: 1804: 1798: 1755: 1719: 1707: 1689: 1679: 1645: 1617: 1605: 1577: 1565: 1526: 1524: 1523: 1514:. Archived from 1489: 1462: 1427: 1385: 1343: 1297: 1263: 1237: 1200:Zalgaller, V. A. 1182: 1176: 1170: 1164: 1158: 1152: 1146: 1136: 1130: 1124: 1118: 1112: 1106: 1100: 1094: 1088: 1082: 1076: 1070: 1064: 1058: 1052: 1046: 1036: 1030: 1024: 1018: 1017:, Section 2.4.9. 1008: 1002: 996: 938: 929: 927: 926: 923: 920: 912: 893:for all vectors 889: 887: 886: 881: 870: 869: 845: 844: 609: 605: 601: 590: 579: 573: 569: 557: 553: 545: 533:scalar curvature 526: 521:hyperbolic plane 503: 488: 480: 476: 469: 458: 446: 435: 431: 412: 403: 401: 400: 397: 394: 386: 379: 377: 376: 371: 366: 364: 363: 362: 349: 348: 347: 334: 332: 330: 329: 328: 315: 314: 313: 300: 297: 292: 265: 264: 242: 234: 225: 223: 222: 219: 216: 208: 204:coordinate chart 201: 193: 175: 163: 155: 21: 3089: 3088: 3084: 3083: 3082: 3080: 3079: 3078: 3054: 3053: 3052: 3047: 2986:Banach manifold 2979:Generalizations 2974: 2929: 2866: 2763: 2725:Ricci curvature 2681:Cotangent space 2659: 2597: 2439: 2433: 2392:Exponential map 2356: 2301: 2295: 2215: 2205: 2175: 2170: 2139: 2118:Generalizations 2113: 2067: 2036: 1971:Exponential map 1932: 1922: 1892: 1878: 1850: 1828:10.2307/1970448 1808: 1799: 1779:10.2307/1969989 1759: 1758: 1736:10.2307/1969840 1715: 1710: 1648: 1613: 1608: 1573: 1568: 1554: 1535:Nomizu, Katsumi 1529: 1521: 1519: 1465: 1430: 1416: 1398:Springer-Verlag 1390:Gromov, Mikhael 1388: 1366:10.2307/1970760 1346: 1332: 1322:10.1090/gsm/048 1300: 1240: 1226: 1208:Springer-Verlag 1194: 1190: 1185: 1177: 1173: 1165: 1161: 1153: 1149: 1137: 1133: 1125: 1121: 1113: 1109: 1101: 1097: 1089: 1085: 1077: 1073: 1065: 1061: 1053: 1049: 1037: 1033: 1025: 1021: 1009: 1005: 997: 993: 989: 965:Newton's method 924: 921: 918: 917: 915: 914: 913:is larger than 910: 906: 861: 836: 810: 809: 794: 778: 765: 666: 647:VladimĂ­r Ć verĂĄk 627:fluid mechanics 623:Euler equations 607: 603: 596: 588: 575: 571: 567: 555: 551: 543: 524: 506:Nicolaas Kuiper 494: 486: 478: 471: 460: 456: 437: 433: 421: 398: 395: 392: 391: 389: 388: 384: 354: 350: 339: 335: 320: 316: 305: 301: 253: 248: 247: 240: 220: 217: 214: 213: 211: 210: 206: 199: 184: 165: 161: 158: 151: 52:Euclidean space 38:), named after 28: 23: 22: 15: 12: 11: 5: 3087: 3085: 3077: 3076: 3071: 3066: 3056: 3055: 3049: 3048: 3046: 3045: 3040: 3035: 3030: 3025: 3024: 3023: 3013: 3008: 3003: 2998: 2993: 2988: 2982: 2980: 2976: 2975: 2973: 2972: 