Knowledge

Gel electrophoresis

Source đź“ť

633:
4-chloro-2-2methylbenzenediazonium salt with 3-phospho-2-naphthoic acid-2'-4'-dimethyl aniline in Tris buffer. This stain is commercially sold as a kit for staining gels. If the protein is present, the mechanism of the reaction takes place in the following order: it starts with the de-phosphorylation of 3-phospho-2-naphthoic acid-2'-4'-dimethyl aniline by alkaline phosphatase (water is needed for the reaction). The phosphate group is released and replaced by an alcohol group from water. The electrophile 4- chloro-2-2 methylbenzenediazonium (Fast Red TR Diazonium salt) displaces the alcohol group forming the final product Red Azo dye. As its name implies, this is the final visible-red product of the reaction. In undergraduate academic experimentation of protein purification, the gel is usually run next to commercial purified samples to visualize the results and conclude whether or not purification was successful.
474: 672:, which is rarely used, based on Pubmed citations (LB), isoelectric histidine, pK matched goods buffers, etc.; in most cases the purported rationale is lower current (less heat) matched ion mobilities, which leads to longer buffer life. Borate is problematic; Borate can polymerize, or interact with cis diols such as those found in RNA. TAE has the lowest buffering capacity but provides the best resolution for larger DNA. This means a lower voltage and more time, but a better product. LB is relatively new and is ineffective in resolving fragments larger than 5 kbp; However, with its low conductivity, a much higher voltage could be used (up to 35 V/cm), which means a shorter analysis time for routine electrophoresis. As low as one base pair size difference could be resolved in 3% agarose gel with an extremely low conductivity medium (1 mM Lithium borate). 322:
pH, but running for too long can exhaust the buffering capacity of the solution. There are also limitations in determining the molecular weight by SDS-PAGE, especially when trying to find the MW of an unknown protein. Certain biological variables are difficult or impossible to minimize and can affect electrophoretic migration. Such factors include protein structure, post-translational modifications, and amino acid composition. For example, tropomyosin is an acidic protein that migrates abnormally on SDS-PAGE gels. This is because the acidic residues are repelled by the negatively charged SDS, leading to an inaccurate mass-to-charge ratio and migration. Further, different preparations of genetic material may not migrate consistently with each other, for morphological or other reasons.
103: 238:. The electric field consists of a negative charge at one end which pushes the molecules through the gel, and a positive charge at the other end that pulls the molecules through the gel. The molecules being sorted are dispensed into a well in the gel material. The gel is placed in an electrophoresis chamber, which is then connected to a power source. When the electric field is applied, the larger molecules move more slowly through the gel while the smaller molecules move faster. The different sized molecules form distinct bands on the gel. 297:(EMF) that is used to move the molecules through the gel matrix. By placing the molecules in wells in the gel and applying an electric field, the molecules will move through the matrix at different rates, determined largely by their mass when the charge-to-mass ratio (Z) of all species is uniform. However, when charges are not all uniform the electrical field generated by the electrophoresis procedure will cause the molecules to migrate differentially according to charge. Species that are net positively charged will migrate towards the 966:(SDS) that coats the proteins with a negative charge. Generally, the amount of SDS bound is relative to the size of the protein (usually 1.4g SDS per gram of protein), so that the resulting denatured proteins have an overall negative charge, and all the proteins have a similar charge-to-mass ratio. Since denatured proteins act like long rods instead of having a complex tertiary shape, the rate at which the resulting SDS coated proteins migrate in the gel is relative only to their size and not their charge or shape. 570: 388:"Most agarose gels are made with between 0.7% (good separation or resolution of large 5–10kb DNA fragments) and 2% (good resolution for small 0.2–1kb fragments) agarose dissolved in electrophoresis buffer. Up to 3% can be used for separating very tiny fragments but a vertical polyacrylamide gel is more appropriate in this case. Low percentage gels are very weak and may break when you try to lift them. High percentage gels are often brittle and do not set evenly. 1% gels are common for many applications." 344: 40: 94: 3235: 1024:
distribution), which then can be used in further products/processes (e.g. self-assembly processes). For the separation of nanoparticles within a gel, the key parameter is the ratio of the particle size to the mesh size, whereby two migration mechanisms were identified: the unrestricted mechanism, where the particle size << mesh size, and the restricted mechanism, where particle size is similar to mesh size.
220: 3247: 840:. The results can be analyzed quantitatively by visualizing the gel with UV light and a gel imaging device. The image is recorded with a computer-operated camera, and the intensity of the band or spot of interest is measured and compared against standard or markers loaded on the same gel. The measurement and analysis are mostly done with specialized software. 313:
separation of the components can lead to overlapping bands, or indistinguishable smears representing multiple unresolved components. Bands in different lanes that end up at the same distance from the top contain molecules that passed through the gel at the same speed, which usually means they are approximately the same size. There are
605:. Complexes remain—for the most part—associated and folded as they would be in the cell. One downside, however, is that complexes may not separate cleanly or predictably, as it is difficult to predict how the molecule's shape and size will affect its mobility. Addressing and solving this problem is a major aim of 888:, however, may show multiple bands, the speed of migration may depend on whether it is relaxed or supercoiled. Single-stranded DNA or RNA tends to fold up into molecules with complex shapes and migrate through the gel in a complicated manner based on their tertiary structure. Therefore, agents that disrupt the 938: 922:
Electrophoresis of RNA samples can be used to check for genomic DNA contamination and also for RNA degradation. RNA from eukaryotic organisms shows distinct bands of 28s and 18s rRNA, the 28s band being approximately twice as intense as the 18s band. Degraded RNA has less sharply defined bands, has a
593:
Native gels are run in non-denaturing conditions so that the analyte's natural structure is maintained. This allows the physical size of the folded or assembled complex to affect the mobility, allowing for analysis of all four levels of the biomolecular structure. For biological samples, detergents
317:
available that contain a mixture of molecules of known sizes. If such a marker was run on one lane in the gel parallel to the unknown samples, the bands observed can be compared to those of the unknown to determine their size. The distance a band travels is approximately inversely proportional to the
628:
and intrinsic charge, but also the cross-sectional area, and thus experience different electrophoretic forces dependent on the shape of the overall structure. For proteins, since they remain in the native state they may be visualized not only by general protein staining reagents but also by specific
402:
Polyacrylamide gel electrophoresis (PAGE) is used for separating proteins ranging in size from 5 to 2,000 kDa due to the uniform pore size provided by the polyacrylamide gel. Pore size is controlled by modulating the concentrations of acrylamide and bis-acrylamide powder used in creating a gel. Care
376:
to several megabases (millions of bases), the largest of which require specialized apparatus. The distance between DNA bands of different lengths is influenced by the percent agarose in the gel, with higher percentages requiring longer run times, sometimes days. Instead high percentage agarose gels
321:
There are limits to electrophoretic techniques. Since passing a current through a gel causes heating, gels may melt during electrophoresis. Electrophoresis is performed in buffer solutions to reduce pH changes due to the electric field, which is important because the charge of DNA and RNA depends on
312:
If several samples have been loaded into adjacent wells in the gel, they will run parallel in individual lanes. Depending on the number of different molecules, each lane shows the separation of the components from the original mixture as one or more distinct bands, one band per component. Incomplete
659:
Buffers in gel electrophoresis are used to provide ions that carry a current and to maintain the pH at a relatively constant value. These buffers have plenty of ions in them, which is necessary for the passage of electricity through them. Something like distilled water or benzene contains few ions,
