Knowledge (XXG)

Nested intervals

Source đź“ť

2194: 1566: 2189:{\displaystyle {\begin{aligned}m_{1}&={\dfrac {1+5}{2}}=3&&\Rightarrow \;m_{1}^{2}=9\leq 19&&\Rightarrow \;I_{2}=\\m_{2}&={\dfrac {3+5}{2}}=4&&\Rightarrow \;m_{2}^{2}=16\leq 19&&\Rightarrow \;I_{3}=\\m_{3}&={\dfrac {4+5}{2}}=4.5&&\Rightarrow \;m_{3}^{2}=20.25>19&&\Rightarrow \;I_{4}=\\m_{4}&={\dfrac {4+4.5}{2}}=4.25&&\Rightarrow \;m_{4}^{2}=18.0625\leq 19&&\Rightarrow \;I_{5}=\\m_{5}&={\dfrac {4.25+4.5}{2}}=4.375&&\Rightarrow \;m_{5}^{2}=19.140625>19&&\Rightarrow \;I_{5}=\\&\vdots &&\end{aligned}}} 17: 2767: 5898: 1064: 1559:
must certainly found within this interval. Thus, using this interval, one can continue to the next step of the algorithm by calculating the midpoint of the interval, determining whether the square of the midpoint is greater than or less than 19, and setting the boundaries of the next interval
5728: 7374: 3572: 7769: 886: 3879: 2509: 3495: 3578:
Put into words, property 1 means, that the intervals are nested according to their index. The second property formalizes the notion, that interval sizes get arbitrarily small; meaning, that for an arbitrary constant
5011: 2939: 2308:
This procedure can be repeated as many times as needed to attain the desired level of precision. Theoretically, by repeating the steps indefinitely, one can arrive at the true value of this square root.
5893:{\displaystyle I_{n+1}:=\left\{{\begin{matrix}\left&&{\text{if}}\;m_{n}\;{\text{is an upper bound of}}\;A\\\left&&{\text{if}}\;m_{n}\;{\text{is not an upper bound}}\end{matrix}}\right.} 4019: 8036: 7966: 7137: 1571: 4401: 5720: 8097: 7442: 7214: 4288: 824: 2253: 6772: 6421: 5215: 3936: 3780: 3422: 3252: 2417: 2777:
As shown in the image, lower and upper bounds for the circumference of a circle can be obtained with inscribed and circumscribed regular polygons. When examining a circle with diameter
6889: 4912: 758: 7163:
are convergent (and that all convergent sequences are Cauchy sequences) can be proven. This in turn allows for a proof of the completeness property above, showing their equivalence.
3712: 536: 1218: 6997: 5167: 5130: 5093: 4696: 7274: 6525: 4457: 3374: 1488: 346:
Historically - long before anyone defined nested intervals in a textbook - people implicitly constructed such nestings for concrete calculation purposes. For example, the ancient
6131: 7909: 7496: 7086: 7025: 6284: 5658: 5428: 5352: 4174: 4146: 3603: 2973: 446: 341: 295: 6558: 7881: 7657: 6176: 2589: 111: 3501: 6718: 6353: 3643: 3137: 3058:. In contrast to mathematically infinite sequences, an applied computational algorithm terminates at some point, when the desired zero has been found or sufficiently well 2301: 2277: 2220: 1557: 1442: 198: 4087: 2746: 2691: 2343: 1338: 1306: 1279: 1142: 1118: 7397: 7237: 7058: 6480: 6256: 4308: 4235: 2667: 637: 6951: 6447: 5498: 4803: 4655: 3114:
and other sciences. The axiomatic description of nested intervals (or an equivalent axiom) has become an important foundation for the modern understanding of calculus.
7564: 7530: 1372: 5065: 4742: 4516: 4045: 3669: 1533: 1255: 1175: 148: 7795: 7594: 7468: 6831: 6079: 6020: 5994: 5630: 5524: 5274: 4768: 4483: 3311: 3177: 2634: 2369: 1406: 682: 581: 500: 7621: 7266: 6916: 6585: 6223: 5551: 5459: 5380: 5304: 4603: 3807: 2718: 1094: 878: 851: 418: 249: 175: 60: 3020: 2993: 2828:, whose side lengths (and therefore circumference) can be directly calculated from the circle diameter. Furthermore, a way to compute the side length of a regular 2815: 384: 7841: 2849: 7815: 6688: 6668: 6648: 6628: 6605: 6373: 6324: 6304: 6196: 5968: 5948: 5924: 5571: 5400: 5324: 5034: 4953: 4933: 4870: 4850: 4825: 4716: 4623: 4576: 4556: 4536: 4214: 4194: 3956: 3623: 3157: 2889: 2869: 2795: 2371:
even faster. The modern description using nested intervals is similar to the algorithm above, but instead of using a sequence of midpoints, one uses a sequence
601: 218: 1059:{\displaystyle I_{n+1}:=\left\{{\begin{matrix}\left&&{\text{if}}\;\;m_{n}^{2}\leq x\\\left&&{\text{if}}\;\;m_{n}^{2}>x\end{matrix}}\right.} 7669: 3815: 2425: 6423:
is a sequence of nested intervals, the interval lengths get arbitrarily small; in particular, there exists an interval with a length smaller than
3434: 2303:
to be estimated with a greater precision, either by increasing the lower bounds of the interval or decreasing the upper bounds of the interval.
4958: 4245:
This axiom is fundamental in the sense that a sequence of nested intervals does not necessarily contain a rational number - meaning that
3030:
Early uses of sequences of nested intervals (or can be described as such with modern mathematics), can be found in the predecessors of
8305: 468:
as methods for specific calculations. Some variations and modern interpretations of these ancient techniques will be introduced here:
3106:
from the late 1600s has posed a huge challenge for mathematicians trying to prove their methods rigorously; despite their success in
8282: 8253: 8232: 8211: 2894: 2318: 351: 4176:. This contradicts property 2 from the definition of nested intervals; therefore, the intersection can contain at most one number 8153: 7156: 4322: 2998:
Around the year 1600 CE, Archimedes' method was still the gold standard for calculating Pi and was used by Dutch mathematician
8185: 3967: 8300: 7974: 7914: 2891:-gon). By successively doubling the number of edges until reaching 96-sided polygons, Archimedes reached an interval with 2222:
is able to be constricted so that the values that remain within the interval are closer and closer to the actual value of
7091: 4346: 4325:. This means that one of the four has to be introduced axiomatically, while the other three can be successively proven. 5663: 464:
As stated in the introduction, historic users of mathematics discovered the nesting of intervals and closely related
8041: 7402: 7174: 4248: 767: 113:
as an index. In order for a sequence of intervals to be considered nested intervals, two conditions have to be met:
5138: 2225: 6729: 6378: 5172: 3893: 3737: 3379: 3209: 3099: 2374: 390: 6836: 5903:
Note that this interval sequence is well defined and obviously a sequence of nested intervals by construction.
448:). In modern mathematics, nested intervals are used as a construction method for the real numbers (in order to 4875: 1177:, and if the midpoint is larger, one can set it as the upper bound of the next interval. This guarantees that 690: 7369:{\displaystyle I_{n}=\left(0,{\frac {1}{n}}\right)=\left\{x\in \mathbb {R} :0<x<{\frac {1}{n}}\right\}} 6720:. In effect the two are actually equivalent, meaning that either of the two can be introduced axiomatically. 3674: 505: 7240: 3091: 3051: 1180: 6956: 5144: 5107: 5070: 4673: 180:
The length of the intervals get arbitrarily small (meaning the length falls below every possible threshold
6485: 4406: 3782:
is a sequence of nested intervals, there always exists a real number, that is contained in every interval
3316: 1447: 1409: 63: 33: 6698:
As was seen, the existence of suprema and infima of bounded sets is a consequence of the completeness of
8136: 6084: 3079: 3071: 3035: 449: 393:
over all the natural numbers, or, put differently, the set of numbers, that are found in every Interval
7886: 7473: 7271:
The possibility of an empty intersection can be illustrated by looking at a sequence of open intervals
7063: 7002: 6261: 5635: 5405: 5329: 4151: 4092: 3582: 2944: 1257:
get halved in every step of the recursion. Therefore, it is possible to get lower and upper bounds for
423: 300: 254: 6530: 3964:
This statement can easily be verified by contradiction. Assume that there exist two different numbers
3567:{\displaystyle \quad \forall \varepsilon >0\;\exists N\in \mathbb {N} :\;\;|I_{N}|<\varepsilon } 8263:
Königsberger, Konrad (2003), "2.3 Die Vollständigkeit von R (the completeness of the real numbers)",
7846: 7567: 4314: 3184: 7626: 7216:
over all the naturals (i.e. the set of all points common to each interval) is that it is either the
6136: 2518: 72: 8100: 3726:. In this case a sequence of nested intervals refers to a sequence that only satisfies property 1. 3087: 3055: 2721: 453: 6701: 6332: 3628: 3120: 2282: 2258: 2201: 1538: 1423: 183: 4050: 2999: 2727: 2672: 2324: 1311: 1287: 1260: 1123: 1099: 7382: 7222: 7030: 6452: 6228: 4293: 4219: 3645:. It is also worth noting that property 1 immediately implies that every interval with an index 2749: 2639: 609: 16: 6921: 6426: 5464: 4773: 4628: 8278: 8249: 8228: 8207: 8181: 7535: 7501: 7171:
Without any specifying what is meant by interval, all that can be said about the intersection
3722:
Note that some authors refer to such interval-sequences, satisfying both properties above, as
1343: 8243: 8222: 8201: 5041: 4721: 4488: 4024: 3648: 1493: 1420:
To demonstrate this algorithm, here is an example of how it can be used to find the value of
1223: 1147: 120: 8270: 7774: 7573: 7447: 6777: 6025: 5999: 5973: 5576: 5503: 5220: 4747: 4462: 3257: 3162: 3047: 3043: 3022:, which took him decades. Soon after, more powerful methods for the computation were found. 2594: 2348: 1377: 642: 541: 479: 8264: 7599: 7245: 6894: 6563: 6201: 5529: 5437: 5358: 5282: 4581: 3785: 2696: 1072: 856: 829: 396: 227: 153: 38: 7663: 7160: 4318: 3083: 3046:, sequences of nested intervals is used in algorithms for numerical computation. I.e. the 3005: 2978: 2800: 369: 7820: 2831: 7800: 7764:{\displaystyle I_{n}=\left=\left\{x\in \mathbb {R} :0\leq x\leq {\frac {1}{n}}\right\}} 6673: 6653: 6633: 6613: 6590: 6358: 6309: 6289: 6181: 5953: 5933: 5909: 5556: 5385: 5309: 5019: 4938: 4918: 4855: 4835: 4810: 4701: 4608: 4561: 4541: 4521: 4199: 4179: 3941: 3608: 3142: 2874: 2854: 2780: 586: 362:, in order to get a lower and upper bound for the circles circumference - which is the 203: 67: 4518:. Comparing to the section above, one achieves a sequence of nested intervals for the 8294: 8108: 8104: 3180: 3059: 2773:
can be estimated by computing the perimeters of circumscribed and inscribed polygons.