2967: 2962: 2957: 2952: 2947: 2941: 2939: 2935: 2934: 2931: 2930: 2928: 2927: 2922: 2917: 2912: 2907: 2902: 2897: 2892: 2887: 2882: 2876: 2874: 2868: 2867: 2865: 2864: 2859: 2854: 2849: 2844: 2839: 2834: 2824: 2819: 2814: 2804: 2799: 2794: 2789: 2784: 2779: 2773: 2771: 2765: 2764: 2762: 2761: 2756: 2751: 2750: 2749: 2739: 2734: 2733: 2732: 2722: 2717: 2712: 2707: 2706: 2705: 2695: 2690: 2689: 2688: 2678: 2673: 2667: 2665: 2661: 2660: 2658: 2657: 2652: 2647: 2642: 2641: 2640: 2630: 2625: 2620: 2614: 2612: 2605: 2599: 2598: 2596: 2595: 2590: 2580: 2575: 2561: 2556: 2551: 2546: 2541: 2539:Parallelizable 2536: 2531: 2526: 2525: 2524: 2514: 2509: 2504: 2499: 2494: 2489: 2484: 2479: 2474: 2469: 2459: 2449: 2443: 2441: 2435: 2434: 2432: 2431: 2426: 2421: 2419:Lie derivative 2416: 2414:Integral curve 2411: 2406: 2401: 2400: 2399: 2389: 2384: 2383: 2382: 2375:Diffeomorphism 2372: 2366: 2364: 2358: 2357: 2355: 2354: 2349: 2344: 2339: 2334: 2329: 2324: 2319: 2314: 2308: 2306: 2297: 2296: 2294: 2293: 2288: 2283: 2278: 2273: 2268: 2263: 2258: 2253: 2252: 2251: 2246: 2236: 2235: 2234: 2223: 2221: 2220:Basic concepts 2217: 2216: 2206: 2204: 2203: 2196: 2189: 2181: 2172: 2171: 2169: 2168: 2163: 2158: 2153: 2147: 2145: 2141: 2140: 2138: 2137: 2135:Sub-Riemannian 2132: 2127: 2121: 2119: 2115: 2114: 2112: 2111: 2106: 2101: 2096: 2091: 2086: 2081: 2075: 2073: 2069: 2068: 2066: 2065: 2060: 2055: 2050: 2044: 2042: 2038: 2037: 2035: 2034: 2029: 2024: 2019: 2014: 2013: 2012: 2003: 1998: 1993: 1983: 1978: 1973: 1968: 1967: 1966: 1961: 1956: 1951: 1940: 1938: 1937:Basic concepts 1934: 1933: 1923: 1921: 1920: 1913: 1906: 1898: 1891: 1890: 1876: 1848: 1822:(3): 345–355. 1806: 1756: 1730:(3): 383–396. 1708: 1670:(3): 715–742. 1646: 1606: 1566: 1552: 1527: 1480:(3): 871–963. 1463: 1445:(1): 165–187. 1428: 1414: 1386: 1360:(1): 189–204. 1344: 1330: 1302:Eliashberg, Y. 1298: 1254:(2): 377–407. 1238: 1224: 1196:Burago, Yu. D. 1191: 1189: 1186: 1184: 1183: 1171: 1159: 1157:, Section 2.4. 1147: 1131: 1119: 1107: 1095: 1083: 1071: 1059: 1047: 1031: 1019: 1013:, Chapter 21; 1003: 990: 988: 985: 904: 891: 890: 879: 876: 873: 868: 864: 860: 857: 854: 851: 848: 843: 839: 835: 832: 829: 826: 823: 820: 817: 792: 776: 761: 665: 659: 631:Mikhael Gromov 619:kinetic energy 381: 380: 369: 361: 357: 353: 346: 342: 338: 327: 323: 319: 312: 308: 304: 296: 291: 288: 285: 281: 277: 274: 271: 268: 263: 260: 256: 194:such that the 157: 148: 134:GĂŒnther (1989) 