446:
are made in 6%, 8%, 10%, 12% or 15%. Stacking gel (5%) is poured on top of the resolving gel and a gel comb (which forms the wells and defines the lanes where proteins, sample buffer, and ladders will be placed) is inserted. The percentage chosen depends on the size of the protein that one wishes
330:
The types of gel most typically used are agarose and polyacrylamide gels. Each type of gel is well-suited to different types and sizes of the analyte. Polyacrylamide gels are usually used for proteins and have very high resolving power for small fragments of DNA (5-500 bp). Agarose gels, on the
1198:
A 1959 book on electrophoresis by Milan Bier cites references from the 1800s. However, Oliver Smithies made significant contributions. Bier states: "The method of Smithies ... is finding wide application because of its unique separatory power." Taken in context, Bier clearly implies that Smithies'
172:
or other substances. Shorter molecules move faster and migrate farther than longer ones because shorter molecules migrate more easily through the pores of the gel. This phenomenon is called sieving. Proteins are separated by the charge in agarose because the pores of the gel are too large to sieve
48:
is placed in this buffer-filled box and an electric current is applied via the power supply to the rear. The negative terminal is at the far end (black wire), so DNA migrates toward the positively charged anode(red wire). This occurs because phosphate groups found in the DNA fragments possess a
180:
Gel electrophoresis uses a gel as an anticonvective medium or sieving medium during electrophoresis, the movement of a charged particle in an electric current. Gels suppress the thermal convection caused by the application of the electric field, and can also act as a sieving medium, slowing the
459:
potato starch makes for another non-toxic medium for protein electrophoresis. The gels are slightly more opaque than acrylamide or agarose. Non-denatured proteins can be separated according to charge and size. They are visualised using Napthal Black or Amido Black staining. Typical starch gel
1023:
A novel application for gel electrophoresis is the separation or characterization of metal or metal oxide nanoparticles (e.g. Au, Ag, ZnO, SiO2) regarding the size, shape, or surface chemistry of the nanoparticles. The scope is to obtain a more homogeneous sample (e.g. narrower particle size
632:
A specific experiment example of an application of native gel electrophoresis is to check for enzymatic activity to verify the presence of the enzyme in the sample during protein purification. For example, for the protein alkaline phosphatase, the staining solution is a mixture of
418:
methods used polyacrylamide gels to separate DNA fragments differing by a single base-pair in length so the sequence could be read. Most modern DNA separation methods now use agarose gels, except for particularly small DNA fragments. It is currently most often used in the field of
335:(PFGE). Polyacrylamide gels are run in a vertical configuration while agarose gels are typically run horizontally in a submarine mode. They also differ in their casting methodology, as agarose sets thermally, while polyacrylamide forms in a chemical polymerization reaction. 368:. Agarose gels are easily cast and handled compared to other matrices because the gel setting is a physical rather than chemical change. Samples are also easily recovered. After the experiment is finished, the resulting gel can be stored in a plastic bag in a refrigerator. 679:
that significantly enhances the sharpness of the bands within the gel. During electrophoresis in a discontinuous gel system, an ion gradient is formed in the early stage of electrophoresis that causes all of the proteins to focus on a single sharp band in a process called
97:
The image above shows how small DNA fragments will migrate through agarose quickly but large size DNA fragments move more slowly during electrophoresis. The graph to the right shows the nonlinear relationship between the size of the DNA fragment and the distance
285:
and must be handled using appropriate safety precautions to avoid poisoning. Agarose is composed of long unbranched chains of uncharged carbohydrates without cross-links resulting in a gel with large pores allowing for the separation of macromolecules and
684:. Separation of the proteins by size is achieved in the lower, "resolving" region of the gel. The resolving gel typically has a much smaller pore size, which leads to a sieving effect that now determines the electrophoretic mobility of the proteins. 309:), whereas species that are net negatively charged will migrate towards the positively charged anode. Mass remains a factor in the speed with which these non-uniformly charged molecules migrate through the matrix toward their respective electrodes. 181:
passage of molecules; gels can also simply serve to maintain the finished separation so that a post electrophoresis stain can be applied. DNA gel electrophoresis is usually performed for analytical purposes, often after amplification of DNA via
954:, unlike nucleic acids, can have varying charges and complex shapes, therefore they may not migrate into the polyacrylamide gel at similar rates, or all when placing a negative to positive EMF on the sample. Proteins, therefore, are usually 2105: 858: 371:
Agarose gels do not have a uniform pore size, but are optimal for electrophoresis of proteins that are larger than 200 kDa. Agarose gel electrophoresis can also be used for the separation of DNA fragments ranging from 50
2367:
Barasinski, Matthäus; Garnweitner, Georg (12 February 2020). "Restricted and Unrestricted Migration Mechanisms of Silica Nanoparticles in Agarose Gels and Their Utilization for the Separation of Binary Mixtures".
447:
to identify or probe in the sample. The smaller the known weight, the higher the percentage that should be used. Changes in the buffer system of the gel can help to further resolve proteins of very small sizes.
331:
other hand, have lower resolving power for DNA but have a greater range of separation, and are therefore used for DNA fragments of usually 50–20,000 bp in size, but the resolution of over 6 Mb is possible with
843:
Depending on the type of analysis being performed, other techniques are often implemented in conjunction with the results of gel electrophoresis, providing a wide range of field-specific applications.
473: 534:
Denaturing conditions are necessary for proper estimation of molecular weight of RNA. RNA is able to form more intramolecular interactions than DNA which may result in change of its
1995: 1911: 2046: 477:
TTGE profiles representing the bifidobacterial diversity of fecal samples from two healthy volunteers (A and B) before and after AMC (Oral Amoxicillin-Clavulanic Acid) treatment
230:
is a process that enables the sorting of molecules based on charge, size, or shape. Using an electric field, molecules (such as DNA) can be made to move through a gel made of
2848: 915:" page for an example of a polyacrylamide DNA sequencing gel. Characterization through ligand interaction of nucleic acids or fragments may be performed by mobility shift 1552: 318:
logarithm of the size of the molecule (alternatively, this can be stated as the distance traveled is inversely proportional to the log of samples's molecular weight).
869:
In the case of nucleic acids, the direction of migration, from negative to positive electrodes, is due to the naturally occurring negative charge carried by their
2260: 2532: 2440: 2159: 574: 106:
Gel electrophoresis is a process where an electric current is applied to DNA samples creating fragments that can be used for comparison between DNA samples.
2901: 880:
Double-stranded DNA fragments naturally behave as long rods, so their migration through the gel is relative to their size or, for cyclic fragments, their
766:. The gel will then be physically cut, and the protein complexes extracted from each portion separately. Each extract may then be analysed, such as by 484:
gels are run under conditions that disrupt the natural structure of the analyte, causing it to unfold into a linear chain. Thus, the mobility of each
3021: 2740: 2703: 281:), the preferred matrix is purified agarose. In both cases, the gel forms a solid, yet porous matrix. Acrylamide, in contrast to polyacrylamide, is a 2698: 3142: 2988: 660:
which is not ideal for the use in electrophoresis. There are a number of buffers used for electrophoresis. The most common being, for nucleic acids
558: 190: 161:
to separate a mixed population of DNA and RNA fragments by length, to estimate the size of DNA and RNA fragments or to separate proteins by charge.
85: 648: 726:
dye. Other methods may also be used to visualize the separation of the mixture's components on the gel. If the molecules to be separated contain
2983: 2688: 2295: 1806: 1472: 1439: 1406: 1373: 1335: 2708: 3173: 3102: 1214: 852: 693: 3168: 3147: 1239: 81: 3300: 3132: 2215: 1586: 504: 397: 77: 249:
whose composition and porosity are chosen based on the specific weight and composition of the target to be analyzed. When separating
2573: 2190: 799: 3137: 2838: 2818: 1602:
Smisek, David L.; Hoagland, David A. (1989). "Agarose gel electrophoresis of high molecular weight, synthetic polyelectrolytes".