2255:. That is to say, each successive change in the bounds of the interval within which 1144:. If the midpoint is smaller, one can set it as the lower bound of the next interval 604: 8132: 8115:
there must be something between them. This shows that the intersection of (even an
3095: 3874:{\displaystyle \exists x\in \mathbb {R} :\;x\in \bigcap _{n\in \mathbb {N} }I_{n}} 2748:(as does of course the lower interval bound). This algorithm is a special case of 2504:{\displaystyle c_{n+1}:={\frac {1}{2}}\cdot \left(c_{n}+{\frac {x}{c_{n}}}\right)} 8128: 8116: 7666:. If one changes the situation above by looking at closed intervals of the type 7152: 3111: 3075: 25: 8274: 2821: 355: 2321:
uses an even more efficient algorithm that yields accurate approximations of
8148: 8112: 7217: 761: 465: 347: 4089:
Since both numbers have to be contained in every interval, it follows that
2766: 358:
constructed sequences of polygons, that inscribed and circumscribed a unit
8227:, Dover Books on Mathematics, Courier Dover Publications, pp. 21–22, 3490:{\displaystyle \quad \forall n\in \mathbb {N} :\;\;I_{n+1}\subseteq I_{n}} 7148: 3103: 3039: 3031: 2198:
Each time a new midpoint is calculated, the range of possible values for
8242:
Sohrab, Houshang H. (2003), "Theorem 2.1.5 (Nested Intervals Theorem)",
8131:
in the plane must have a common intersection. This result was shown by
5096:, that is bounded from below, as the greatest lower bound of that set. 3107: 3074:, nested intervals provide one method of axiomatically introducing the 2825: 5926:
be the number in every interval (whose existence is guaranteed by the
6225:. But this is a contradiction to property 1 of the supremum (meaning 1120:
in order to determine whether the midpoint is smaller or larger than
359: 5006:{\displaystyle \forall \sigma <s:\;\exists x\in A:\;x>\sigma } 8221:
Shilov, Georgi E. (2012), "1.8 The Principle of Nested Intervals",
1281:
with arbitrarily good precision (given enough computational time).
1220:. With this construction the intervals are nested and their length 7971:
One can also consider the complement of each interval, written as
2765: 6607:, contradicting property 2 of all sequences of nested intervals. 5434:
The construction follows a recursion by starting with any number
117:
Every interval in the sequence is contained in the previous one (
5132:
has a supremum (infimum), if it is bounded from above (below).
2975:
is still often used as a rough, but pragmatic approximation of
2797:, the circumference is (by definition of Pi) the circle number 639:, one can get an even better candidate for the first interval: 8119:
number of) nested, closed, and bounded intervals is nonempty.
2934:{\displaystyle {\tfrac {223}{71}}<\pi <{\tfrac {22}{7}}} 6022:. Furthermore, this would imply the existence of an interval 6918:
is an upper bound. This implies, that the least upper bound
4196:. The completeness axiom guarantees that such a real number 5887: 2761: 1053: 363: 5169:
that has an upper bound. One can now construct a sequence
32:
can be intuitively understood as an ordered collection of
8200:
Fridy, J. A. (2000), "3.3 The Nested Intervals Theorem",
7797:
one still can always find intervals not containing said
1490:, the first interval for the algorithm can be defined as 1412:
after the desired level of precision has been acquired.
1069:
To put this into words, one can compare the midpoint of
8103:, the complement of the intersection is a union of two 7444:. This result comes from the fact that, for any number 7159:
using nested intervals. In a follow-up, the fact, that
4343:, one can prove that in the real numbers, the equation 5756: 2920: 2899: 914: 389:
The central question to be posed is the nature of the
8044: 7977: 7917: 7889: 7849: 7823: 7803: 7777: 7672: 7629: 7602: 7576: 7538: 7504: 7476: 7450: 7405: 7385: 7277: 7248: 7225: 7177: 7094: 7066: 7033: 7005: 6959: 6924: 6897: 6839: 6780: 6732: 6704: 6676: 6656: 6650:
and that a lower upper bound cannot exist. Therefore
6636: 6616: 6593: 6566: 6533: 6488: 6455: 6429: 6381: 6361: 6335: 6312: 6292: 6264: 6231: 6204: 6184: 6139: 6087: 6028: 6002: 5976: 5956: 5936: 5912: 5731: 5666: 5638: 5579: 5559: 5532: 5506: 5467: 5440: 5408: 5388: 5361: 5332: 5312: 5285: 5223: 5175: 5147: 5110: 5073: 5044: 5022: 4961: 4941: 4921: 4878: 4858: 4838: 4813: 4776: 4750: 4724: 4704: 4676: 4631: 4611: 4584: 4564: 4544: 4524: 4491: 4465: 4409: 4349: 4296: 4251: 4222: 4202: 4182: 4154: 4095: 4053: 4027: 4014:{\displaystyle x,y\in \cap _{n\in \mathbb {N} }I_{n}} 3970: 3944: 3938:
of nested intervals contains exactly one real number
3896: 3818: 3788: 3740: 3677: 3651: 3631: 3611: 3585: 3504: 3437: 3382: 3376:
denotes the length of such an interval. One can call
3319: 3260: 3212: 3165: 3145: 3123: 3008: 2981: 2947: 2897: 2877: 2857: 2834: 2803: 2783: 2730: 2699: 2675: 2642: 2597: 2521: 2428: 2377: 2351: 2327: 2285: 2261: 2228: 2204: 2072: 1952: 1832: 1712: 1592: 1569: 1541: 1496: 1450: 1426: 1380: 1346: 1314: 1290: 1263: 1226: 1183: 1150: 1126: 1102: 1075: 889: 859: 832: 770: 693: 645: 612: 589: 544: 508: 482: 426: 399: 372: 303: 257: 230: 206: 186: 156: 123: 75: 41: 8127:
In two dimensions there is a similar result: nested
8031:{\displaystyle (-\infty ,a_{n})\cup (b_{n},\infty )} 7961:{\displaystyle \cap _{n\in \mathbb {N} }I_{n}=\{0\}} 7570:
of the real numbers. Therefore, no matter how small
2871:-gon can be found, starting at the regular hexagon ( 7132:{\displaystyle s\in \cap _{n\in \mathbb {N} }I_{n}} 3086:, being a necessity for discussing the concepts of 2669:, will provide accurate upper and lower bounds for 8091: 8030: 7960: 7903: 7875: 7835: 7809: 7789: 7763: 7651: 7615: 7588: 7558: 7524: 7490: 7462: 7436: 7391: 7368: 7260: 7231: 7208: 7131: 7080: 7052: 7019: 6991: 6945: 6910: 6883: 6825: 6766: 6712: 6682: 6662: 6642: 6622: 6599: 6579: 6552: 6519: 6474: 6441: 6415: 6367: 6347: 6318: 6298: 6278: 6250: 6217: 6190: 6170: 6125: 6073: 6014: 5988: 5962: 5942: 5918: 5892: 5714: 5652: 5624: 5565: 5545: 5518: 5492: 5453: 5422: 5394: 5374: 5346: 5318: 5298: 5268: 5209: 5161: 5124: 5087: 5059: 5028: 5005: 4947: 4927: 4906: 4864: 4844: 4819: 4797: 4762: 4736: 4710: 4690: 4649: 4617: 4597: 4570: 4550: 4530: 4510: 4477: 4451: 4396:{\displaystyle x=y^{j},\;j\in \mathbb {N} ,x>0} 4395: 4302: 4282: 4229: 4208: 4188: 4168: 4140: 4081: 4039: 4013: 3950: 3930: 3873: 3801: 3774: 3706: 3663: 3637: 3625:) with a length strictly smaller than that number 3617: 3597: 3566: 3489: 3416: 3368: 3305: 3246: 3171: 3151: 3131: 3014: 2987: 2967: 2933: 2883: 2863: 2843: 2809: 2789: 2740: 2712: 2685: 2661: 2628: 2583: 2503: 2411: 2363: 2337: 2295: 2271: 2247: 2214: 2188: 1551: 1527: 1482: 1436: 1400: 1366: 1332: 1300: 1273: 1249: 1212: 1169: 1136: 1112: 1088: 1058: 872: 845: 818: 752: 676: 631: 595: 575: 530: 494: 440: 412: 378: 335: 289: 243: 212: 192: 169: 142: 105: 54: 4661:Existence of infimum and supremum in bounded Sets 3809:. In formal notation this axiom guarantees, that 2515:This results in a sequence of intervals given by 7659:implying that the intersection has to be empty. 