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3086: 3075: 3072: 3070: 3067: 3065: 3062: 3061: 3059: 3044: 3041: 3039: 3038:Supermanifold 3036: 3034: 3031: 3029: 3026: 3022: 3019: 3018: 3017: 3014: 3012: 3009: 3007: 3004: 3002: 2999: 2997: 2994: 2992: 2989: 2987: 2984: 2983: 2981: 2977: 2971: 2968: 2966: 2963: 2961: 2958: 2956: 2953: 2951: 2948: 2946: 2943: 2942: 2940: 2936: 2926: 2923: 2921: 2918: 2916: 2913: 2911: 2908: 2906: 2903: 2901: 2898: 2896: 2893: 2891: 2888: 2886: 2883: 2881: 2878: 2877: 2875: 2873: 2869: 2863: 2860: 2858: 2855: 2853: 2850: 2848: 2845: 2843: 2840: 2838: 2835: 2833: 2829: 2825: 2823: 2820: 2818: 2815: 2813: 2809: 2805: 2803: 2800: 2798: 2795: 2793: 2790: 2788: 2785: 2783: 2780: 2778: 2775: 2774: 2772: 2770: 2766: 2760: 2759:Wedge product 2757: 2755: 2752: 2748: 2745: 2744: 2743: 2740: 2738: 2735: 2731: 2728: 2727: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2704: 2703:Vector-valued 2701: 2700: 2699: 2696: 2694: 2691: 2687: 2684: 2683: 2682: 2679: 2677: 2674: 2672: 2669: 2668: 2666: 2662: 2656: 2653: 2651: 2648: 2646: 2643: 2639: 2636: 2635: 2634: 2633:Tangent space 2631: 2629: 2626: 2624: 2621: 2619: 2616: 2615: 2613: 2609: 2606: 2604: 2600: 2594: 2591: 2589: 2585: 2581: 2579: 2576: 2574: 2570: 2566: 2562: 2560: 2557: 2555: 2552: 2550: 2547: 2545: 2542: 2540: 2537: 2535: 2532: 2530: 2527: 2523: 2520: 2519: 2518: 2515: 2513: 2510: 2508: 2505: 2503: 2500: 2498: 2495: 2493: 2490: 2488: 2485: 2483: 2480: 2478: 2475: 2473: 2470: 2468: 2464: 2460: 2458: 2454: 2450: 2448: 2445: 2444: 2442: 2436: 2430: 2427: 2425: 2422: 2420: 2417: 2415: 2412: 2410: 2407: 2405: 2402: 2398: 2397:in Lie theory 2395: 2394: 2393: 2390: 2388: 2385: 2381: 2378: 2377: 2376: 2373: 2371: 2368: 2367: 2365: 2363: 2359: 2353: 2350: 2348: 2345: 2343: 2340: 2338: 2335: 2333: 2330: 2328: 2325: 2323: 2320: 2318: 2315: 2313: 2310: 2309: 2307: 2304: 2300:Main results 2298: 2292: 2289: 2287: 2284: 2282: 2281:Tangent space 2279: 2277: 2274: 2272: 2269: 2267: 2264: 2262: 2259: 2257: 2254: 2250: 2247: 2245: 2242: 2241: 2240: 2237: 2233: 2230: 2229: 2228: 2225: 2224: 2222: 2218: 2213: 2209: 2202: 2197: 2195: 2190: 2188: 2183: 2182: 2179: 2167: 2164: 2162: 2159: 2157: 2154: 2152: 2149: 2148: 2146: 2142: 2136: 2133: 2131: 2128: 2126: 2123: 2122: 2120: 2116: 2110: 2109:Schur's lemma 2107: 2105: 2102: 2100: 2097: 2095: 2092: 2090: 2087: 2085: 2084:Gauss's lemma 2082: 2080: 2077: 2076: 2074: 2070: 2064: 2061: 2059: 2056: 2054: 2051: 2049: 2046: 2045: 2043: 2039: 