1229: 1157: 378: 332: 3178: 3127: 3067: 2799: 1541: 1038: 932: 697: 676: 277:, producing different sized mesh networks of polyacrylamide. When separating larger nucleic acids (greater than a few hundred 3290: 3082: 3183: 3087: 3014: 2828: 2733: 2713: 1799:
Electrophoresis of Proteins in Polyacrylamide and Starch Gels: Laboratory Techniques in Biochemistry and Molecular Biology
1775: 1067: 569: 2693: 1716: 488:
depends only on its linear length and its mass-to-charge ratio. Thus, the secondary, tertiary, and quaternary levels of
411: 245:" in this instance refers to the matrix used to contain, then separate the target molecules. In most cases, the gel is a 2876: 746:
system. Gels are then commonly labelled for presentation and scientific records on the popular figure-creation website,
314: 1686: 3062: 2975: 2881: 2809: 1092: 955: 767: 613: 481: 352: 49:
negative charge which is repelled by the negatively charged cathode and are attracted to the positively charged anode.
45: 382: 403:
must be used when creating this type of gel, as acrylamide is a potent neurotoxin in its liquid and powdered forms.
3285: 3251: 3041: 1209: 977: 771: 3220: 3072: 2833: 2823: 2813: 2775: 1264: 1259: 1234: 1151: 1078: 1000: 862: 795: 182: 73: 1976:"Enhanced full-length transcription of Sindbis virus RNA by effective denaturation with methylmercury hydroxide" 102: 3295: 3280: 3239: 3057: 3007: 2853: 2726: 996: 916: 912: 723: 535: 287: 554:
hydroxide was often used in denaturing RNA electrophoresis, but it may be method of choice for some samples.
1129: 528: 2924: 2886: 2612:
Minde, David P.; Maurice, Madelon M.; RĂĽdiger, Stefan G. D. (3 October 2012). Uversky, Vladimir N. (ed.).
2464:"The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis" 1096: 963: 803: 500: 489: 3112: 3097: 2843: 582: 3258: 3204: 2891: 2770: 2625: 2333: 1611: 1224: 1175: 1133: 759: 520: 516: 2555: 1835:"Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults" 443: 3199: 2858: 2804: 2070:"Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis" 985: 415: 343: 294: 246: 778:. This can provide a great deal of information about the identities of the proteins in a complex. 2790: 2393: 2097: 2017:
Fromin N; Hamelin J; Tarnawski S; Roesti D; Jourdain-Miserez K; Forestier N; et al. (2002).
1767: 1678: 1183: 881: 821: 788: 703: 543: 512: 150: 2320:
Hanauer, Matthias; Pierrat, Sebastien; Zins, Inga; Lotz, Alexander; Sönnichsen, Carsten (2007).
39: 1287:"Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104" 519:, a method called reducing PAGE. Reducing conditions are usually maintained by the addition of 3077: 2945: 2661: 2643: 2594: 2569: 2524: 2485: 2432: 2385: 2349: 2291: 2252: 2211: 2186: 2151: 2089: 2038: 1987: 1956: 1903: 1864: 1812: 1802: 1759: 1670: 1662: 1627: 1582: 1523: 1478: 1468: 1445: 1435: 1412: 1402: 1379: 1369: 1341: 1331: 1308: 1115: 825: 302: 186: 158: 550:
are the most often used denaturing agents to disrupt RNA structure. Originally, highly toxic
3122: 2960: 2651: 2633: 2561: 2516: 2475: 2424: 2377: 2341: 2244: 2143: 2081: 2030: 1946: 1895: 1854: 1846: 1751: 1654: 1619: 1513: 1505: 1298: 1144: 1004: 893: 775: 707: 681: 278: 3092: 3030: 2929: 2753: 2614:"Determining Biophysical Protein Stability in Lysates by a Fast Proteolysis Assay, FASTpp" 1187: 1056: 992: 943: 735: 266: 227: 219: 214: 153:
to separate proteins by charge or size (IEF agarose, essentially size independent) and in
58: 17: 507:
process. For full denaturation of proteins, it is also necessary to reduce the covalent
2629: 2337: 1615: 787:
Estimation of the size of DNA molecules following restriction enzyme digestion, e.g. in
557:
Denaturing gel electrophoresis is used in the DNA and RNA banding pattern-based methods
185:(PCR), but may be used as a preparative technique prior to use of other methods such as 2868: 2785: 2656: 2613: 1859: 1834: 1518: 1497: 1219: 1161: 1140: 1071: 731: 625: 602: 587: 524: 508: 428: 407: 358: 235: 198: 165: 2480: 2463: 2019:"Statistical analysis of denaturing gel electrophoresis (DGE) fingerprinting patterns" 1951: 1934: 1899: 900:, are used to denature the nucleic acids and cause them to behave as long rods again. 527:. For a general analysis of protein samples, reducing PAGE is the most common form of 3305: 3274: 3163: 3117: 2965: 2955: 2896: 2520: 2428: 2397: 2284: 2147: 2085: 2034: 1771: 1042: 889: 813: 809: 727: 621: 598: 551: 485: 306: 202: 2682: 1682: 947:– The indicated proteins are present in different concentrations in the two samples. 647:. However, native PAGE is also used to scan genes (DNA) for unknown mutations as in 2950: 2919: 2780: 2101: 1399:
Wilson and Walker's principles and techniques of biochemistry and molecular biology
1156:
1984 – pulsed-field gel electrophoresis enables separation of large DNA molecules (
972:
are usually analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (
837: 833: 719: 711: 636: 436: 274: 254: 174: 154: 93: 2321: 2718: 2638: 1658: 2322:"Separation of Nanoparticles by Gel Electrophoresis According to Size and Shape" 1108: 1104: 715: 134: 1048:
1950 – introduction of "zone electrophoresis" (Tiselius); paper electrophoresis
2762: 1708: 1581:. Vol. 1 (3rd ed.). Cold Spring Harbor Laboratory. p. 5.2–5.3. 1577:
Tom Maniatis; E. F. Fritsch; Joseph Sambrook (1982). "Chapter 5, protocol 1".
1254: 1063: 739: 665: 661: 640: 456: 435:
membrane to be probed with antibodies and corresponding markers, such as in a
420: 282: 270: 2647: 2389: 2381: 2248: 2233:"History and principles of conductive media for standard DNA electrophoresis" 1666: 1631: 1416: 612:
Unlike denaturing methods, native gel electrophoresis does not use a charged
1646: 1482: 1449: 1383: 1345: 1330:(in Spanish). Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press. 1249: 1191: 1179: 1168: 981: 959: 897: 874: 758:
After separation, an additional separation method may then be used, such as
669: 644: 606: 373: 2665: 2598: 2353: 2256: 2232: 2042: 2018: 1935:"Synthesis of full length cDNAs from four partially purified oviduct mRNAs" 1868: 1763: 1739: 1674: 1527: 1312: 1303: 1286: 149:, etc.) and their fragments, based on their size and charge. It is used in 2565: 2528: 2504: 2489: 2436: 2412: 2155: 2131: 1991: 1975: 1907: 1883: 2093: 2069: 1960: 1816: 1755: 1119: 973: 829: 763: 617: 427:
of the same protein into separate bands. These can be transferred onto a
424: 2310:
Troubleshooting DNA agarose gel electrophoresis. Focus 19:3 p.66 (1997).
1623: 1070:); accurate control of parameters such as pore size and stability; and ( 2749: 1244: 1100: 1034: 969: 951: 885: 743: 702:
After the electrophoresis is complete, the molecules in the gel can be
577: 547: 365: 361: 298: 250: 231: 194: 169: 146: 2345: 2132:"Detection of glucose-6-phosphate dehydrogenase in malarial parasites" 1850: 1401:. Cambridge, United Kingdom New York, NY: Cambridge University Press. 1285:
Kryndushkin DS; Alexandrov IM; Ter-Avanesyan MD; Kushnirov VV (2003).
173:
proteins. Gel electrophoresis can also be used for the separation of
1052: 1012: 1008: 2413:"Electrophoretic separation of polyoma virus DNA from host cell DNA" 2208:
fundamental laboratory approaches for biochemistry and biotechnology
937: 857: 423:
and protein analysis, often used to separate different proteins or
2999: 2911: 936: 870: 856: 595: 568: 492:
are disrupted, leaving only the primary structure to be analyzed.