6931: 6833:be a sequence of nested intervals. Then the set 5045: 4783: 4340: 476:When trying to find the square root of a number 5715:{\displaystyle m_{n}:={\frac {a_{n}+b_{n}}{2}}} 4698:has an upper bound, i.e. there exists a number 4625:-th interval is lower or equal or greater than 4459:. This means there exists a unique real number 3254:be a sequence of closed intervals of the type 224:In other words, the left bound of the interval 8269:, Springer-Lehrbuch, Springer, p. 10-15, 8135:to classify the singular behaviour of certain 8092:{\displaystyle (-\infty ,0)\cup (1/n,\infty )} 7771:, one can see this very clearly. Now for each 7437:{\displaystyle \cap _{n\in \mathbb {N} }I_{n}} 7209:{\displaystyle \cap _{n\in \mathbb {N} }I_{n}} 4283:{\displaystyle \cap _{n\in \mathbb {N} }I_{n}} 819:{\displaystyle m_{n}={\frac {a_{n}+b_{n}}{2}}} 603:has to be found. If one knows the next higher 8203:Introductory Analysis: The Theory of Calculus 6329:Assume that there exists a lower upper bound 2248:{\displaystyle {\sqrt {19}}=4.35889894\dots } 8: 7955: 7949: 7255: 7249: 6878: 6846: 6560:. Following the rules of this construction, 3605:one can always find an interval (with index 6767:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 6416:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 5210:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 3931:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 3775:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 3417:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 3247:{\displaystyle (I_{n})_{n\in \mathbb {N} }} 2412:{\displaystyle (c_{n})_{n\in \mathbb {N} }} 1374:, and the algorithm can be used by setting 20:4 members of a sequence of nested intervals 5927: 5877: 5866: 5817: 5811: 5800: 5036:can exist. Analogously one can define the 4993: 4977: 4894: 4369: 4223: 3836: 3537: 3536: 3518: 3457: 3456: 2141: 2105: 2021: 1985: 1901: 1865: 1781: 1745: 1661: 1625: 1560:accordingly before repeating the process: 1027: 1026: 959: 958: 297:), and the right bound can only decrease ( 8072: 8043: 8013: 7994: 7976: 7940: 7930: 7929: 7922: 7916: 7897: 7896: 7888: 7865: 7848: 7822: 7802: 7776: 7746: 7727: 7726: 7697: 7677: 7671: 7640: 7628: 7607: 7601: 7575: 7542: 7537: 7514: 7503: 7484: 7483: 7475: 7449: 7428: 7418: 7417: 7410: 7404: 7384: 7351: 7332: 7331: 7302: 7282: 7276: 7247: 7224: 7200: 7190: 7189: 7182: 7176: 7123: 7113: 7112: 7105: 7093: 7074: 7073: 7065: 7044: 7032: 7013: 7012: 7004: 6983: 6964: 6958: 6923: 6902: 6896: 6884:{\displaystyle A:=\{a_{1},a_{2},\dots \}} 6866: 6853: 6838: 6814: 6801: 6785: 6779: 6758: 6757: 6750: 6740: 6731: 6706: 6705: 6703: 6675: 6655: 6635: 6615: 6592: 6571: 6565: 6538: 6532: 6499: 6487: 6466: 6454: 6428: 6407: 6406: 6399: 6389: 6380: 6360: 6334: 6311: 6291: 6272: 6271: 6263: 6236: 6230: 6209: 6203: 6183: 6144: 6138: 6105: 6092: 6086: 6062: 6049: 6033: 6027: 6001: 5975: 5955: 5935: 5911: 5878: 5871: 5861: 5847: 5834: 5812: 5805: 5795: 5781: 5768: 5755: 5736: 5730: 5700: 5687: 5680: 5671: 5665: 5646: 5645: 5637: 5613: 5600: 5584: 5578: 5558: 5537: 5531: 5505: 5472: 5466: 5445: 5439: 5416: 5415: 5407: 5387: 5366: 5360: 5340: 5339: 5331: 5311: 5290: 5284: 5276:, that has the following two properties: 5257: 5244: 5228: 5222: 5201: 5200: 5193: 5183: 5174: 5155: 5154: 5146: 5118: 5117: 5109: 5081: 5080: 5072: 5043: 5021: 4960: 4940: 4920: 4877: 4857: 4837: 4812: 4775: 4749: 4723: 4703: 4684: 4683: 4675: 4641: 4636: 4630: 4610: 4589: 4583: 4563: 4543: 4523: 4502: 4490: 4464: 4439: 4435: 4421: 4416: 4408: 4377: 4376: 4360: 4348: 4295: 4274: 4264: 4263: 4256: 4250: 4221: 4201: 4181: 4162: 4161: 4153: 4133: 4119: 4111: 4105: 4096: 4094: 4068: 4054: 4052: 4026: 4005: 3995: 3994: 3987: 3969: 3943: 3922: 3921: 3914: 3904: 3895: 3865: 3855: 3854: 3847: 3829: 3828: 3817: 3793: 3787: 3766: 3765: 3758: 3748: 3739: 3693: 3687: 3678: 3676: 3650: 3630: 3610: 3584: 3553: 3547: 3538: 3529: 3528: 3503: 3481: 3462: 3449: 3448: 3436: 3408: 3407: 3400: 3390: 3381: 3360: 3347: 3335: 3329: 3320: 3318: 3294: 3281: 3265: 3259: 3238: 3237: 3230: 3220: 3211: 3164: 3144: 3125: 3124: 3122: 3007: 2980: 2951: 2946: 2919: 2898: 2896: 2876: 2856: 2833: 2802: 2782: 2731: 2729: 2704: 2698: 2676: 2674: 2647: 2641: 2602: 2596: 2570: 2555: 2546: 2526: 2520: 2488: 2479: 2470: 2448: 2433: 2427: 2403: 2402: 2395: 2385: 2376: 2350: 2328: 2326: 2286: 2284: 2262: 2260: 2229: 2227: 2205: 2203: 2146: 2115: 2110: 2071: 2058: 2026: 1995: 1990: 1951: 1938: 1906: 1875: 1870: 1831: 1818: 1786: 1755: 1750: 1711: 1698: 1666: 1635: 1630: 1591: 1578: 1570: 1568: 1542: 1540: 1501: 1495: 1474: 1455: 1449: 1427: 1425: 1390: 1379: 1350: 1345: 1313: 1291: 1289: 1264: 1262: 1242: 1236: 1227: 1225: 1198: 1184: 1182: 1155: 1149: 1127: 1125: 1103: 1101: 1080: 1074: 1037: 1032: 1021: 1007: 994: 969: 964: 953: 939: 926: 913: 894: 888: 864: 858: 837: 831: 804: 791: 784: 775: 769: 746: 745: 727: 714: 698: 692: 650: 644: 617: 611: 588: 549: 543: 515: 507: 481: 434: 433: 425: 404: 398: 371: 327: 308: 302: 281: 262: 256: 235: 229: 205: 185: 161: 155: 128: 122: 74: 46: 40: 4907:{\displaystyle \forall x\in A:\;x\leq s} 3002:, to compute more than thirty digits of 764:by looking at the sequence of midpoints 753:{\displaystyle I_{n}=,n\in \mathbb {N} } 15: 8168: 7911:. One can conclude that, in this case, 7239:, a point on the number line (called a 3707:{\displaystyle |I_{n}|<\varepsilon } 531:{\displaystyle 1\leq {\sqrt {x}}\leq x} 3183:, meaning the axioms of order and the 1213:{\displaystyle {\sqrt {x}}\in I_{n+1}} 7167:Further discussion of related aspects 6992:{\displaystyle a_{n}\leq s\leq b_{n}} 6610:In two steps, it has been shown that 5162:{\displaystyle A\subset \mathbb {R} } 5125:{\displaystyle A\subset \mathbb {R} } 5088:{\displaystyle B\subset \mathbb {R} } 4691:{\displaystyle A\subset \mathbb {R} } 4578:, by looking at whether the midpoint 4315:existence of the infimum and supremum 7: 8266:Analysis 1, 6. Auflage (6th edition) 8224:Elementary Real and Complex Analysis 6520:{\displaystyle s-a_{n}<s-\sigma } 4452:{\displaystyle y={\sqrt{x}}=x^{1/j}} 4310:, if only considering the rationals. 3369:{\displaystyle |I_{n}|:=b_{n}-a_{n}} 3066:The construction of the real numbers 1483:{\displaystyle 1^{2}<19<5^{2}} 6891:is bounded from above, where every 6587:would have to be an upper bound of 5461:, that is not an upper bound (e.g. 2762:Pi § Polygon approximation era 354:of numbers. In contrast, the famed 8083: 8051: 8022: 7984: 7386: 7226: 6126:{\displaystyle b_{m}-a_{m}<x-s} 5970:, otherwise there exists a number 4978: 4962: 4879: 4317:(proof below), the convergence of 4297: 3890:The intersection of each sequence 3819: 3519: 3506: 3439: 3104:differential and integral calculus 14: 8038:- which, in our last example, is 7904:{\displaystyle n\in \mathbb {N} } 7491:{\displaystyle n\in \mathbb {N} } 7081:{\displaystyle n\in \mathbb {N} } 7020:{\displaystyle n\in \mathbb {N} } 6279:{\displaystyle m\in \mathbb {N} } 5653:{\displaystyle n\in \mathbb {N} } 5423:{\displaystyle n\in \mathbb {N} } 5347:{\displaystyle n\in \mathbb {N} } 4169:{\displaystyle n\in \mathbb {N} } 4141:{\displaystyle |I_{n}|\geq |x-y|} 3598:{\displaystyle \varepsilon >0} 2968:{\displaystyle 22/7\approx 3.143} 2755: 538:, which gives the first interval 441:{\displaystyle n\in \mathbb {N} } 352:method for computing square roots 336:{\displaystyle b_{n+1}\leq b_{n}} 290:{\displaystyle a_{n+1}\geq a_{n}} 7596:, one can always find intervals 7153:accumulation points of sequences 6553:{\displaystyle a_{n}>\sigma } 4330:Direct consequences of the axiom 3117:In the context of this article, 3050:can be used for calculating the 7876:{\displaystyle 0\leq x\leq 1/n} 7662:The situation is different for 4313:The axiom is equivalent to the 4047:it follows that they differ by 3505: 3438: 8206:, Academic Press, p. 29, 8086: 8066: 8060: 8045: 8025: 8006: 8000: 7978: 7652:{\displaystyle x\notin I_{n},} 7399:results from the intersection 6940: 6934: 6820: 6794: 6747: 6733: 6396: 6382: 6171:{\displaystyle b_{m}-s<x-s} 6068: 6042: 5619: 5593: 5263: 5237: 5190: 5176: 5054: 5048: 4792: 4786: 4339:By generalizing the algorithm 4134: 4120: 4112: 4097: 4069: 4055: 3911: 3897: 3755: 3741: 3694: 3679: 3554: 3539: 3397: 3383: 3336: 3321: 3300: 3274: 3227: 3213: 2756:Archimedes' circle measurement 2623: 2611: 2584:{\displaystyle I_{n+1}:=\left} 2392: 2378: 2167: 2155: 2138: 2102: 2047: 2035: 2018: 1982: 1927: 1915: 1898: 1862: 1807: 1795: 1778: 1742: 1687: 1675: 1658: 1622: 1522: 1510: 1243: 1228: 853:is already known (starting at 733: 707: 671: 659: 570: 558: 106:{\displaystyle n=1,2,3,\dots } 1: 8176:Königsberger, Konrad (2004). 