2033: 2030: 2028: 2025: 2023: 2020: 2018: 2015: 2011: 2007: 2004: 2002: 1999: 1997: 1994: 1992: 1989: 1988: 1987: 1986:Metric tensor 1984: 1982: 1981:Inner product 1979: 1977: 1974: 1972: 1969: 1965: 1962: 1960: 1957: 1955: 1952: 1950: 1947: 1946: 1945: 1942: 1941: 1939: 1935: 1930: 1926: 1919: 1914: 1912: 1907: 1905: 1900: 1899: 1896: 1887: 1883: 1879: 1873: 1869: 1865: 1861: 1857: 1853: 1849: 1845: 1841: 1837: 1833: 1829: 1825: 1821: 1817: 1816: 1811: 1807: 1802: 1796: 1792: 1788: 1784: 1780: 1776: 1772: 1768: 1767: 1762: 1757: 1753: 1749: 1745: 1741: 1737: 1733: 1729: 1725: 1724: 1718: 1713: 1709: 1705: 1701: 1697: 1693: 1688: 1683: 1678: 1673: 1669: 1665: 1664: 1659: 1655: 1651: 1647: 1643: 1639: 1635: 1631: 1627: 1623: 1622: 1616: 1612:(1955b). "On 1611: 1607: 1603: 1599: 1595: 1591: 1587: 1583: 1582: 1576: 1572:(1955a). "On 1571: 1567: 1563: 1559: 1555: 1553:0-471-15732-5 1549: 1546: 1542: 1541: 1536: 1532: 1528: 1518:on 2022-10-11 1517: 1513: 1509: 1505: 1501: 1497: 1493: 1488: 1483: 1479: 1475: 1474: 1469: 1464: 1460: 1456: 1452: 1448: 1444: 1441:(in German). 1440: 1439: 1434: 1429: 1425: 1421: 1417: 1415:3-540-12177-3 1411: 1407: 1403: 1399: 1395: 1391: 1387: 1383: 1379: 1375: 1371: 1367: 1363: 1359: 1355: 1354: 1349: 1345: 1341: 1337: 1333: 1331:0-8218-3227-1 1327: 1323: 1319: 1315: 1311: 1307: 1303: 1299: 1295: 1291: 1287: 1283: 1279: 1275: 1271: 1267: 1262: 1257: 1253: 1249: 1248: 1243: 1239: 1235: 1231: 1227: 1225:3-540-13615-0 1221: 1217: 1213: 1209: 1205: 1201: 1197: 1193: 1192: 1187: 1180: 1175: 1172: 1168: 1163: 1160: 1156: 1151: 1148: 1144: 1140: 1135: 1132: 1128: 1123: 1120: 1116: 1111: 1108: 1104: 1099: 1096: 1092: 1087: 1084: 1080: 1075: 1072: 1068: 1063: 1060: 1056: 1051: 1048: 1044: 1040: 1035: 1032: 1028: 1023: 1020: 1016: 1012: 1007: 1004: 1000: 995: 992: 986: 984: 982: 978: 974: 970: 966: 962: 957: 953: 949: 944: 942: 936: 932: 908: 900: 896: 874: 866: 862: 858: 855: 849: 841: 837: 833: 830: 824: 821: 818: 808: 807: 806: 804: 800: 796: 788: 787:inner product 784: 780: 773: 772:tangent space 769: 764: 759: 755: 751: 747: 743: 739: 735: 731: 727: 723: 719: 715: 711: 707: 703: 699: 695: 691: 687: 683: 679: 675: 671: 663: 660: 658: 656: 652: 648: 644: 643:Stefan MĂŒller 640: 636: 632: 628: 624: 620: 616: 611: 600: 594: 586: 581: 578: 564: 562: 549: 542: 538: 534: 530: 522: 518: 517:David Hilbert 514: 509: 507: 501: 497: 490: 484: 474: 467: 463: 454: 450: 444: 440: 429: 425: 419: 414: 410: 406: 387:is less