342: 101: 92: 1884:"A thin-layer starch gel method for enzyme typing of bloodstains" 1509: 1498:"Agarose gel electrophoresis for the separation of DNA fragments" 1085: 991:
Characterization through ligand interaction may be performed by
539: 496: 432: 347:
Inserting the gel comb in an agarose gel electrophoresis chamber
3003: 2722: 2685:, from the University of Utah's Genetic Science Learning Center 2206:
Ninfa, Alexander J.; Ballou, David P.; Benore, Marilee (2009).
1172: 923:
smeared appearance, and the intensity ratio is less than 2:1.
908: 904: 262: 258: 242: 142: 138: 269:) the gel is usually composed of different concentrations of 168:
to move the negatively charged molecules through a matrix of
2557:
Electrophoresis Fundamentals: Essential Theory and Practice
561:(TGGE) and denaturing gradient gel electrophoresis (DGGE). 911:
is usually done by agarose gel electrophoresis. See the "
694:
Gel electrophoresis of nucleic acids § Visualization
2183:
Fundamental Approaches to Biochemistry and Biotechnology
675:
Most SDS-PAGE protein separations are performed using a
2709:
Step by step photos of running a gel and extracting DNA
594:
are used only to the extent that they are necessary to
2683:
Biotechniques Laboratory electrophoresis demonstration
747: 698:
Gel electrophoresis of proteins § Visualization
164:
Nucleic acid molecules are separated by applying an
3213: 3192: 3156: 3050: 2974: 2938: 2910: 2867: 2761: 1933:Buell GN; Wickens MP; Payvar F; Schimke RT (1978). 1542:"Molecular Weight Determination by SDS-PAGE, Rev B" 668:(TBE). Many other buffers have been proposed, e.g. 69: 64: 54: 2591:Electrophoresis: theory, methods, and applications 2283: 1077:1965 – introduction of free-flow electrophoresis ( 706:to make them visible. DNA may be visualized using 499:in the buffer, while proteins are denatured using 27:Method for separation and analysis of biomolecules 2376:(9). American Chemical Society (ACS): 5157–5166. 1610:(5). American Chemical Society (ACS): 2270–2277. 1465:Biochemical techniques : theory and practice 1434:(in Estonian). San Francisco: Benjamin Cummings. 1150:1981 – introduction of capillary electrophoresis 2689:Discontinuous native protein gel electrophoresis 2624:(10). Public Library of Science (PLoS): e46147. 301:which is negatively charged (because this is an 1828: 1826: 1125:1972 – agarose gels with ethidium bromide stain 495:Nucleic acids are often denatured by including 1496:Lee PY; Costumbrado J; Hsu CY; Kim YH (2012). 1007:and determination of structural features like 808:Separation of restricted genomic DNA prior to 616:agent. The molecules being separated (usually 3015: 2734: 980:, by preparative native gel electrophoresis ( 718:light, while protein may be visualised using 8: 2704:Animation of gel analysis of DNA restriction 1709:"Agarose gel electrophoresis (basic method)" 1328:Molecular cloning : a laboratory manual 32: 133:is a method for separation and analysis of 3022: 3008: 3000: 2741: 2727: 2719: 2290:(5th ed.). WH Freeman: New York, NY. 2185:. Bethesda, Md: Fitzgerald Science Press. 38: 2655: 2637: 2479: 1950: 1858: 1517: 1467:. Prospect Heights, Ill: Waveland Press. 1302: 639:gel electrophoresis is typically used in 3143:Temperature gradient gel electrophoresis 1359: 1357: 1355: 559:temperature gradient gel electrophoresis 472: 218: 86:Temperature gradient gel electrophoresis 2282:Lodish H; Berk A; Matsudaira P (2004). 1579:Molecular Cloning - A Laboratory Manual 1368:(in Estonian). New York: W.H. Freeman. 1277: 677:"discontinuous" (or DISC) buffer system 649:single-strand conformation polymorphism 357:Agarose gels are made from the natural 2984:Photoactivated localization microscopy 2902:Protein–protein interaction prediction 1167:2004 – introduction of a standardized 31: 1558:from the original on 17 November 2021 1066:gels; discontinuous electrophoresis ( 118:Electric current applied to the gel. 112:Isolation and amplification of DNA. 7: 3246: 3174:Gel electrophoresis of nucleic acids 3103:Electrophoretic mobility shift assay 1801:. Amsterdam: North-Holland Pub. Co. 1719:from the original on 11 October 2018 1689:from the original on 2 February 2022 1215:Electrophoretic mobility shift assay 1033:1930s – first reports of the use of 853:Gel electrophoresis of nucleic acids 742:can be taken of gels, often using a 3169:DNA separation by silica adsorption 3148:Two-dimensional gel electrophoresis 2859:Freeze-fracture electron microscopy 2370:The Journal of Physical Chemistry C 2210:. Hoboken, NJ: Wiley. p. 161. 1240:Two-dimensional gel electrophoresis 710:which, when intercalated into DNA, 82:Two-dimensional gel electrophoresis 44:Gel electrophoresis apparatus – an 3133:Polyacrylamide gel electrophoresis 2560:. De Gruyter, ISBN 9783110761627. 398:Polyacrylamide gel electrophoresis 25: 2714:A typical method from wikiversity 2535:from the original on 11 June 2022 2443:from the original on 11 June 2022 2263:from the original on 11 June 2022 2111:from the original on 11 June 2022 2049:from the original on 11 June 2022 1998:from the original on 11 June 2022 1914:from the original on 11 June 2022 1882:Wraxall BG; Culliford BJ (1968). 1778:from the original on 11 June 2022 865:product compared to a DNA ladder. 575:Glucose-6-Phosphate Dehydrogenase 573:Specific enzyme-linked staining: 121:DNA bands are separated by size. 3245: 3234: 3233: 3138:Pulsed-field gel electrophoresis 2839:Isothermal titration calorimetry 2819:Dual-polarization interferometry 2505:"The gel electrophoresis of DNA" 2162:from the original on 6 July 2023 2130:Hempelmann E; Wilson RJ (1981). 2035:10.1046/j.1462-2920.2002.00358.x 1432:Modern experimental biochemistry 1230:Pulsed field gel electrophoresis 333:pulsed field gel electrophoresis 223:Overview of gel electrophoresis. 