8154:Cantor's intersection theorem 6306:is in fact an upper bound of 5660:one can compute the midpoint 5526:and an arbitrary upper bound 2693:very fast. In practice, only 2279:must lie allows the value of 7379:In this case, the empty set 7147:After formally defining the 6713:{\displaystyle \mathbb {R} } 6348:{\displaystyle \sigma <s} 4935:is the least upper bound of 4341:shown above for square roots 3638:{\displaystyle \varepsilon } 3426:sequence of nested intervals 3132:{\displaystyle \mathbb {R} } 2720:has to be considered, which 2296:{\displaystyle {\sqrt {19}}} 2272:{\displaystyle {\sqrt {19}}} 2215:{\displaystyle {\sqrt {19}}} 1552:{\displaystyle {\sqrt {19}}} 1437:{\displaystyle {\sqrt {19}}} 193:{\displaystyle \varepsilon } 30:sequence of nested intervals 7623:in the sequence, such that 7470:there exists some value of 7157:Bolzano–Weierstrass theorem 5382:is never an upper bound of 4323:Bolzano–Weierstrass theorem 4082:{\displaystyle |x-y|>0.} 2741:{\displaystyle {\sqrt {x}}} 2686:{\displaystyle {\sqrt {x}}} 2338:{\displaystyle {\sqrt {x}}} 1333:{\displaystyle 0<y<1} 1301:{\displaystyle {\sqrt {y}}} 1274:{\displaystyle {\sqrt {x}}} 1137:{\displaystyle {\sqrt {x}}} 1113:{\displaystyle {\sqrt {x}}} 472:Computation of square roots 8322: 7392:{\displaystyle \emptyset } 7232:{\displaystyle \emptyset } 7053:{\displaystyle s\in I_{n}} 6475:{\displaystyle s\in I_{n}} 6251:{\displaystyle b_{m}<s} 5139:Without loss of generality 4770:, one can call the number 4303:{\displaystyle \emptyset } 4230:{\displaystyle \;\square } 3724:shrinking nested intervals 2759: 2662:{\displaystyle k^{2}>x} 632:{\displaystyle k^{2}>x} 502:, one can be certain that 8306:Theorems in real analysis 8275:10.1007/978-3-642-18490-1 7155:, one can also prove the 6946:{\displaystyle s=\sup(A)} 6442:{\displaystyle s-\sigma } 6198:also being an element of 5493:{\displaystyle a_{1}=c-1} 4798:{\displaystyle s=\sup(A)} 4650:{\displaystyle m_{n}^{k}} 4403:can always be solved for 3100:Gottfried Wilhelm Leibniz 8248:, Springer, p. 45, 8180:. Springer. p. 11. 7559:{\displaystyle 1/n<x} 7525:{\displaystyle n>1/x} 7149:convergence of sequences 3671:must also have a length 1367:{\displaystyle 1/y>1} 7566:. This is given by the 5060:{\displaystyle \inf(B)} 4737:{\displaystyle x\leq b} 4511:{\displaystyle x=y^{k}} 4040:{\displaystyle x\neq y} 3664:{\displaystyle n\geq N} 2851:-gon from the previous 1528:{\displaystyle I_{1}:=} 1250:{\displaystyle |I_{n}|} 1170:{\displaystyle I_{n+1}} 143:{\displaystyle I_{n+1}} 8137:differential equations 8093: 8032: 7962: 7905: 7877: 7837: 7811: 7791: 7790:{\displaystyle x>0} 7765: 7653: 7617: 7590: 7589:{\displaystyle x>0} 7560: 7526: 7492: 7464: 7463:{\displaystyle x>0} 7438: 7393: 7370: 7262: 7233: 7210: 7133: 7082: 7054: 7021: 6993: 6947: 6912: 6885: 6827: 6826:{\displaystyle I_{n}=} 6768: 6714: 6684: 6664: 6644: 6624: 6601: 6581: 6554: 6521: 6476: 6443: 6417: 6369: 6349: 6320: 6300: 6280: 6252: 6219: 6192: 6172: 6127: 6075: 6074:{\displaystyle I_{m}=} 6016: 6015:{\displaystyle x>s} 5990: 5989:{\displaystyle x\in A} 5964: 5944: 5920: 5894: 5716: 5654: 5626: 5625:{\displaystyle I_{n}=} 5567: 5547: 5520: 5519:{\displaystyle c\in A} 5494: 5455: 5424: 5396: 5376: 5348: 5320: 5300: 5270: 5269:{\displaystyle I_{n}=} 5211: 5163: 5141:one can look at a set 5126: 5089: 5061: 5030: 5007: 4949: 4929: 4908: 4866: 4846: 4821: 4799: 4764: 4763:{\displaystyle x\in A} 4738: 4712: 4692: 4651: 4619: 4599: 4572: 4552: 4532: 4512: 4479: 4478:{\displaystyle y>0} 4453: 4397: 4304: 4284: 4231: 4210: 4190: 4170: 4142: 4083: 4041: 4015: 3952: 3932: 3875: 3803: 3776: 3708: 3665: 3639: 3619: 3599: 3568: 3491: 3418: 3370: 3307: 3306:{\displaystyle I_{n}=} 3248: 3173: 3172:{\displaystyle \cdot } 3153: 3133: 3016: 2989: 2969: 2935: 2885: 2865: 2845: 2822:Archimedes of Syracuse 2811: 2791: 2774: 2742: 2714: 2687: 2663: 2630: 2629:{\displaystyle I_{1}=} 2585: 2505: 2413: 2365: 2364:{\displaystyle x>0} 2339: 2297: 2273: 2249: 2216: 2190: 1553: 1529: 1484: 1438: 1402: 1401:{\displaystyle x:=1/y} 1368: 1334: 1302: 1275: 1251: 1214: 1171: 1138: 1114: 1090: 1060: 874: 847: 820: 754: 678: 677:{\displaystyle I_{1}=} 633: 597: 577: 576:{\displaystyle I_{1}=} 532: 496: 495:{\displaystyle x>1} 456:of rational numbers). 442: 414: 380: 337: 291: 245: 214: 200:after a certain index 194: 171: 150:is always a subset of 144: 107: 56: 21: 8094: 8033: 7963: 7906: 7878: 7838: 7812: 7792: 7766: 7654: 7618: 7616:{\displaystyle I_{n}} 7591: 7561: 7527: 7493: 7465: 7439: 7394: 7371: 7268:), or some interval. 7263: 7261:{\displaystyle \{x\}} 7234: 7211: 7134: 7083: 7055: 7022: 6994: 6948: 6913: 6911:{\displaystyle b_{n}} 6886: 6828: 6769: 6715: 6685: 6665: 6645: 6630:is an upper bound of 6625: 6602: 6582: 6580:{\displaystyle a_{n}} 6555: 6522: 6477: 6444: 6418: 6370: 6350: 6321: 6301: 6281: 6253: 6220: 6218:{\displaystyle I_{m}} 6193: 6173: 6128: 6076: 6017: 5991: 5965: 5950:is an upper bound of 5945: 5921: 5895: 5880:is not an upper bound 5717: 5655: 5627: 5568: 5548: 5546:{\displaystyle b_{1}} 5521: 5495: 5456: 5454:{\displaystyle a_{1}} 5425: 5397: 5377: 5375:{\displaystyle a_{n}} 5349: 5321: 5306:is an upper bound of 5301: 5299:{\displaystyle b_{n}} 5271: 5212: 5164: 5127: 5090: 5062: 5031: 5016:Only one such number 5008: 4950: 4930: 4909: 4867: 4852:is an upper bound of 4847: 4822: 4800: 4765: 4739: 4713: 4693: 4652: 4620: 4600: 4598:{\displaystyle m_{n}} 4573: 4553: 4533: 4513: 4480: 4454: 4398: 4305: 4285: 4232: 4211: 4191: 4171: 4143: 4084: 4042: 4016: 3953: 3933: 3876: 3804: 3802:{\displaystyle I_{n}} 3777: 3730:Axiom of completeness 3709: 3666: 3640: 3620: 3600: 3569: 3492: 3419: 3371: 3308: 3249: 3174: 3154: 3134: 3072:mathematical analysis 3026:Other implementations 3017: 2990: 2970: 2936: 2886: 2866: 2846: 2824:started with regular 2812: 2792: 2769: 2760:Further information: 2743: 2715: 2713:{\displaystyle c_{n}} 2688: 2664: 2631: 2586: 2506: 2414: 2366: 2340: 2298: 2274: 2250: 2217: 2191: 1554: 1530: 1485: 1439: 1403: 1369: 1335: 1303: 1284:One can also compute 1276: 1252: 1215: 1172: 1139: 1115: 1091: 1089:{\displaystyle I_{n}} 1061: 875: 873:{\displaystyle I_{1}} 848: 846:{\displaystyle I_{n}} 826:. Given the interval 821: 755: 679: 634: 598: 578: 533: 497: 443: 415: 413:{\displaystyle I_{n}} 381: 338: 292: 246: 244:{\displaystyle I_{n}} 215: 195: 172: 170:{\displaystyle I_{n}} 145: 108: 57: 55:{\displaystyle I_{n}} 19: 8301:Sets of real numbers 8042: 7975: 7915: 7887: 7847: 7821: 7801: 7775: 7670: 7627: 7600: 7574: 7568:Archimedean property 7536: 7502: 7474: 7448: 7403: 7383: 7275: 7246: 7223: 7175: 7143:Further consequences 7092: 7064: 7031: 7003: 6957: 6922: 6895: 6837: 6778: 6730: 6702: 6674: 6654: 6634: 6614: 6591: 6564: 6531: 6486: 6453: 6427: 6379: 6359: 6333: 6310: 6290: 6262: 6229: 6202: 6182: 6137: 6085: 6026: 6000: 5974: 5954: 5934: 5910: 5814:is an upper bound of 5729: 5664: 5636: 5577: 5557: 5530: 5504: 5465: 5438: 5406: 5386: 5359: 5330: 5310: 5283: 5221: 5217:of nested intervals 5173: 5145: 5108: 5071: 5042: 5020: 4959: 4939: 4919: 4876: 4856: 4836: 4811: 4774: 4748: 4722: 4702: 4674: 4629: 4609: 4582: 4562: 4542: 4522: 4489: 4463: 4407: 4347: 4294: 4249: 4220: 4200: 4180: 4152: 4093: 4051: 4025: 3968: 3942: 3894: 3816: 3786: 3738: 3675: 3649: 3629: 3609: 3583: 3502: 3435: 3380: 3317: 3258: 3210: 3185:Archimedean property 3163: 3143: 3139:in conjunction with 3121: 3056:continuous functions 3015:{\displaystyle \pi } 3006: 2988:{\displaystyle \pi } 2979: 2945: 2895: 2875: 2855: 2832: 2810:{\displaystyle \pi } 2801: 2781: 2728: 2697: 2673: 2640: 2595: 2519: 2426: 2375: 2349: 2325: 2283: 2259: 2226: 2202: 1567: 1539: 1494: 1448: 1424: 1408:and calculating the 1378: 1344: 1312: 1288: 1261: 1224: 1181: 1148: 1124: 1100: 1073: 887: 857: 830: 768: 691: 687:The other intervals 643: 610: 587: 542: 506: 480: 424: 397: 379:{\displaystyle \pi } 370: 301: 255: 228: 204: 184: 154: 121: 73: 39: 8245:Basic Real Analysis 7883:holds true for any 7836:{\displaystyle x=0} 6670:is the supremum of 4646: 2120: 2000: 1880: 1760: 1640: 1042: 974: 760:can now be defined 460:Historic motivation 251:can only increase ( 8105:disjoint open sets 8089: 8028: 7958: 7901: 7873: 7833: 7807: 7787: 7761: 7649: 7613: 7586: 7556: 7522: 7488: 7460: 7434: 7389: 7366: 7258: 7229: 7206: 7129: 7078: 7050: 7017: 6989: 6943: 6908: 6881: 6823: 6764: 6710: 6680: 6660: 6640: 6620: 6597: 6577: 6550: 6517: 6472: 6439: 6413: 6365: 6345: 6316: 6296: 6276: 6248: 6215: 6188: 6168: 6123: 6071: 