than 367: 359: 355: 344: 340: 325: 321: 310: 306: 294: 289: 286: 283: 279: 275: 269: 261: 258: 254: 246: 245: 244: 238: 232: 228: 205: 197: 191: 187: 183: 179: 173: 169: 154: 149: 147: 145: 143: 139: 135: 131: 127: 123: 119: 118:Maurice Janet 115: 111: 107: 103: 98: 96: 92: 88: 84: 80: 76: 71: 69: 65: 61: 57: 53: 49: 45: 41: 37: 33: 19: 2965:Moving frame 2960:Morse theory 2950:Gauge theory 2742:Tensor field 2671:Closed/Exact 2650:Vector field 2618:Distribution 2559:Hypercomplex 2554:Quaternionic 2291:Vector field 2249:Smooth atlas 2144:Applications 2072:Main results 1855: 1819: 1813: 1773:(1): 20–63. 1770: 1764: 1727: 1721: 1716: 1677:math/0402287 1667: 1661: 1625: 1619: 1614: 1585: 1579: 1574: 1539: 1520:. Retrieved 1516:the original 1477: 1471: 1442: 1436: 1393: 1357: 1351: 1305: 1251: 1245: 1203: 1174: 1162: 1150: 1134: 1122: 1110: 1098: 1086: 1074: 1062: 1050: 1043:Kuiper 1955b 1039:Kuiper 1955a 1034: 1022: 1006: 994: 947: 945: 934: 930: 902: 898: 894: 892: 802: 790: 782: 774: 762: 753: 749: 745: 737: 733: 729: 721: 717: 713: 709: 705: 701: 697: 693: 689: 685: 681: 677: 673: 669: 667: 661: 634: 612: 598: 592: 582: 576: 565: 531:of negative 510: 499: 495: 492: 472: 465: 461: 442: 438: 427: 423: 417: 416: 408: 404: 382: 230: 226: 189: 185: 177: 171: 167: 159: 152: 146: 121: 105: 101: 99: 94: 90: 78: 72: 35: 31: 29: 2910:Levi-Civita 2900:Generalized 2872:Connections 2822:Lie algebra 2754:Volume form 2655:Vector flow 2628:Pushforward 2623:Lie bracket 2522:Lie algebra 2487:G-structure 2276:Pushforward 2256:Submanifold 1628:: 683–689. 1588:: 545–556. 1155:Gromov 1986 1015:Gromov 1986 999:Taylor 2011 969:convolution 799:dot product 672:is a given 639:h-principle 126:h-principle 114:Élie Cartan 3058:Categories 3033:Stratifold 2991:Diffeology 2787:Associated 2588:Symplectic 2573:Riemannian 2502:Hyperbolic 2429:Submersion 2337:Hopf–Rinow 2271:Submersion 2266:Smooth map 2104:Ricci flow 2053:Hyperbolic 1761:Nash, John 1712:Nash, John 1654:Ć verĂĄk, V. 1650:MĂŒller, S. 1522:2022-05-06 1487:1608.08301 1143:Isett 2018 1057:, Note 18. 768:linear map 758:derivative 720:+11)/2 if 700:+11)/2 if 50:into some 2915:Principal 2890:Ehresmann 2847:Subbundle 2837:Principal 2812:Fibration 2792:Cotangent 2664:Covectors 2517:Lie group 2497:Hermitian 2440:manifolds 2409:Immersion 2404:Foliation 2342:Noether's 2327:Frobenius 2322:De Rham's 2317:Darboux's 2208:Manifolds 2048:Hermitian 2001:Signature 1964:Sectional 1944:Curvature 1714:(1954). " 1512:119267892 