3179:Gel electrophoresis of proteins 3128:Moving-boundary electrophoresis 3068:Capillary electrochromatography 2593:. Academic Press. p. 225. 1651:Current Protocols in Immunology 1039:moving-boundary electrophoresis 933:Gel electrophoresis of proteins 820:Gel electrophoresis is used in 624:) therefore differ not only in 383:field inversion electrophoresis 3083:Difference gel electrophoresis 2694:Drinking straw electrophoresis 2068:Fischer SG; Lerman LS (1979). 1136:, then SDS gel electrophoresis 460:concentrations are 5% to 10%. 293:Electrophoresis refers to the 205:for further characterization. 1: 3184:Serum protein electrophoresis 3088:Discontinuous electrophoresis 2829:Chromatin immunoprecipitation 2481:10.1016/S0021-9258(18)94333-4 1952:10.1016/S0021-9258(17)38097-3 1900:10.1016/s0015-7368(68)70449-7 1653:. Chapter 10: 10.4.1–10.4.8. 1647:"Agarose gel electrophoresis" 903:Gel electrophoresis of large 738:can be recorded of the gel. 315:molecular weight size markers 115:DNA added to the gel wells. 2892:Protein structural alignment 2877:Protein structure prediction 2639:10.1371/journal.pone.0046147 2521:10.1016/0005-2787(72)90426-1 2429:10.1016/0042-6822(66)90029-8 2181:Ninfa AJ, Ballou DP (1998). 2148:10.1016/0166-6851(81)90100-6 2086:10.1016/0092-8674(79)90200-9 1974:Schelp C, Kaaden OR (1989). 1659:10.1002/0471142735.im1004s02 1122:using a stacking gel and SDS 798:products, e.g. in molecular 379:pulsed field electrophoresis 3063:Agarose gel electrophoresis 2976:Super-resolution microscopy 2882:Protein function prediction 2810:Peptide mass fingerprinting 2805:Protein immunoprecipitation 2699:How to run a DNA or RNA gel 1645:Voytas, Daniel (May 2001). 1128:1975 – 2-dimensional gels ( 1118:separated 28 components of 1055:gels, mediocre separation ( 768:peptide mass fingerprinting 353:Agarose gel electrophoresis 3322: 3042:History of electrophoresis 2462:Weber K; Osborn M (1969). 2231:Brody JR; Kern SE (2004). 1210:History of electrophoresis 1199:method is an improvement. 978:native gel electrophoresis 930: 850: 772:de novo peptide sequencing 691: 395: 350: 212: 18:Native gel electrophoresis 3301:Polymerase chain reaction 3229: 3221:Electrophoresis (journal) 3073:Capillary electrophoresis 3037: 2834:Surface plasmon resonance 2824:Microscale thermophoresis 2814:Protein mass spectrometry 2776:Green fluorescent protein 1326:Sambrook, Joseph (2001). 1265:Free-flow electrophoresis 1260:Fast parallel proteolysis 1235:Nonlinear frictiophoresis 1037:for gel electrophoresis; 1001:capillary electrophoresis 503:, usually as part of the 183:polymerase chain reaction 74:Capillary electrophoresis 37: 3058:Affinity electrophoresis 2854:Cryo-electron microscopy 2503:Aaij C; Borst P (1972). 2382:10.1021/acs.jpcc.9b10644 2249:10.1016/j.ab.2004.05.054 997:affinity electrophoresis 917:affinity electrophoresis 913:chain termination method 724:Coomassie brilliant blue 629:enzyme-linked staining. 536:electrophoretic mobility 288:macromolecular complexes 124:DNA bands are stained. 2887:Protein–protein docking 2800:Protein electrophoresis 1091:1969 – introduction of 1062:1959 – introduction of 1051:1955 – introduction of 884:. Circular DNA such as 607:preparative native PAGE 529:protein electrophoresis 2786:Protein immunostaining 2286:Molecular Cell Biology 1430:Boyer, Rodney (2000). 1397:Wilson, Keith (2018). 1304:10.1074/jbc.M307996200 1152:(Jorgenson and Lukacs) 964:sodium dodecyl sulfate 948: 866: 804:genetic fingerprinting 590: 501:sodium dodecyl sulfate 490:biomolecular structure 478: 348: 224: 127: 99: 3291:Laboratory techniques 3113:Immunoelectrophoresis 3098:Electrochromatography 2844:X-ray crystallography 2566:10.1515/9783110761641 2136:Mol Biochem Parasitol 1797:Gordon, A.H. (1969). 1364:Berg, Jeremy (2002). 1072:Raymond and Weintraub 1003:as for estimation of 958:in the presence of a 940: 860: 812:, or of RNA prior to 754:Downstream processing 692:Further information: 583:Plasmodium falciparum 572: 511:that stabilize their 476: 377:should be run with a 346: 222: 105: 96: 3259:Analytical Chemistry 3205:Isoelectric focusing 2771:Protein purification 2589:Bier, Milan (1959). 2509:Biochim Biophys Acta 1756:10.1038/nprot.2006.4 1713:Biological Protocols 1463:Robyt, John (1990). 1225:Isoelectric focusing 1134:isoelectric focusing 1084:1966 – first use of 861:An agarose gel of a 760:isoelectric focusing 521:beta-mercaptoethanol 517:quaternary structure 3200:Electrical mobility 3108:Gel electrophoresis 2796:Gel electrophoresis 2630:2012PLoSO...746147M 2554:Michov, B. (2022). 2338:2007NanoL...7.2881H 1833:Smithies O (1955). 1738:Schägger H (2006). 1624:10.1021/ma00195a048 1616:1989MaMol..22.2270S 1169:polymerization time 986:2-D electrophoresis 789:restriction mapping 730:, for example in a 410:techniques such as 295:electromotive force 247:crosslinked polymer 131:Gel electrophoresis 34: 33:Gel electrophoresis 2939:Display techniques 2791:Protein sequencing 2411:Thorne HV (1966). 1888:J Forensic Sci Soc 1740:"Tricine-SDS-PAGE" 1095:agents especially 1068:Ornstein and Davis 949: 882:radius of gyration 867: 591: 479: 349: 225: 151:clinical chemistry 128: 109:DNA is extracted. 100: 3286:Molecular biology 3268: 3267: 3078:Dielectrophoresis 2997: 2996: 2946:Bacterial display 2346:10.1021/nl071615y 2297:978-0-7167-4366-8 2023:Environ Microbiol 1851:10.1042/bj0610629 1808:978-0-7204-4202-1 1474:978-0-88133-556-9 1441:978-0-8053-3111-0 1408:978-1-316-61476-1 1375:978-0-7167-4955-4 1337:978-0-87969-576-7 1005:binding constants 999:in agarose or by 826:molecular biology 814:Northern transfer 810:Southern transfer 800:genetic diagnosis 662:Tris/Acetate/EDTA 203:Southern blotting 187:mass spectrometry 159:molecular biology 135:biomacromolecules 91: 90: 16:(Redirected from 3313: 3249: 3248: 3237: 3236: 3123:Isotachophoresis 3024: 3017: 3010: 3001: 2961:Ribosome display 2897:Protein ontology 2743: 2736: 2729: 2720: 2670: 2669: 2659: 2641: 2609: 2603: 2602: 2586: 2580: 2579: 2551: 2545: 2544: 2542: 2540: 2500: 2494: 2493: 2483: 2459: 2453: 2452: 2450: 2448: 2408: 2402: 2401: 2364: 2358: 2357: 2332:(9): 2881–2885. 