6012: 5986: 5960: 5940: 5916: 5890: 5885: 5712: 5650: 5622: 5563: 5543: 5516: 5490: 5451: 5420: 5392: 5372: 5344: 5316: 5296: 5266: 5207: 5159: 5122: 5085: 5057: 5026: 5003: 4945: 4925: 4904: 4862: 4842: 4817: 4795: 4760: 4734: 4708: 4688: 4647: 4632: 4615: 4595: 4568: 4548: 4528: 4508: 4475: 4449: 4393: 4335:Existence of roots 4300: 4280: 4227: 4206: 4186: 4166: 4138: 4079: 4037: 4011: 3948: 3928: 3871: 3860: 3799: 3772: 3704: 3661: 3635: 3615: 3595: 3564: 3487: 3414: 3366: 3303: 3244: 3179:is an Archimedean 3169: 3149: 3129: 3012: 3000:Ludolph van Ceulen 2985: 2965: 2941:. The upper bound 2931: 2929: 2908: 2881: 2861: 2844:{\displaystyle 2n} 2841: 2807: 2787: 2775: 2738: 2710: 2683: 2659: 2626: 2581: 2501: 2409: 2361: 2335: 2293: 2269: 2245: 2212: 2186: 2184: 2106: 2089: 1986: 1969: 1866: 1849: 1746: 1729: 1626: 1609: 1549: 1525: 1480: 1434: 1398: 1364: 1330: 1298: 1271: 1247: 1210: 1167: 1134: 1110: 1086: 1056: 1051: 1028: 960: 880:), one can define 870: 843: 816: 750: 674: 629: 593: 573: 528: 492: 438: 410: 376: 333: 287: 241: 210: 190: 167: 140: 103: 52: 22: 8123:Higher dimensions 7810:{\displaystyle x} 7754: 7705: 7359: 7310: 6683:{\displaystyle A} 6663:{\displaystyle s} 6643:{\displaystyle A} 6623:{\displaystyle s} 6600:{\displaystyle A} 6368:{\displaystyle A} 6319:{\displaystyle A} 6299:{\displaystyle s} 6191:{\displaystyle s} 5963:{\displaystyle A} 5943:{\displaystyle s} 5919:{\displaystyle s} 5881: 5864: 5815: 5798: 5710: 5566:{\displaystyle A} 5395:{\displaystyle A} 5319:{\displaystyle A} 5029:{\displaystyle s} 4948:{\displaystyle A} 4928:{\displaystyle s} 4865:{\displaystyle A} 4845:{\displaystyle s} 4820:{\displaystyle A} 4711:{\displaystyle b} 4618:{\displaystyle n} 4571:{\displaystyle y} 4551:{\displaystyle x} 4531:{\displaystyle k} 4426: 4209:{\displaystyle x} 4189:{\displaystyle x} 3951:{\displaystyle x} 3843: 3618:{\displaystyle N} 3152:{\displaystyle +} 3092:differentiability 2928: 2907: 2884:{\displaystyle 6} 2864:{\displaystyle n} 2790:{\displaystyle 1} 2736: 2681: 2561: 2494: 2456: 2333: 2319:Babylonian method 2291: 2267: 2234: 2210: 2088: 1968: 1848: 1728: 1608: 1547: 1444:. Note that since 1432: 1296: 1269: 1189: 1132: 1108: 1024: 956: 814: 596:{\displaystyle x} 520: 213:{\displaystyle N} 8313: 8287: 8258: 8237: 8216: 8192: 8191: 8173: 8101:De Morgan's laws 8098: 8096: 8095: 8090: 8076: 8037: 8035: 8034: 8029: 8018: 8017: 7999: 7998: 7967: 7965: 7964: 7959: 7945: 7944: 7935: 7934: 7933: 7910: 7908: 7907: 7902: 7900: 7882: 7880: 7879: 7874: 7869: 7842: 7840: 7839: 7834: 7816: 7814: 7813: 7808: 7796: 7794: 7793: 7788: 7770: 7768: 7767: 7762: 7760: 7756: 7755: 7747: 7730: 7711: 7707: 7706: 7698: 7682: 7681: 7664:closed intervals 7658: 7656: 7655: 7650: 7645: 7644: 7622: 7620: 7619: 7614: 7612: 7611: 7595: 7593: 7592: 7587: 7565: 7563: 7562: 7557: 7546: 7531: 7529: 7528: 7523: 7518: 7497: 7495: 7494: 7489: 7487: 7469: 7467: 7466: 7461: 7443: 7441: 7440: 7435: 7433: 7432: 7423: 7422: 7421: 7398: 7396: 7395: 7390: 7375: 7373: 7372: 7367: 7365: 7361: 7360: 7352: 7335: 7316: 7312: 7311: 7303: 7287: 7286: 7267: 7265: 7264: 7259: 7238: 7236: 7235: 7230: 7215: 7213: 7212: 7207: 7205: 7204: 7195: 7194: 7193: 7161:Cauchy sequences 7138: 7136: 7135: 7130: 7128: 7127: 7118: 7117: 7116: 7087: 7085: 7084: 7079: 7077: 7059: 7057: 7056: 7051: 7049: 7048: 7026: 7024: 7023: 7018: 7016: 6998: 6996: 6995: 6990: 6988: 6987: 6969: 6968: 6952: 6950: 6949: 6944: 6917: 6915: 6914: 6909: 6907: 6906: 6890: 6888: 6887: 6882: 6871: 6870: 6858: 6857: 6832: 6830: 6829: 6824: 6819: 6818: 6806: 6805: 6790: 6789: 6773: 6771: 6770: 6765: 6763: 6762: 6761: 6745: 6744: 6719: 6717: 6716: 6711: 6709: 6689: 6687: 6686: 6681: 6669: 6667: 6666: 6661: 6649: 6647: 6646: 6641: 6629: 6627: 6626: 6621: 6606: 6604: 6603: 6598: 6586: 6584: 6583: 6578: 6576: 6575: 6559: 6557: 6556: 6551: 6543: 6542: 6526: 6524: 6523: 6518: 6504: 6503: 6481: 6479: 6478: 6473: 6471: 6470: 6448: 6446: 6445: 6440: 6422: 6420: 6419: 6414: 6412: 6411: 6410: 6394: 6393: 6374: 6372: 6371: 6366: 6354: 6352: 6351: 6346: 6325: 6323: 6322: 6317: 6305: 6303: 6302: 6297: 6285: 6283: 6282: 6277: 6275: 6257: 6255: 6254: 6249: 6241: 6240: 6224: 6222: 6221: 6216: 6214: 6213: 6197: 6195: 6194: 6189: 6178:follows, due to 6177: 6175: 6174: 6169: 6149: 6148: 6132: 6130: 6129: 6124: 6110: 6109: 6097: 6096: 6080: 6078: 6077: 6072: 6067: 6066: 6054: 6053: 6038: 6037: 6021: 6019: 6018: 6013: 5995: 5993: 5992: 5987: 5969: 5967: 5966: 5961: 5949: 5947: 5946: 5941: 5925: 5923: 5922: 5917: 5899: 5897: 5896: 5891: 5889: 5886: 5882: 5879: 5876: 5875: 5865: 5862: 5859: 5857: 5853: 5852: 5851: 5839: 5838: 5816: 5813: 5810: 5809: 5799: 5796: 5793: 5791: 5787: 5786: 5785: 5773: 5772: 5747: 5746: 5721: 5719: 5718: 5713: 5711: 5706: 5705: 5704: 5692: 5691: 5681: 5676: 5675: 5659: 5657: 5656: 5651: 5649: 5631: 5629: 5628: 5623: 5618: 5617: 5605: 5604: 5589: 5588: 5572: 5570: 5569: 5564: 5552: 5550: 5549: 5544: 5542: 5541: 5525: 5523: 5522: 5517: 5499: 5497: 5496: 5491: 5477: 5476: 5460: 5458: 5457: 5452: 5450: 5449: 5429: 5427: 5426: 5421: 5419: 5401: 5399: 5398: 5393: 5381: 5379: 5378: 5373: 5371: 5370: 5353: 5351: 5350: 5345: 5343: 5325: 5323: 5322: 5317: 5305: 5303: 5302: 5297: 5295: 5294: 5275: 5273: 5272: 5267: 5262: 5261: 5249: 5248: 5233: 5232: 5216: 5214: 5213: 5208: 5206: 5205: 5204: 5188: 5187: 5168: 5166: 5165: 5160: 5158: 5131: 5129: 5128: 5123: 5121: 5094: 5092: 5091: 5086: 5084: 5066: 5064: 5063: 5058: 5035: 5033: 5032: 5027: 5012: 5010: 5009: 5004: 4954: 4952: 4951: 4946: 4934: 4932: 4931: 4926: 4913: 4911: 4910: 4905: 4871: 4869: 4868: 4863: 4851: 4849: 4848: 4843: 4826: 4824: 4823: 4818: 4804: 4802: 4801: 4796: 4769: 4767: 4766: 4761: 4743: 4741: 4740: 4735: 4717: 4715: 4714: 4709: 4697: 4695: 4694: 4689: 4687: 4656: 4654: 4653: 4648: 4645: 4640: 4624: 4622: 4621: 4616: 4604: 4602: 4601: 4596: 4594: 4593: 4577: 4575: 4574: 4569: 4557: 4555: 4554: 4549: 4537: 4535: 4534: 4529: 4517: 4515: 4514: 4509: 4507: 4506: 4484: 4482: 4481: 4476: 4458: 4456: 4455: 4450: 4448: 4447: 4443: 4427: 4425: 4417: 4402: 4400: 4399: 4394: 4380: 4365: 4364: 4319:Cauchy sequences 4309: 4307: 4306: 4301: 4289: 4287: 4286: 4281: 4279: 4278: 4269: 4268: 4267: 4236: 4234: 4233: 4228: 4215: 4213: 4212: 4207: 4195: 4193: 4192: 4187: 4175: 4173: 4172: 4167: 4165: 4147: 4145: 4144: 4139: 4137: 4123: 4115: 4110: 4109: 4100: 4088: 4086: 4085: 4080: 4072: 4058: 4046: 4044: 4043: 4038: 4020: 4018: 4017: 4012: 4010: 4009: 4000: 3999: 3998: 3957: 3955: 3954: 3949: 3937: 3935: 3934: 3929: 3927: 3926: 3925: 3909: 3908: 3880: 3878: 3877: 3872: 3870: 3869: 3859: 3858: 3832: 3808: 3806: 3805: 3800: 3798: 3797: 3781: 3779: 3778: 3773: 3771: 3770: 3769: 3753: 3752: 3713: 3711: 3710: 3705: 3697: 3692: 3691: 3682: 3670: 3668: 3667: 3662: 3644: 3642: 3641: 3636: 3624: 3622: 3621: 3616: 3604: 3602: 3601: 3596: 3573: 3571: 3570: 3565: 3557: 3552: 3551: 3542: 3532: 3496: 3494: 3493: 3488: 3486: 3485: 3473: 3472: 3452: 3423: 3421: 3420: 3415: 3413: 3412: 3411: 3395: 3394: 3375: 3373: 3372: 3367: 3365: 3364: 3352: 3351: 3339: 3334: 3333: 3324: 3312: 3310: 3309: 3304: 3299: 3298: 3286: 3285: 3270: 3269: 3253: 3251: 3250: 3245: 3243: 3242: 3241: 3225: 3224: 3203: 3202: 3198: 3178: 3176: 3175: 3170: 3158: 3156: 3155: 3150: 3138: 3136: 3135: 3130: 3128: 3102:'s discovery of 3094:. Historically, 3084:rational numbers 3048:Bisection method 3044:computer science 3021: 3019: 3018: 3013: 2994: 2992: 2991: 2986: 2974: 2972: 2971: 2966: 2955: 2940: 2938: 2937: 2932: 2930: 2921: 2909: 2900: 2890: 2888: 2887: 2882: 2870: 2868: 2867: 2862: 2850: 2848: 2847: 2842: 2816: 2814: 2813: 2808: 2796: 2794: 2793: 2788: 2772: 2747: 2745: 2744: 2739: 2737: 2732: 2719: 2717: 2716: 2711: 2709: 2708: 2692: 2690: 2689: 2684: 2682: 2677: 2668: 2666: 2665: 2660: 2652: 2651: 2635: 2633: 2632: 2627: 2607: 2606: 2590: 2588: 2587: 2582: 2580: 2576: 2575: 2574: 2562: 2560: 2559: 2547: 2537: 2536: 2510: 2508: 2507: 2502: 2500: 2496: 2495: 2493: 2492: 2480: 2475: 2474: 2457: 2449: 2444: 2443: 2418: 2416: 2415: 2410: 2408: 2407: 2406: 2390: 2389: 2370: 2368: 