1261:1202.1751 1179:Nash 1956 1127:Nash 1954 1027:Nash 1954 987:Citations 856:⋅ 828:⟩ 816:⟨ 770:from the 742:embedding 621:, of the 561:ellipsoid 453:immersion 352:∂ 345:α 337:∂ 318:∂ 311:α 303:∂ 284:α 280:∑ 160:Given an 89:of class 68:arclength 56:Isometric 3011:Orbifold 3006:K-theory 2996:Diffiety 2720:Pullback 2534:Oriented 2512:Kenmotsu 2492:Hadamard 2438:Types of 2387:Geodesic 2212:Glossary 2063:Kenmotsu 1976:Geodesic 1929:Glossary 1860:Springer 1854:(2011). 1810:Nash, J. 1704:55855605 1656:(2003). 1537:(1969). 1392:(1986). 1202:(1988). 943:(PDEs). 459:, where 196:pullback 83:analytic 48:embedded 2955:History 2938:Related 2852:Tangent 2830:)  2810:)  2777:Adjoint 2769:Bundles 2747:density 2645:Torsion 2611:Vectors 2603:Tensors 2586:)  2571:)  2567:,  2565:Pseudo− 2544:Poisson 2477:Finsler 2472:Fibered 2467:Contact 2465:)  2457:Complex 2455:)  2424:Section 2130:Hilbert 2125:Finsler 1886:2744149 1844:0205266 1836:1970448 1795:0075639 1787:1969989 1752:0065993 1744:1969840 1696:1983780 1642:0075640 1602:0075640 1562:0238225 1504:3866888 1459:1037168 1424:0864505 1382:0283728 1374:1970760 1340:1909245 1294:2693636 1286:3090182 1266:Bibcode 1234:0936419 928:⁠ 916:⁠ 909:. When 402:⁠ 390:⁠ 224:⁠ 212:⁠ 2920:Vector 2905:Koszul 2885:Cartan 2880:Affine 2862:Vector 2857:Tensor 2842:Spinor 2832:Normal 2828:Stable 2782:Affine 2686:bundle 2638:bundle 2584:Almost 2507:KĂ€hler 2463:Almost 2453:Almost 2447:Closed 2347:Sard's 2303:(list) 2058:KĂ€hler 1954:Scalar 1949:tensor 1884:  1874:  1842:  1834:  1793:  1785:  1750:  1742:  1702:  1694:  1640:  1600:  1560:  1550:  1510:  1502:  1457:  1422:  1412:  1380:  1372:  1338:  1328:  1292:  1284:  1232:  1222:  756:, the 688:(with 680:, 3 ≀ 541:closed 527:. Any 481:which 432:be an 93:, 3 ≀ 87:smooth 3028:Sheaf 2802:Fiber 2578:Rizza 2549:Prime 2380:Local 2370:Curve 2232:Atlas 1959:Ricci 1832:JSTOR 1783:JSTOR 1740:JSTOR 1700:S2CID 1672:arXiv 1508:S2CID 1482:arXiv 1370:JSTOR 1290:S2CID 1256:arXiv 766:is a 716:+1)(3 449:short 176:, an 2895:Form 2797:Dual 2730:flow 2593:Tame 2569:Sub− 2482:Flat 2362:Maps 1872:ISBN 1548:ISBN 1410:ISBN 1326:ISBN 1220:ISBN 937:+ 1) 645:and 420:Let 411:+ 1) 239:for 233:+ 1) 128:and 116:and 100:The 60:path 34:(or 30:The 2817:Jet 1864:doi 1824:doi 1775:doi 1732:doi 1682:doi 1668:157 1630:doi 1590:doi 1492:doi 1478:188 1447:doi 1443:144 1402:doi 1362:doi 1318:doi 1274:doi 1252:193 1212:doi 901:in 801:of 789:on 781:to 752:of 744:of 728:ƒ: 649:to 595:in 515:of 502:+ 2 485:to 477:of 475:→ ℝ 468:+ 1 445:→ ℝ 383:If 192:→ ℝ 85:or 3060:: 2808:Co 1882:MR 1880:. 