2317: 2311: 2308: 2302: 2301: 2289: 2279: 2273: 2272: 2270: 2268: 2228: 2222: 2221: 2203: 2197: 2196: 2178: 2172: 2171: 2169: 2167: 2142:(3–4): 197–204. 2127: 2121: 2120: 2118: 2116: 2110: 2065: 2059: 2058: 2056: 2054: 2014: 2008: 2007: 2005: 2003: 1971: 1965: 1964: 1954: 1930: 1924: 1923: 1921: 1919: 1879: 1873: 1872: 1862: 1830: 1821: 1820: 1794: 1788: 1787: 1785: 1783: 1735: 1729: 1728: 1726: 1724: 1705: 1699: 1698: 1696: 1694: 1642: 1636: 1635: 1599: 1593: 1592: 1574: 1568: 1567: 1565: 1563: 1557: 1546: 1538: 1532: 1531: 1521: 1493: 1487: 1486: 1460: 1454: 1453: 1427: 1421: 1420: 1394: 1388: 1387: 1361: 1350: 1349: 1323: 1317: 1316: 1306: 1297:(49): 49636–43. 1282: 1182:, in particular 1011:content through 894:sodium hydroxide 776:in-gel digestion 708:ethidium bromide 682:isotachophoresis 666:Tris/Borate/EDTA 267:oligonucleotides 65:Other techniques 42: 35: 21: 3321: 3320: 3316: 3315: 3314: 3312: 3311: 3310: 3296:Electrophoresis 3281:Protein methods 3271: 3270: 3269: 3264: 3225: 3209: 3188: 3152: 3093:Electroblotting 3046: 3033: 3031:Electrophoresis 3028: 2998: 2993: 2970: 2934: 2930:Secretion assay 2906: 2863: 2757: 2747: 2679: 2674: 2673: 2611: 2610: 2606: 2588: 2587: 2583: 2576: 2553: 2552: 2548: 2538: 2536: 2502: 2501: 2497: 2474:(16): 4406–12. 2461: 2460: 2456: 2446: 2444: 2410: 2409: 2405: 2366: 2365: 2361: 2319: 2318: 2314: 2309: 2305: 2298: 2281: 2280: 2276: 2266: 2264: 2230: 2229: 2225: 2218: 2205: 2204: 2200: 2193: 2180: 2179: 2175: 2165: 2163: 2129: 2128: 2124: 2114: 2112: 2108: 2067: 2066: 2062: 2052: 2050: 2016: 2015: 2011: 2001: 1999: 1973: 1972: 1968: 1932: 1931: 1927: 1917: 1915: 1881: 1880: 1876: 1832: 1831: 1824: 1809: 1796: 1795: 1791: 1781: 1779: 1737: 1736: 1732: 1722: 1720: 1707: 1706: 1702: 1692: 1690: 1644: 1643: 1639: 1601: 1600: 1596: 1589: 1576: 1575: 1571: 1561: 1559: 1555: 1549:www.bio-rad.com 1544: 1540: 1539: 1535: 1495: 1494: 1490: 1475: 1462: 1461: 1457: 1442: 1429: 1428: 1424: 1409: 1396: 1395: 1391: 1376: 1363: 1362: 1353: 1338: 1325: 1324: 1320: 1284: 1283: 1279: 1274: 1269: 1205: 1188:electrophoresis 1171:for acrylamide 1030: 1021: 993:electroblotting 944:autoradiography 935: 929: 855: 849: 784: 756: 700: 690: 657: 599:lipid membranes 588:Red blood cells 567: 509:disulfide bonds 471: 466: 453: 400: 394: 364:extracted from 355: 341: 328: 228:Electrophoresis 217: 215:Electrophoresis 211: 84: 80: 76: 59:Electrophoresis 50: 28: 23: 22: 15: 12: 11: 5: 3319: 3317: 3309: 3308: 3303: 3298: 3293: 3288: 3283: 3273: 3272: 3266: 3265: 3263: 3262: 3255: 3243: 3230: 3227: 3226: 3224: 3223: 3217: 3215: 3211: 3210: 3208: 3207: 3202: 3196: 3194: 3190: 3189: 3187: 3186: 3181: 3176: 3171: 3166: 3160: 3158: 3154: 3153: 3151: 3150: 3145: 3140: 3135: 3130: 3125: 3120: 3115: 3110: 3105: 3100: 3095: 3090: 3085: 3080: 3075: 3070: 3065: 3060: 3054: 3052: 3048: 3047: 3045: 3044: 3038: 3035: 3034: 3029: 3027: 3026: 3019: 3012: 3004: 2995: 2994: 2992: 2991: 2986: 2980: 2978: 2972: 2971: 2969: 2968: 2963: 2958: 2953: 2948: 2942: 2940: 2936: 2935: 2933: 2932: 2927: 2922: 2916: 2914: 2908: 2907: 2905: 2904: 2899: 2894: 2889: 2884: 2879: 2873: 2871: 2869:Bioinformatics 2865: 2864: 2862: 2861: 2856: 2851: 2846: 2841: 2836: 2831: 2826: 2821: 2816: 2807: 2802: 2793: 2788: 2783: 2778: 2773: 2767: 2765: 2759: 2758: 2748: 2746: 2745: 2738: 2731: 2723: 2717: 2716: 2711: 2706: 2701: 2696: 2691: 2686: 2678: 2677:External links 2675: 2672: 2671: 2604: 2581: 2574: 2546: 2515:(2): 192–200. 2495: 2454: 2403: 2359: 2312: 2303: 2296: 2274: 2223: 2217:978-0470087664 2216: 2198: 2191: 2173: 2122: 2080:(1): 191–200. 2060: 2029:(11): 634–43. 2009: 1986:(3): 297–302. 1966: 1945:(7): 2471–82. 1925: 1874: 1822: 1807: 1789: 1730: 1700: 1637: 1604:Macromolecules 1594: 1588:978-0879691363 1587: 1569: 1533: 1488: 1473: 1455: 1440: 1422: 1407: 1389: 1374: 1351: 1336: 1318: 1276: 1275: 1273: 1270: 1268: 1267: 1262: 1257: 1252: 1247: 1242: 1237: 1232: 1227: 1222: 1220:Gel extraction 1217: 1212: 1206: 1204: 1201: 1196: 1195: 1180:gel properties 1165: 1154: 1148: 1137: 1126: 1123: 1112: 1099:separation of 1089: 1082: 1075: 1060: 1049: 1046: 1029: 1026: 1020: 1017: 931:Main article: 928: 925: 890:hydrogen bonds 851:Main article: 848: 845: 818: 817: 806: 792: 791:of cloned DNA. 783: 780: 755: 752: 732:DNA sequencing 689: 686: 670:lithium borate 656: 653: 626:molecular mass 566: 563: 525:dithiothreitol 470: 467: 465: 464:Gel conditions 462: 452: 449: 444:resolving gels 429:nitrocellulose 408:DNA sequencing 396:Main article: 393: 392:Polyacrylamide 390: 359:polysaccharide 351:Main article: 340: 337: 327: 324: 236:polyacrylamide 210: 209:Physical basis 207: 199:DNA sequencing 166:electric field 126: 125: 122: 119: 116: 113: 110: 89: 88: 71: 67: 66: 62: 61: 56: 55:Classification 52: 51: 43: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 3318: 3307: 3304: 3302: 3299: 3297: 3294: 3292: 3289: 3287: 3284: 3282: 3279: 3278: 3276: 3261: 3260: 3256: 3254: 3253: 3244: 3242: 3241: 3232: 3231: 3228: 3222: 3219: 3218: 3216: 3212: 3206: 3203: 3201: 3198: 3197: 3195: 3191: 3185: 3182: 3180: 3177: 3175: 3172: 3170: 3167: 3165: 3164:DNA laddering 3162: 3161: 3159: 3155: 3149: 3146: 3144: 3141: 3139: 3136: 3134: 3131: 3129: 3126: 3124: 3121: 3119: 3118:Iontophoresis 3116: 3114: 3111: 3109: 3106: 3104: 3101: 3099: 3096: 3094: 3091: 3089: 3086: 3084: 3081: 3079: 3076: 3074: 3071: 3069: 3066: 3064: 3061: 3059: 3056: 3055: 3053: 3049: 3043: 3040: 3039: 3036: 3032: 3025: 3020: 3018: 3013: 3011: 3006: 3005: 3002: 2990: 2987: 2985: 2982: 2981: 2979: 2977: 2973: 2967: 2966:Yeast display 2964: 2962: 2959: 2957: 2956:Phage display 2954: 2952: 2949: 2947: 2944: 