2367: 2362: 2344: 2342: 2341: 2336: 2334: 2329: 2302: 2300: 2299: 2294: 2292: 2287: 2278: 2276: 2275: 2270: 2268: 2263: 2254: 2252: 2251: 2246: 2235: 2230: 2221: 2219: 2218: 2213: 2211: 2206: 2195: 2193: 2192: 2187: 2185: 2182: 2181: 2173: 2151: 2150: 2134: 2119: 2114: 2098: 2090: 2084: 2073: 2063: 2062: 2031: 2030: 2014: 1999: 1994: 1978: 1970: 1964: 1953: 1943: 1942: 1911: 1910: 1894: 1879: 1874: 1858: 1850: 1844: 1833: 1823: 1822: 1791: 1790: 1774: 1759: 1754: 1738: 1730: 1724: 1713: 1703: 1702: 1671: 1670: 1654: 1639: 1634: 1618: 1610: 1604: 1593: 1583: 1582: 1558: 1556: 1555: 1550: 1548: 1543: 1534: 1532: 1531: 1526: 1506: 1505: 1489: 1487: 1486: 1481: 1479: 1478: 1460: 1459: 1443: 1441: 1440: 1435: 1433: 1428: 1407: 1405: 1404: 1399: 1394: 1373: 1371: 1370: 1365: 1354: 1339: 1337: 1336: 1331: 1307: 1305: 1304: 1299: 1297: 1292: 1280: 1278: 1277: 1272: 1270: 1265: 1256: 1254: 1253: 1248: 1246: 1241: 1240: 1231: 1219: 1217: 1216: 1211: 1209: 1208: 1190: 1185: 1176: 1174: 1173: 1168: 1166: 1165: 1143: 1141: 1140: 1135: 1133: 1128: 1119: 1117: 1116: 1111: 1109: 1104: 1095: 1093: 1092: 1087: 1085: 1084: 1065: 1063: 1062: 1057: 1055: 1052: 1041: 1036: 1025: 1022: 1019: 1017: 1013: 1012: 1011: 999: 998: 973: 968: 957: 954: 951: 949: 945: 944: 943: 931: 930: 905: 904: 879: 877: 876: 871: 869: 868: 852: 850: 849: 844: 842: 841: 825: 823: 822: 817: 815: 810: 809: 808: 796: 795: 785: 780: 779: 759: 757: 756: 751: 749: 732: 731: 719: 718: 703: 702: 683: 681: 680: 675: 655: 654: 638: 636: 635: 630: 622: 621: 602: 600: 599: 594: 582: 580: 579: 574: 554: 553: 537: 535: 534: 529: 521: 516: 501: 499: 498: 493: 447: 445: 444: 439: 437: 419: 417: 416: 411: 409: 408: 385: 383: 382: 377: 364:circle number Pi 342: 340: 339: 334: 332: 331: 319: 318: 296: 294: 293: 288: 286: 285: 273: 272: 250: 248: 247: 242: 240: 239: 219: 217: 216: 211: 199: 197: 196: 191: 176: 174: 173: 168: 166: 165: 149: 147: 146: 141: 139: 138: 112: 110: 109: 104: 64:real number line 61: 59: 58: 53: 51: 50: 8321: 8320: 8316: 8315: 8314: 8312: 8311: 8310: 8291: 8290: 8285: 8262: 8256: 8241: 8235: 8220: 8214: 8199: 8196: 8195: 8188: 8175: 8174: 8170: 8165: 8159: 8145: 8125: 8040: 8039: 8009: 7990: 7973: 7972: 7936: 7918: 7913: 7912: 7885: 7884: 7845: 7844: 7843:, the property 7819: 7818: 7799: 7798: 7773: 7772: 7719: 7715: 7690: 7686: 7673: 7668: 7667: 7636: 7625: 7624: 7603: 7598: 7597: 7572: 7571: 7534: 7533: 7500: 7499: 7472: 7471: 7446: 7445: 7424: 7406: 7401: 7400: 7381: 7380: 7324: 7320: 7295: 7291: 7278: 7273: 7272: 7244: 7243: 7221: 7220: 7196: 7178: 7173: 7172: 7169: 7145: 7119: 7101: 7090: 7089: 7088:, respectively 7062: 7061: 7040: 7029: 7028: 7001: 7000: 6979: 6960: 6955: 6954: 6920: 6919: 6898: 6893: 6892: 6862: 6849: 6835: 6834: 6810: 6797: 6781: 6776: 6775: 6746: 6736: 6728: 6727: 6700: 6699: 6696: 6690:by definition. 6672: 6671: 6652: 6651: 6632: 6631: 6612: 6611: 6589: 6588: 6567: 6562: 6561: 6534: 6529: 6528: 6495: 6484: 6483: 6462: 6451: 6450: 6425: 6424: 6395: 6385: 6377: 6376: 6357: 6356: 6331: 6330: 6308: 6307: 6288: 6287: 6260: 6259: 6232: 6227: 6226: 6205: 6200: 6199: 6180: 6179: 6140: 6135: 6134: 6101: 6088: 6083: 6082: 6058: 6045: 6029: 6024: 6023: 5998: 5997: 5972: 5971: 5952: 5951: 5932: 5931: 5908: 5907: 5884: 5883: 5867: 5858: 5843: 5830: 5829: 5825: 5822: 5821: 5801: 5792: 5777: 5764: 5763: 5759: 5751: 5732: 5727: 5726: 5696: 5683: 5682: 5667: 5662: 5661: 5634: 5633: 5609: 5596: 5580: 5575: 5574: 5555: 5554: 5533: 5528: 5527: 5502: 5501: 5468: 5463: 5462: 5441: 5436: 5435: 5404: 5403: 5384: 5383: 5362: 5357: 5356: 5328: 5327: 5308: 5307: 5286: 5281: 5280: 5253: 5240: 5224: 5219: 5218: 5189: 5179: 5171: 5170: 5143: 5142: 5106: 5105: 5102: 5069: 5068: 5040: 5039: 5018: 5017: 4957: 4956: 4937: 4936: 4917: 4916: 4874: 4873: 4854: 4853: 4834: 4833: 4809: 4808: 4772: 4771: 4746: 4745: 4720: 4719: 4700: 4699: 4672: 4671: 4668: 4663: 4627: 4626: 4607: 4606: 4585: 4580: 4579: 4560: 4559: 4540: 4539: 4520: 4519: 4498: 4487: 4486: 4461: 4460: 4431: 4405: 4404: 4356: 4345: 4344: 4337: 4332: 4292: 4291: 4270: 4252: 4247: 4246: 4242: 4218: 4217: 4198: 4197: 4178: 4177: 4150: 4149: 4101: 4091: 4090: 4049: 4048: 4023: 4022: 4001: 3983: 3966: 3965: 3940: 3939: 3910: 3900: 3892: 3891: 3888: 3861: 3814: 3813: 3789: 3784: 3783: 3754: 3744: 3736: 3735: 3732: 3720: 3683: 3673: 3672: 3647: 3646: 3627: 3626: 3607: 3606: 3581: 3580: 3543: 3500: 3499: 3477: 3458: 3433: 3432: 3396: 3386: 3378: 3377: 3356: 3343: 3325: 3315: 3314: 3290: 3277: 3261: 3256: 3255: 3226: 3216: 3208: 3207: 3204: 3200: 3196: 3194: 3193: 3161: 3160: 3141: 3140: 3119: 3118: 3068: 3036:differentiation 3028: 3004: 3003: 2977: 2976: 2943: 2942: 2893: 2892: 2873: 2872: 2853: 2852: 2830: 2829: 2820:Around 250 BCE 2799: 2798: 2779: 2778: 2770: 2764: 2758: 2750:Newton's method 2726: 2725: 2700: 2695: 2694: 2671: 2670: 2643: 2638: 2637: 2598: 2593: 2592: 2566: 2551: 2545: 2541: 2522: 2517: 2516: 2484: 2466: 2465: 2461: 2429: 2424: 2423: 2391: 2381: 2373: 2372: 2347: 2346: 2323: 2322: 2315: 2281: 2280: 2257: 2256: 2224: 2223: 2200: 2199: 2183: 2180: 2171: 2170: 2142: 2133: 2097: 2074: 2064: 2054: 2051: 2050: 2022: 2013: 1977: 1954: 1944: 1934: 1931: 1930: 1902: 1893: 1857: 1834: 1824: 1814: 1811: 1810: 1782: 1773: 1737: 1714: 1704: 1694: 1691: 1690: 1662: 1653: 1617: 1594: 1584: 1574: 1565: 1564: 1537: 1536: 1497: 1492: 1491: 1470: 1451: 1446: 1445: 1422: 1421: 1418: 1376: 1375: 1342: 1341: 1340:. In this case 1310: 1309: 1286: 1285: 1259: 1258: 1232: 1222: 1221: 1194: 1179: 1178: 1151: 1146: 1145: 1122: 1121: 1098: 1097: 1076: 1071: 1070: 1050: 1049: 1018: 1003: 990: 989: 985: 982: 981: 950: 935: 922: 921: 917: 909: 890: 885: 884: 860: 855: 854: 833: 828: 827: 800: 787: 786: 771: 766: 765: 723: 710: 694: 689: 688: 646: 641: 640: 613: 608: 607: 585: 584: 545: 540: 539: 504: 503: 478: 477: 474: 462: 422: 421: 420:(thus, for all 400: 395: 394: 368: 367: 323: 304: 299: 298: 277: 258: 253: 252: 231: 226: 225: 202: 201: 182: 181: 157: 152: 151: 124: 119: 118: 71: 70: 68:natural numbers 42: 37: 36: 12: 11: 5: 8319: 8317: 8309: 8308: 8303: 8293: 8292: 8289: 8288: 8283: 8260: 8254: 8239: 8233: 8218: 8212: 8194: 8193: 8186: 8167: 8166: 8164: 8161: 8157: 8156: 8151: 8144: 8141: 8124: 8121: 8088: 8085: 8082: 8079: 8075: 8071: 8068: 8065: 8062: 8059: 8056: 8053: 8050: 8047: 8027: 8024: 8021: 8016: 8012: 8008: 8005: 8002: 7997: 7993: 7989: 7986: 7983: 7980: 7957: 7954: 7951: 7948: 7943: 7939: 7932: 7928: 7925: 7921: 7899: 7895: 7892: 7872: 7868: 7864: 7861: 7858: 7855: 7852: 7832: 7829: 7826: 7806: 7786: 7783: 7780: 7759: 7753: 7750: 7745: 7742: 7739: 7736: 7733: 7729: 7725: 7722: 7718: 7714: 7710: 7704: 7701: 7696: 7693: 7689: 7685: 7680: 7676: 7648: 7643: 7639: 7635: 7632: 7610: 7606: 7585: 7582: 7579: 7555: 7552: 7549: 7545: 7541: 7521: 7517: 7513: 7510: 7507: 7486: 7482: 7479: 7459: 7456: 7453: 7431: 7427: 7420: 7416: 7413: 7409: 7388: 7364: 7358: 7355: 7350: 7347: 7344: 7341: 7338: 7334: 7330: 7327: 7323: 7319: 7315: 7309: 7306: 7301: 7298: 7294: 7290: 7285: 7281: 7257: 7254: 7251: 7228: 7203: 7199: 7192: 7188: 7185: 7181: 7168: 7165: 7144: 7141: 7126: 7122: 7115: 7111: 7108: 7104: 7100: 7097: 7076: 7072: 7069: 7047: 7043: 7039: 7036: 7015: 7011: 7008: 6986: 6982: 6978: 6975: 6972: 6967: 6963: 6942: 6939: 6936: 6933: 6930: 6927: 6905: 6901: 6880: 6877: 6874: 6869: 6865: 6861: 6856: 6852: 6848: 6845: 6842: 6822: 6817: 6813: 6809: 6804: 6800: 6796: 6793: 6788: 6784: 6760: 6756: 6753: 6749: 6743: 6739: 6735: 6708: 6695: 6692: 6679: 6659: 6639: 6619: 6596: 6574: 6570: 6549: 6546: 6541: 6537: 6527:and therefore 6516: 6513: 6510: 6507: 6502: 6498: 6494: 6491: 6469: 6465: 6461: 6458: 6438: 6435: 6432: 6409: 6405: 6402: 6398: 6392: 6388: 6384: 6364: 6344: 6341: 6338: 6315: 6295: 6274: 6270: 6267: 6247: 6244: 6239: 6235: 6212: 6208: 6187: 6167: 6164: 6161: 6158: 6155: 6152: 6147: 6143: 6122: 6119: 6116: 6113: 6108: 6104: 6100: 6095: 6091: 6070: 6065: 6061: 6057: 6052: 6048: 6044: 6041: 6036: 6032: 6011: 6008: 6005: 5985: 5982: 5979: 5959: 5939: 5915: 5901: 5900: 5888: 5874: 5870: 5860: 5856: 5850: 5846: 