1870:. 1862:. 1840:MR 1838:. 1830:. 1820:84 1791:MR 1789:. 1781:. 1771:63 1748:MR 1746:. 1738:. 1728:60 1698:. 1692:MR 1690:. 1680:. 1660:. 1652:; 1638:MR 1636:. 1626:58 1624:. 1598:MR 1596:. 1586:58 1584:. 1558:MR 1556:. 1533:; 1506:. 1500:MR 1498:. 1490:. 1470:. 1455:MR 1453:. 1420:MR 1418:. 1408:. 1400:. 1378:MR 1376:. 1368:. 1358:93 1336:MR 1334:. 1324:. 1316:. 1308:. 1288:. 1282:MR 1280:. 1272:. 1264:. 1250:. 1230:MR 1228:. 1218:. 1210:. 1198:; 1141:; 1041:; 983:. 897:, 760:dƒ 732:→ 708:≀ 696:(3 692:≀ 657:. 610:. 563:. 498:≄ 464:≄ 447:a 441:: 426:, 188:: 170:, 54:. 2826:( 2806:( 2582:( 2563:( 2461:( 2451:( 2214:) 2210:( 2200:e 2193:t 2186:v 2008:/ 1931:) 1927:( 1917:e 1910:t 1903:v 1888:. 1866:: 1846:. 1826:: 1803:) 1797:. 1777:: 1754:. 1734:: 1717:C 1706:. 1684:: 1674:: 1644:. 1632:: 1615:C 1604:. 1592:: 1575:C 1564:. 1525:. 1494:: 1484:: 1461:. 1449:: 1426:. 1404:: 1384:. 1364:: 1342:. 1320:: 1296:. 1276:: 1268:: 1258:: 1236:. 1214:: 1181:. 1169:. 1145:. 1045:. 1029:. 948:R 935:m 933:( 931:m 925:2 922:/ 919:1 911:n 907:M 905:p 903:T 899:v 895:u 878:) 875:v 872:( 867:p 863:f 859:d 853:) 850:u 847:( 842:p 838:f 834:d 831:= 825:v 822:, 819:u 803:R 795:M 793:p 791:T 783:R 779:M 777:p 775:T 763:p 754:M 750:p 746:C 738:C 734:R 730:M 722:M 718:m 714:m 712:( 710:m 706:n 702:M 698:m 694:m 690:n 686:n 682:k 678:C 674:m 670:M 662:C 608:ℝ 604:m 599:m 597:2 589:m 577:C 572:ℝ 568:ℝ 556:f 552:ℝ 544:m 525:ℝ 500:m 496:n 489:. 487:f 479:g 473:M 466:m 462:n 457:ℝ 443:M 439:f 434:m 430:) 428:g 424:M 422:( 409:m 407:( 405:m 399:2 396:/ 393:1 385:n 368:. 360:j 356:x 341:f 326:i 322:x 307:f 295:n 290:1 287:= 276:= 273:) 270:x 267:( 262:j 259:i 255:g 241:n 231:m 229:( 227:m 221:2 218:/ 215:1 207:x 200:g 190:M 186:f 174:) 172:g 168:M 166:( 162:m 153:C 122:C 106:C 102:C 95:k 91:C 79:C 77:( 20:)

Index

Nash–Kuiper theorem
John Forbes Nash Jr.
Riemannian manifold
embedded
Euclidean space
Isometric
path
isometric embedding
arclength
continuously differentiable
analytic
smooth
Greene & Jacobowitz (1971)
Élie Cartan
Maurice Janet
h-principle
Nash–Moser implicit function theorem
GĂŒnther (1989)
partial differential equations
contraction mapping theorem
topological embedding
pullback
coordinate chart
partial differential equations
short
immersion
converge uniformly
Nicolaas Kuiper
well-known theorem
David Hilbert

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