2943: 2941: 2937: 2931: 2928: 2926: 2925:Protein assay 2923: 2921: 2918: 2917: 2915: 2913: 2909: 2903: 2900: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2874: 2872: 2870: 2866: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2835: 2832: 2830: 2827: 2825: 2822: 2820: 2817: 2815: 2811: 2808: 2806: 2803: 2801: 2797: 2794: 2792: 2789: 2787: 2784: 2782: 2779: 2777: 2774: 2772: 2769: 2768: 2766: 2764: 2760: 2755: 2751: 2744: 2739: 2737: 2732: 2730: 2725: 2724: 2721: 2715: 2712: 2710: 2707: 2705: 2702: 2700: 2697: 2695: 2692: 2690: 2687: 2684: 2681: 2680: 2676: 2667: 2663: 2658: 2653: 2649: 2645: 2640: 2635: 2631: 2627: 2623: 2619: 2615: 2608: 2605: 2600: 2596: 2592: 2585: 2582: 2577: 2575:9783110761641 2571: 2567: 2563: 2559: 2558: 2550: 2547: 2534: 2530: 2526: 2522: 2518: 2514: 2510: 2506: 2499: 2496: 2491: 2487: 2482: 2477: 2473: 2469: 2465: 2458: 2455: 2442: 2438: 2434: 2430: 2426: 2422: 2418: 2414: 2407: 2404: 2399: 2395: 2391: 2387: 2383: 2379: 2375: 2371: 2363: 2360: 2355: 2351: 2347: 2343: 2339: 2335: 2331: 2327: 2323: 2316: 2313: 2307: 2304: 2299: 2293: 2288: 2287: 2278: 2275: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2227: 2224: 2219: 2213: 2209: 2202: 2199: 2194: 2192:9781891786006 2188: 2184: 2177: 2174: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2126: 2123: 2107: 2103: 2099: 2095: 2091: 2087: 2083: 2079: 2075: 2071: 2064: 2061: 2048: 2044: 2040: 2036: 2032: 2028: 2024: 2020: 2013: 2010: 1997: 1993: 1989: 1985: 1981: 1977: 1970: 1967: 1962: 1958: 1953: 1948: 1944: 1940: 1936: 1929: 1926: 1913: 1909: 1905: 1901: 1897: 1893: 1889: 1885: 1878: 1875: 1870: 1866: 1861: 1856: 1852: 1848: 1845:(4): 629–41. 1844: 1840: 1836: 1829: 1827: 1823: 1818: 1814: 1810: 1804: 1800: 1793: 1790: 1777: 1773: 1769: 1765: 1761: 1757: 1753: 1749: 1745: 1741: 1734: 1731: 1718: 1714: 1710: 1704: 1701: 1688: 1684: 1680: 1676: 1672: 1668: 1664: 1660: 1656: 1652: 1648: 1641: 1638: 1633: 1629: 1625: 1621: 1617: 1613: 1609: 1605: 1598: 1595: 1590: 1584: 1580: 1573: 1570: 1554: 1550: 1543: 1537: 1534: 1529: 1525: 1520: 1515: 1511: 1507: 1503: 1499: 1492: 1489: 1484: 1480: 1476: 1470: 1466: 1459: 1456: 1451: 1447: 1443: 1437: 1433: 1426: 1423: 1418: 1414: 1410: 1404: 1400: 1393: 1390: 1385: 1381: 1377: 1371: 1367: 1360: 1358: 1356: 1352: 1347: 1343: 1339: 1333: 1329: 1322: 1319: 1314: 1310: 1305: 1300: 1296: 1292: 1288: 1281: 1278: 1271: 1266: 1263: 1261: 1258: 1256: 1253: 1251: 1248: 1246: 1243: 1241: 1238: 1236: 1233: 1231: 1228: 1226: 1223: 1221: 1218: 1216: 1213: 1211: 1208: 1207: 1202: 1200: 1193: 1189: 1185: 1184:gel stability 1181: 1177: 1174: 1170: 1166: 1163: 1159: 1155: 1153: 1149: 1146: 1142: 1138: 1135: 1131: 1127: 1124: 1121: 1117: 1113: 1110: 1106: 1102: 1098: 1094: 1090: 1087: 1083: 1080: 1076: 1073: 1069: 1065: 1061: 1058: 1054: 1050: 1047: 1044: 1040: 1036: 1032: 1031: 1027: 1025: 1019:Nanoparticles 1018: 1016: 1014: 1010: 1006: 1002: 998: 994: 989: 987: 983: 979: 975: 971: 967: 965: 961: 957: 953: 946: 945: 939: 934: 926: 924: 920: 918: 914: 910: 906: 901: 899: 895: 891: 887: 883: 878: 876: 872: 864: 859: 854: 847:Nucleic acids 846: 844: 841: 839: 835: 831: 827: 823: 815: 811: 807: 805: 801: 797: 793: 790: 786: 785: 781: 779: 777: 773: 769: 765: 761: 753: 751: 749: 745: 741: 737: 736:autoradiogram 733: 729: 728:radioactivity 725: 721: 717: 713: 709: 705: 699: 695: 688:Visualization 687: 685: 683: 678: 673: 671: 667: 663: 654: 652: 650: 646: 642: 638: 634: 630: 627: 623: 622:nucleic acids 619: 615: 610: 608: 604: 600: 597: 589: 585: 584: 579: 576: 571: 564: 562: 560: 555: 553: 552:methylmercury 549: 545: 541: 537: 532: 530: 526: 522: 518: 514: 510: 506: 502: 498: 493: 491: 487: 486:macromolecule 483: 475: 468: 463: 461: 458: 450: 448: 445: 440: 438: 434: 430: 426: 422: 417: 413: 412:Maxam-Gilbert 409: 404: 399: 391: 389: 386: 384: 380: 375: 369: 367: 363: 360: 354: 345: 338: 336: 334: 325: 323: 319: 316: 310: 308: 307:galvanic cell 304: 300: 296: 291: 289: 284: 280: 276: 272: 268: 264: 260: 256: 255:nucleic acids 252: 248: 244: 239: 237: 233: 229: 221: 216: 208: 206: 204: 200: 196: 192: 188: 184: 178: 176: 175:nanoparticles 171: 167: 162: 160: 156: 152: 148: 144: 140: 136: 132: 123: 120: 117: 114: 111: 108: 107: 104: 95: 87: 83: 79: 75: 72: 68: 63: 60: 57: 53: 47: 41: 36: 30: 19: 3257: 3250: 3238: 3157:Applications 3107: 2951:mRNA display 2920:Enzyme assay 2795: 2781:Western blot 2763:Experimental 2621: 2617: 2607: 2590: 2584: 2556: 2549: 2537:. Retrieved 2512: 2508: 2498: 2471: 2467: 2457: 2445:. Retrieved 2423:(2): 234–9. 2420: 2416: 2406: 2373: 2369: 2362: 2329: 2326:Nano Letters 2325: 2315: 2306: 2285: 2277: 2265:. Retrieved 2240: 2237:Anal Biochem 2236: 2226: 2207: 2201: 2182: 2176: 2164:. Retrieved 2139: 2135: 2125: 2113:. Retrieved 2077: 2073: 2063: 2051:. Retrieved 2026: 2022: 2012: 2000:. Retrieved 1983: 1979: 1969: 1942: 1938: 1928: 1916:. Retrieved 1891: 1887: 1877: 1842: 1838: 1798: 1792: 1780:. Retrieved 1750:(1): 16–22. 1747: 1743: 1733: 1721:. Retrieved 1712: 1703: 1691:. Retrieved 1650: 1640: 1607: 1603: 1597: 1578: 1572: 1560:. Retrieved 1548: 1536: 1510:10.3791/3923 1501: 1491: 1464: 1458: 1431: 1425: 1398: 1392: 1366:Biochemistry 1365: 1327: 1321: 1294: 1290: 1280: 1197: 1178:to optimize 1022: 990: 968: 950: 941: 921: 902: 879: 868: 842: 838:biochemistry 834:microbiology 819: 794:Analysis of 782:Applications 757: 720:silver stain 701: 674: 658: 635: 631: 611: 592: 581: 556: 533: 494: 480: 454: 441: 437:western blot 406:Traditional 405: 401: 387: 370: 356: 329: 326:Types of gel 320: 311: 305:rather than 303:electrolytic 292: 275:cross-linker 240: 226: 179: 163: 155:biochemistry 130: 129: 29: 2989:Vertico SMI 2849:Protein NMR 2468:J Biol Chem 2243:(1): 1–13. 1939:J Biol Chem 1894:(2): 81–2. 