5842: 5837: 5833: 5828: 5824: 5823: 5820: 5808: 5804: 5794: 5790: 5784: 5780: 5776: 5771: 5767: 5762: 5758: 5757: 5754: 5750: 5745: 5742: 5739: 5735: 5709: 5703: 5699: 5695: 5690: 5686: 5679: 5674: 5670: 5648: 5644: 5641: 5621: 5616: 5612: 5608: 5603: 5599: 5595: 5592: 5587: 5583: 5562: 5540: 5536: 5515: 5512: 5509: 5489: 5486: 5483: 5480: 5475: 5471: 5448: 5444: 5432: 5431: 5418: 5414: 5411: 5391: 5369: 5365: 5354: 5342: 5338: 5335: 5315: 5293: 5289: 5265: 5260: 5256: 5252: 5247: 5243: 5239: 5236: 5231: 5227: 5203: 5199: 5196: 5192: 5186: 5182: 5178: 5157: 5153: 5150: 5120: 5116: 5113: 5101: 5098: 5083: 5079: 5076: 5056: 5053: 5050: 5047: 5025: 5014: 5013: 5002: 4999: 4996: 4992: 4989: 4986: 4983: 4980: 4976: 4973: 4970: 4967: 4964: 4944: 4924: 4914: 4903: 4900: 4897: 4893: 4890: 4887: 4884: 4881: 4861: 4841: 4816: 4794: 4791: 4788: 4785: 4782: 4779: 4759: 4756: 4753: 4733: 4730: 4727: 4707: 4686: 4682: 4679: 4667: 4664: 4662: 4659: 4644: 4639: 4635: 4614: 4592: 4588: 4567: 4547: 4527: 4505: 4501: 4497: 4494: 4474: 4471: 4468: 4446: 4442: 4438: 4434: 4430: 4424: 4420: 4415: 4412: 4392: 4389: 4386: 4383: 4379: 4375: 4372: 4368: 4363: 4359: 4355: 4352: 4336: 4333: 4331: 4328: 4327: 4326: 4311: 4299: 4277: 4273: 4266: 4262: 4259: 4255: 4241: 4238: 4226: 4205: 4185: 4164: 4160: 4157: 4136: 4132: 4129: 4126: 4122: 4118: 4114: 4108: 4104: 4099: 4078: 4075: 4071: 4067: 4064: 4061: 4057: 4036: 4033: 4030: 4008: 4004: 3997: 3993: 3990: 3986: 3982: 3979: 3976: 3973: 3947: 3924: 3920: 3917: 3913: 3907: 3903: 3899: 3887: 3884: 3883: 3882: 3868: 3864: 3857: 3853: 3850: 3846: 3842: 3839: 3835: 3831: 3827: 3824: 3821: 3796: 3792: 3768: 3764: 3761: 3757: 3751: 3747: 3743: 3731: 3728: 3719: 3716: 3703: 3700: 3696: 3690: 3686: 3681: 3660: 3657: 3654: 3634: 3614: 3594: 3591: 3588: 3576: 3575: 3563: 3560: 3556: 3550: 3546: 3541: 3535: 3531: 3527: 3524: 3521: 3517: 3514: 3511: 3508: 3497: 3484: 3480: 3476: 3471: 3468: 3465: 3461: 3455: 3451: 3447: 3444: 3441: 3410: 3406: 3403: 3399: 3393: 3389: 3385: 3363: 3359: 3355: 3350: 3346: 3342: 3338: 3332: 3328: 3323: 3302: 3297: 3293: 3289: 3284: 3280: 3276: 3273: 3268: 3264: 3240: 3236: 3233: 3229: 3223: 3219: 3215: 3192: 3189: 3168: 3148: 3127: 3067: 3064: 3027: 3024: 3011: 2984: 2964: 2961: 2958: 2954: 2950: 2927: 2924: 2918: 2915: 2912: 2906: 2903: 2880: 2860: 2840: 2837: 2806: 2786: 2757: 2754: 2735: 2707: 2703: 2680: 2658: 2655: 2650: 2646: 2625: 2622: 2619: 2616: 2613: 2610: 2605: 2601: 2579: 2573: 2569: 2565: 2558: 2554: 2550: 2544: 2540: 2535: 2532: 2529: 2525: 2513: 2512: 2499: 2491: 2487: 2483: 2478: 2473: 2469: 2464: 2460: 2455: 2452: 2447: 2442: 2439: 2436: 2432: 2405: 2401: 2398: 2394: 2388: 2384: 2380: 2360: 2357: 2354: 2332: 2314: 2311: 2310: 2309: 2306: 2304: 2290: 2266: 2244: 2241: 2238: 2233: 2209: 2196: 2179: 2176: 2174: 2172: 2169: 2166: 2163: 2160: 2157: 2154: 2149: 2145: 2140: 2137: 2135: 2132: 2129: 2126: 2123: 2118: 2113: 2109: 2104: 2101: 2099: 2096: 2093: 2087: 2083: 2080: 2077: 2070: 2067: 2065: 2061: 2057: 2053: 2052: 2049: 2046: 2043: 2040: 2037: 2034: 2029: 2025: 2020: 2017: 2015: 2012: 2009: 2006: 2003: 1998: 1993: 1989: 1984: 1981: 1979: 1976: 1973: 1967: 1963: 1960: 1957: 1950: 1947: 1945: 1941: 1937: 1933: 1932: 1929: 1926: 1923: 1920: 1917: 1914: 1909: 1905: 1900: 1897: 1895: 1892: 1889: 1886: 1883: 1878: 1873: 1869: 1864: 1861: 1859: 1856: 1853: 1847: 1843: 1840: 1837: 1830: 1827: 1825: 1821: 1817: 1813: 1812: 1809: 1806: 1803: 1800: 1797: 1794: 1789: 1785: 1780: 1777: 1775: 1772: 1769: 1766: 1763: 1758: 1753: 1749: 1744: 1741: 1739: 1736: 1733: 1727: 1723: 1720: 1717: 1710: 1707: 1705: 1701: 1697: 1693: 1692: 1689: 1686: 1683: 1680: 1677: 1674: 1669: 1665: 1660: 1657: 1655: 1652: 1649: 1646: 1643: 1638: 1633: 1629: 1624: 1621: 1619: 1616: 1613: 1607: 1603: 1600: 1597: 1590: 1587: 1585: 1581: 1577: 1573: 1572: 1546: 1524: 1521: 1518: 1515: 1512: 1509: 1504: 1500: 1477: 1473: 1469: 1466: 1463: 1458: 1454: 1431: 1417: 1414: 1397: 1393: 1389: 1386: 1383: 1363: 1360: 1357: 1353: 1349: 1329: 1326: 1323: 1320: 1317: 1295: 1268: 1245: 1239: 1235: 1230: 1207: 1204: 1201: 1197: 1193: 1188: 1164: 1161: 1158: 1154: 1131: 1107: 1083: 1079: 1067: 1066: 1054: 1048: 1045: 1040: 1035: 1031: 1020: 1016: 1010: 1006: 1002: 997: 993: 988: 984: 983: 980: 977: 972: 967: 963: 952: 948: 942: 938: 934: 929: 925: 920: 916: 915: 912: 908: 903: 900: 897: 893: 867: 863: 840: 836: 813: 807: 803: 799: 794: 790: 783: 778: 774: 748: 744: 741: 738: 735: 730: 726: 722: 717: 713: 709: 706: 701: 697: 673: 670: 667: 664: 661: 658: 653: 649: 628: 625: 620: 616: 605:perfect square 592: 572: 569: 566: 563: 560: 557: 552: 548: 527: 524: 519: 514: 511: 491: 488: 485: 473: 470: 461: 458: 436: 432: 429: 407: 403: 375: 330: 326: 322: 317: 314: 311: 307: 284: 280: 276: 271: 268: 265: 261: 238: 234: 222: 221: 209: 189: 178: 164: 160: 137: 134: 131: 127: 102: 99: 96: 93: 90: 87: 84: 81: 78: 49: 45: 13: 10: 9: 6: 4: 3: 2: 8318: 8307: 8304: 8302: 8299: 8298: 8296: 8286: 8284:9783642184901 8280: 8276: 8272: 8268: 8267: 8261: 8257: 8255:9780817642112 8251: 8247: 8246: 8240: 8236: 8234:9780486135007 8230: 8226: 8225: 8219: 8215: 8213:9780122676550 8209: 8205: 8204: 8198: 8197: 8189: 8183: 8179: 8172: 8169: 8162: 8160: 8155: 8152: 8150: 8147: 8146: 8142: 8140: 8138: 8134: 8130: 8122: 8120: 8118: 8114: 8110: 8109:connectedness 8106: 8102: 8080: 8077: 8073: 8069: 8063: 8057: 8054: 8048: 8019: 8014: 8010: 8003: 7995: 7991: 7987: 7981: 7969: 7952: 7946: 7941: 7937: 7926: 7923: 7919: 7893: 7890: 7870: 7866: 7862: 7859: 7856: 7853: 7850: 7830: 7827: 7824: 7804: 7784: 7781: 7778: 7757: 7751: 7748: 7743: 7740: 7737: 7734: 7731: 7723: 7720: 7716: 7712: 7708: 7702: 7699: 7694: 7691: 7687: 7683: 7678: 7674: 7665: 7660: 7646: 7641: 7637: 7633: 7630: 7608: 7604: 7583: 7580: 7577: 7569: 7553: 7550: 7547: 7543: 7539: 7532:), such that 7519: 7515: 7511: 7508: 7505: 7480: 7477: 7457: 7454: 7451: 7429: 7425: 7414: 7411: 7407: 7377: 7362: 7356: 7353: 7348: 7345: 7342: 7339: 7336: 7328: 7325: 7321: 7317: 7313: 7307: 7304: 7299: 7296: 7292: 7288: 7283: 7279: 7269: 7252: 7242: 7219: 7201: 7197: 7186: 7183: 7179: 7166: 7164: 7162: 7158: 7154: 7150: 7142: 7140: 7124: 7120: 7109: 7106: 7102: 7098: 7095: 7070: 7067: 7045: 7041: 7037: 7034: 7009: 7006: 6984: 6980: 6976: 6973: 6970: 6965: 6961: 6937: 6928: 6925: 6903: 6899: 6875: 6872: 6867: 6863: 6859: 6854: 6850: 6843: 6840: 6815: 6811: 6807: 6802: 6798: 6791: 6786: 6782: 6754: 6751: 6741: 6737: 6725: 6721: 6693: 6691: 6677: 6657: 6637: 6617: 6608: 6594: 6572: 6568: 6547: 6544: 6539: 6535: 6514: 6511: 6508: 6505: 6500: 6496: 6492: 6489: 6467: 6463: 6459: 6456: 6436: 6433: 6430: 6403: 6400: 6390: 6386: 6362: 6342: 6339: 6336: 6327: 6313: 6293: 6286:). Therefore 6268: 6265: 6245: 6242: 6237: 6233: 6210: 6206: 6185: 6165: 6162: 6159: 6156: 6153: 6150: 6145: 6141: 6133:, from which 6120: 6117: 6114: 6111: 6106: 6102: 6098: 6093: 6089: 6063: 6059: 6055: 6050: 6046: 6039: 6034: 6030: 6009: 6006: 6003: 5983: 5980: 5977: 5957: 5937: 5929: 5913: 5904: 5872: 5868: 5854: 5848: 5844: 5840: 5835: 5831: 5826: 5818: 5806: 5802: 5788: 5782: 5778: 5774: 5769: 5765: 5760: 5752: 5748: 5743: 5740: 5737: 5733: 5725: 5724: 5723: 5707: 5701: 5697: 5693: 5688: 5684: 5677: 5672: 5668: 5642: 5639: 5614: 5610: 5606: 5601: 5597: 5590: 5585: 5581: 5560: 5538: 5534: 5513: 5510: 5507: 5487: 5484: 5481: 5478: 5473: 5469: 5446: 5442: 5412: 5409: 5389: 5367: 5363: 5355: 5336: 5333: 5313: 5291: 5287: 5279: 5278: 5277: 5258: 5254: 5250: 5245: 5241: 5234: 5229: 5225: 5197: 5194: 5184: 5180: 5151: 5148: 5140: 5137: 5133: 5114: 5111: 5099: 5097: 5095: 5077: 5074: 5051: 5023: 5000: 4997: 4994: 4990: 4987: 4984: 4981: 4974: 4971: 4968: 4965: 4942: 4922: 4915: 4901: 4898: 4895: 4891: 4888: 4885: 4882: 4859: 4839: 4831: 4830: 4829: 4827: 4814: 4789: 4780: 4777: 4757: 4754: 4751: 4731: 4728: 4725: 4705: 4680: 4677: 4665: 4660: 4658: 4642: 4637: 4633: 4612: 4590: 4586: 4565: 4545: 4525: 4503: 4499: 4495: 4492: 4472: 4469: 4466: 4444: 4440: 4436: 4432: 4428: 4422: 4418: 4413: 4410: 4390: 4387: 4384: 4381: 4373: 4370: 