1291:J Biol Chem 740:Photographs 716:ultraviolet 645:metallomics 46:agarose gel 3275:Categories 3051:Techniques 1980:Acta Virol 1744:Nat Protoc 1272:References 1255:Zymography 1192:Kastenholz 1141:sequencing 1093:denaturing 1064:acrylamide 892:, such as 877:backbone. 641:proteomics 614:denaturing 578:isoenzymes 482:Denaturing 469:Denaturing 457:hydrolysed 455:Partially 442:Typically 421:immunology 381:(PFE), or 283:neurotoxin 271:acrylamide 241:The term " 213:See also: 2648:1932-6203 2398:213566317 2390:1932-7447 1839:Biochem J 1772:209529082 1667:1934-368X 1632:0024-9297 1502:J Vis Exp 1417:998750377 1250:QPNC-PAGE 1186:, during 1176:solutions 1130:O’Farrell 1103:subunit ( 1015:binding. 984:), or by 982:QPNC-PAGE 960:detergent 956:denatured 942:SDS-PAGE 898:formamide 875:phosphate 822:forensics 712:fluoresce 586:infected 374:base pair 253:or small 98:migrated. 3240:Category 3214:Journals 2756:of study 2750:Proteins 2666:23056252 2618:PLOS ONE 2539:23 March 2533:Archived 2447:23 March 2441:Archived 2417:Virology 2354:17718532 2267:23 March 2261:Archived 2257:15351274 2166:23 March 2160:Archived 2115:23 March 2106:Archived 2053:23 March 2047:Archived 2043:12460271 2002:23 March 1996:Archived 1918:23 March 1912:Archived 1869:13276348 1782:23 March 1776:Archived 1764:17406207 1723:23 March 1717:Archived 1687:Archived 1683:39623776 1675:18432695 1562:23 March 1553:Archived 1528:22546956 1483:22549624 1450:44493241 1384:48055706 1346:45015638 1313:14507919 1203:See also 1158:Schwartz 1120:T4 phage 1057:Smithies 1043:Tiselius 974:SDS-PAGE 970:Proteins 962:such as 952:Proteins 927:Proteins 886:plasmids 830:genetics 764:SDS-PAGE 734:gel, an 618:proteins 513:tertiary 505:SDS-PAGE 425:isoforms 362:polymers 251:proteins 147:proteins 78:SDS-PAGE 3252:Commons 2754:methods 2657:3463568 2626:Bibcode 2599:1175404 2529:5063906 2490:5806584 2437:4287545 2334:Bibcode 2156:7012616 2102:9369012 1992:2570517 1908:5738223 1860:1215845 1693:1 March 1612:Bibcode 1519:4846332 1245:SDD-AGE 1139:1977 – 1114:1970 – 1101:protein 1035:sucrose 1028:History 744:Gel Doc 704:stained 664:(TAE), 655:Buffers 601:in the 548:glyoxal 366:seaweed 339:Agarose 299:cathode 232:agarose 195:cloning 193:, PCR, 170:agarose 70:Related 3193:Theory 2752:: key 2664:  2654:  2646:  2597:  2572:  2527:  2488:  2435:  2396:  2388:  2352:  2294:  2255:  2214:  2189:  2154:  2100:  2094:369706 2092:  2041:  1990:  1961:632280 1959:  1906:  1867:  1857:  1815:  1805:  1770:  1762:  1681:  1673:  1665:  1630:  1585:  1526:  1516:  1504:(62). 1481:  1471:  1448:  1438:  1415:  1405:  1382:  1372:  1344:  1334:  1311:  1162:Cantor 1145:Sanger 1143:gels ( 1116:Lämmli 1109:Osborn 1079:Hannig 1053:starch 1013:lectin 1009:glycan 995:or by 976:), by 774:after 748:SciUGo 714:under 696:, and 637:Native 565:Native 451:Starch 416:Sanger 273:and a 2912:Assay 2394:S2CID 2109:(PDF) 2098:S2CID 1817:21766 1768:S2CID 1679:S2CID 1556:(PDF) 1545:(PDF) 1105:Weber 871:sugar 279:bases 265:, or 201:, or 3306:Gels 2662:PMID 2644:ISSN 2595:OCLC 2570:ISBN 2541:2022 2525:PMID 2486:PMID 2449:2022 2433:PMID 2386:ISSN 2350:PMID 2292:ISBN 2269:2022 2253:PMID 2212:ISBN 2187:ISBN 2168:2022 2152:PMID 2117:2022 2090:PMID 2074:Cell 2055:2022 2039:PMID 2004:2022 1988:PMID 1957:PMID 1920:2022 1904:PMID 1865:PMID 1813:OCLC 1803:ISBN 1784:2022 1760:PMID 1725:2022 1695:2023 1671:PMID 1663:ISSN 1628:ISSN 1583:ISBN 1564:2022 1524:PMID 1479:OCLC 1469:ISBN 1446:OCLC 1436:ISBN 1413:OCLC 1403:ISBN 1380:OCLC 1370:ISBN 1342:OCLC 1332:ISBN 1309:PMID 1160:and 1107:and 1088:gels 1086:agar 836:and 643:and 603:cell 596:lyse 546:and 544:DMSO 540:Urea 515:and 497:urea 433:PVDF 191:RFLP 157:and 2652:PMC 2634:doi 2562:doi 2517:doi 2513:269 2476:doi 2472:244 2425:doi 2378:doi 2374:124 2342:doi 2245:doi 2241:333 2144:doi 2082:doi 2031:doi 1947:doi 1943:253 1896:doi 1855:PMC 1847:doi 1752:doi 1655:doi 1620:doi 1514:PMC 1506:doi 1299:doi 1295:278 1173:gel 1132:); 1097:SDS 909:RNA 907:or 905:DNA 896:or 863:PCR 802:or 796:PCR 770:or 762:or 722:or 620:or 580:in 523:or 431:or 414:or 263:RNA 259:DNA 243:gel 234:or 143:RNA 139:DNA 3277:: 2660:. 2650:. 2642:. 2632:. 2620:. 2616:. 2568:. 2531:. 2523:. 2511:. 2507:. 2484:. 2470:. 2466:. 2439:. 2431:. 2421:29 2419:. 2415:. 2392:. 2384:. 2372:. 2348:. 2340:. 2328:. 2324:. 2259:. 2251:. 2239:. 2235:. 2158:. 2150:. 2138:. 2134:. 2104:. 2096:. 2088:. 2078:16 2076:. 2072:. 2045:. 2037:. 2025:. 2021:. 1994:. 1984:33 1982:. 1978:. 1955:. 1941:. 1937:. 1910:. 1902:. 1890:. 1886:. 1863:. 1853:. 1843:61 1841:. 1837:. 1825:^ 1811:. 1774:. 1766:. 1758:. 1746:. 1742:. 1715:. 1711:. 1685:. 1677:. 1669:. 1661:. 1649:. 1626:. 1618:. 1608:22 1606:. 1551:. 1547:. 1522:. 1512:. 1500:. 1477:. 1444:. 1411:. 1378:. 1354:^ 1340:. 1307:. 1293:. 1289:. 988:. 919:. 832:, 828:, 824:, 750:. 651:. 609:. 542:, 538:. 531:. 439:. 385:. 290:. 261:, 197:, 189:, 177:. 145:, 141:, 3023:e 3016:t 3009:v 2812:/ 2798:/ 2742:e 2735:t 2728:v 2668:. 2636:: 2628:: 2622:7 2601:. 2578:. 2564:: 2543:. 2519:: 2492:. 2478:: 2451:. 2427:: 2400:. 2380:: 2356:. 2344:: 2336:: 2330:7 2300:. 2271:. 2247:: 2220:. 2195:. 2170:. 2146:: 2140:2 2119:. 2084:: 2057:. 2033:: 2027:4 2006:. 1963:. 1949:: 1922:. 1898:: 1892:8 1871:. 1849:: 1819:. 1786:. 1754:: 1748:1 1727:. 1697:. 1657:: 1634:. 1622:: 1614:: 1591:. 1566:. 1530:. 1508:: 1485:. 1452:. 1419:. 1386:. 1348:. 1315:. 1301:: 1194:) 1190:( 1164:) 1147:) 1111:) 1081:) 1074:) 1059:) 1045:) 1041:( 873:- 816:. 257:( 137:( 20:)

Index

Native gel electrophoresis

agarose gel
Electrophoresis
Capillary electrophoresis
SDS-PAGE
Two-dimensional gel electrophoresis
Temperature gradient gel electrophoresis


biomacromolecules
DNA
RNA
proteins
clinical chemistry
biochemistry
molecular biology
electric field
agarose
nanoparticles
polymerase chain reaction
mass spectrometry
RFLP
cloning
DNA sequencing
Southern blotting
Electrophoresis

Electrophoresis
agarose

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