4366: 4361: 4357: 4353: 4350: 4342: 4334: 4329: 4324: 4320: 4316: 4312: 4275: 4271: 4260: 4257: 4253: 4244: 4243: 4239: 4237: 4224: 4203: 4183: 4158: 4155: 4130: 4127: 4124: 4116: 4106: 4102: 4076: 4073: 4065: 4062: 4059: 4034: 4031: 4028: 4006: 4002: 3991: 3988: 3984: 3980: 3977: 3974: 3971: 3963: 3959: 3945: 3918: 3915: 3905: 3901: 3885: 3866: 3862: 3851: 3848: 3844: 3840: 3837: 3833: 3825: 3822: 3812: 3811: 3810: 3794: 3790: 3762: 3759: 3749: 3745: 3729: 3727: 3725: 3717: 3715: 3701: 3698: 3688: 3684: 3658: 3655: 3652: 3632: 3612: 3592: 3589: 3586: 3561: 3558: 3548: 3544: 3533: 3525: 3522: 3515: 3512: 3509: 3498: 3482: 3478: 3474: 3469: 3466: 3463: 3459: 3453: 3445: 3442: 3431: 3430: 3429: 3427: 3404: 3401: 3391: 3387: 3361: 3357: 3353: 3348: 3344: 3340: 3330: 3326: 3295: 3291: 3287: 3282: 3278: 3271: 3266: 3262: 3234: 3231: 3221: 3217: 3199: 3190: 3188: 3186: 3182: 3181:ordered field 3166: 3146: 3115: 3113: 3109: 3105: 3101: 3097: 3093: 3089: 3085: 3081: 3077: 3073: 3065: 3063: 3061: 3057: 3053: 3049: 3045: 3041: 3037: 3033: 3025: 3023: 3009: 3001: 2996: 2982: 2962: 2959: 2956: 2952: 2948: 2925: 2922: 2916: 2913: 2910: 2904: 2901: 2878: 2858: 2838: 2835: 2827: 2823: 2818: 2804: 2784: 2768: 2763: 2753: 2751: 2733: 2723: 2705: 2701: 2678: 2656: 2653: 2648: 2644: 2620: 2617: 2614: 2608: 2603: 2599: 2577: 2571: 2567: 2563: 2556: 2552: 2548: 2542: 2538: 2533: 2530: 2527: 2523: 2497: 2489: 2485: 2481: 2476: 2471: 2467: 2462: 2458: 2453: 2450: 2445: 2440: 2437: 2434: 2430: 2422: 2421: 2420: 2399: 2396: 2386: 2382: 2358: 2355: 2352: 2330: 2320: 2313:Herons method 2312: 2307: 2305: 2288: 2264: 2242: 2239: 2236: 2231: 2207: 2197: 2177: 2175: 2164: 2161: 2158: 2152: 2147: 2143: 2136: 2130: 2127: 2124: 2121: 2116: 2111: 2107: 2100: 2094: 2091: 2085: 2081: 2078: 2075: 2068: 2066: 2059: 2055: 2044: 2041: 2038: 2032: 2027: 2023: 2016: 2010: 2007: 2004: 2001: 1996: 1991: 1987: 1980: 1974: 1971: 1965: 1961: 1958: 1955: 1948: 1946: 1939: 1935: 1924: 1921: 1918: 1912: 1907: 1903: 1896: 1890: 1887: 1884: 1881: 1876: 1871: 1867: 1860: 1854: 1851: 1845: 1841: 1838: 1835: 1828: 1826: 1819: 1815: 1804: 1801: 1798: 1792: 1787: 1783: 1776: 1770: 1767: 1764: 1761: 1756: 1751: 1747: 1740: 1734: 1731: 1725: 1721: 1718: 1715: 1708: 1706: 1699: 1695: 1684: 1681: 1678: 1672: 1667: 1663: 1656: 1650: 1647: 1644: 1641: 1636: 1631: 1627: 1620: 1614: 1611: 1605: 1601: 1598: 1595: 1588: 1586: 1579: 1575: 1563: 1562: 1561: 1544: 1519: 1516: 1513: 1507: 1502: 1498: 1475: 1471: 1467: 1464: 1461: 1456: 1452: 1429: 1415: 1413: 1411: 1395: 1391: 1387: 1384: 1381: 1361: 1358: 1355: 1351: 1347: 1327: 1324: 1321: 1318: 1315: 1293: 1282: 1266: 1237: 1233: 1205: 1202: 1199: 1195: 1191: 1186: 1162: 1159: 1156: 1152: 1129: 1105: 1081: 1077: 1046: 1043: 1038: 1033: 1029: 1014: 1008: 1004: 1000: 995: 991: 986: 978: 975: 970: 965: 961: 946: 940: 936: 932: 927: 923: 918: 910: 906: 901: 898: 895: 891: 883: 882: 881: 865: 861: 838: 834: 811: 805: 801: 797: 792: 788: 781: 776: 772: 763: 742: 739: 736: 728: 724: 720: 715: 711: 704: 699: 695: 685: 668: 665: 662: 656: 651: 647: 626: 623: 618: 614: 606: 590: 567: 564: 561: 555: 550: 546: 525: 522: 517: 512: 509: 489: 486: 483: 471: 469: 467: 459: 457: 455: 451: 430: 427: 405: 401: 392: 387: 373: 365: 361: 357: 353: 350:discovered a 349: 344: 328: 324: 320: 315: 312: 309: 305: 282: 278: 274: 269: 266: 263: 259: 236: 232: 207: 187: 179: 162: 158: 135: 132: 129: 125: 116: 115: 114: 100: 97: 94: 91: 88: 85: 82: 79: 76: 69: 65: 47: 43: 35: 31: 27: 18: 8265: 8244: 8223: 8202: 8177: 8171: 8158: 8133:Hermann Weyl 8129:closed disks 8126: 7970: 7661: 7498:(namely any 7378: 7270: 7170: 7146: 7027:. Therefore 6723: 6722: 6697: 6609: 6328: 5996:, such that 5905: 5902: 5433: 5135: 5134: 5103: 5037: 5015: 4807:supremum of 4806: 4718:, such that 4669: 4538:-th root of 4485:, such that 4338: 4290:could yield 3961: 3960: 3889: 3733: 3723: 3721: 3577: 3425: 3205: 3116: 3096:Isaac Newton 3076:real numbers 3069: 3060:approximated 3029: 2997: 2819: 2776: 2514: 2316: 1419: 1283: 1068: 686: 475: 463: 391:intersection 388: 345: 223: 29: 23: 8117:uncountable 6449:. But from 5722:and define 5067:) of a set 4832:the number 3112:engineering 3040:integration 762:recursively 583:, in which 348:Babylonians 26:mathematics 8295:Categories 8187:354040371X 8178:Analysis 1 8163:References 7817:, but for 4955:, meaning 4872:, meaning 4666:Definition 3191:Definition 3088:continuity 3080:completion 2240:4.35889894 1410:reciprocal 466:algorithms 356:Archimedes 8149:Bisection 8113:real line 8107:. By the 8084:∞ 8064:∪ 8052:∞ 8049:− 8023:∞ 8004:∪ 7985:∞ 7982:− 7927:∈ 7920:∩ 7894:∈ 7860:≤ 7854:≤ 7744:≤ 7738:≤ 7724:∈ 7634:∉ 7481:∈ 7415:∈ 7408:∩ 7387:∅ 7329:∈ 7241:singleton 7227:∅ 7218:empty set 7187:∈ 7180:∩ 7110:∈ 7103:∩ 7099:∈ 7071:∈ 7038:∈ 7010:∈ 6977:≤ 6971:≤ 6953:fulfills 6876:… 6755:∈ 6548:σ 6515:σ 6512:− 6493:− 6482:one gets 6460:∈ 6437:σ 6434:− 6404:∈ 6337:σ 6269:∈ 6163:− 6151:− 6118:− 6099:− 5981:∈ 5643:∈ 5632:for some 5573:). Given 5511:∈ 5485:− 5413:∈ 5337:∈ 5198:∈ 5152:⊂ 5115:⊂ 5104:Each set 5078:⊂ 5038:infimum ( 5001:σ 4985:∈ 4979:∃ 4966:σ 4963:∀ 4899:≤ 4886:∈ 4880:∀ 4755:∈ 4729:≤ 4681:⊂ 4558:, namely 4374:∈ 4298:∅ 4261:∈ 4254:∩ 4225:◻ 4159:∈ 4128:− 4117:≥ 4063:− 4032:≠ 3992:∈ 3985:∩ 3981:∈ 3919:∈ 3852:∈ 3845:⋂ 3841:∈ 3826:∈ 3820:∃ 3763:∈ 3702:ε 3656:≥ 3633:ε 3587:ε 3562:ε 3526:∈ 3520:∃ 3510:ε 3507:∀ 3475:⊆ 3446:∈ 3440:∀ 3405:∈ 3354:− 3235:∈ 3167:⋅ 3010:π 2983:π 2960:≈ 2914:π 2805:π 2722:converges 2459:⋅ 2419:given by 2400:∈ 2243:… 2178:⋮ 2139:⇒ 2125:19.140625 2103:⇒ 2019:⇒ 2008:≤ 1983:⇒ 1899:⇒ 1863:⇒ 1779:⇒ 1768:≤ 1743:⇒ 1659:⇒ 1648:≤ 1623:⇒ 1192:∈ 976:≤ 743:∈ 523:≤ 513:≤ 431:∈ 374:π 321:≤ 275:≥ 188:ε 101:… 34:intervals 8143:See also 7060:for all 6999:for all 6375:. Since 6258:for all 5906:Now let 5500:, where 5402:for any 5326:for all 4744:for all 4321:and the 4216:exists. 4148:for all 3313:, where 3032:calculus 2826:hexagons 2636:, where 1535:, since 450:complete 8111:of the 5100:Theorem 4605:of the 4021:. From 3886:Theorem 3108:physics 3098:'s and 3082:of the 3078:as the 2345:for an 2005:18.0625 1416:Example 1308:, when 62:on the 8281:  8252:  8231:  8210:  8184:  6724:Proof: 6694:Remark 5136:Proof: 4828:, if 3962:Proof: 3718:Remark 3195:": --> 3187:hold. 3042:). In 360:circle 8099:. By 6774:with 6081:with 5928:axiom 4240:Notes 3428:, if 3052:roots 2963:3.143 2165:4.375 2095:4.375 1885:20.25 454:field 66:with 8279:ISBN 8250:ISBN 8229:ISBN 8208:ISBN 8182:ISBN 7782:> 7581:> 7551:< 7509:> 7455:> 7349:< 7343:< 7151:and 6726:Let 6545:> 6506:< 6340:< 6243:< 6157:< 6112:< 6007:> 4998:> 4969:< 4805:the 4470:> 4388:> 4074:> 3699:< 3590:> 3559:< 3513:> 3206:Let 3197:edit 3159:and 3090:and 3038:and 2917:< 2911:< 2654:> 2591:and 2356:> 2317:The 2159:4.25 2128:> 2076:4.25 2039:4.25 1975:4.25 1888:> 1468:< 1462:< 1359:> 1325:< 1319:< 1044:> 624:> 487:> 452:the 28:, a 8271:doi 6932:sup 6355:of 5930:). 5553:of 5046:inf 4784:sup 4670:If 3734:If 3070:In 3054:of 2902:223 2817:. 2724:to 2082:4.5 2045:4.5 1962:4.5 1925:4.5 1855:4.5 1096:to 386:). 343:). 24:In 8297:: 8277:, 8139:. 7968:. 7376:. 7139:. 6844::= 6326:. 5863:if 5797:if 5749::= 5678::= 4657:. 4077:0. 3958:. 3714:. 3424:a 3341::= 3110:, 3062:. 2995:. 2949:22 2923:22 2905:71 2752:. 2539::= 2446::= 2289:19 2265:19 2232:19 2208:19 2131:19 2011:19 1891:19 1771:19 1765:16 1651:19 1545:19 1508::= 1465:19 1430:19 1385::= 1023:if 955:if 907::= 684:. 220:). 177:). 8273:: 8259:. 8238:. 8217:. 8190:. 8087:) 8081:, 8078:n 8074:/ 8070:1 8067:( 8061:) 8058:0 8055:, 8046:( 8026:) 8020:, 8015:n 8011:b 8007:( 8001:) 7996:n 7992:a 7988:, 7979:( 7956:} 7953:0 7950:{ 7947:= 7942:n 7938:I 7931:N 7924:n 7898:N 7891:n 7871:n 7867:/ 7863:1 7857:x 7851:0 7831:0 7828:= 7825:x 7805:x 7785:0 7779:x 7758:} 7752:n 7749:1 7741:x 7735:0 7732:: 7728:R 7721:x 7717:{ 7713:= 7709:] 7703:n 7700:1 7695:, 7692:0 7688:[ 7684:= 7679:n 7675:I 7647:, 7642:n 7638:I 7631:x 7609:n 7605:I 7584:0 7578:x 7554:x 7548:n 7544:/ 7540:1 7520:x 7516:/ 7512:1 7506:n 7485:N 7478:n 7458:0 7452:x 7430:n 7426:I 7419:N 7412:n 7363:} 7357:n 7354:1 7346:x 7340:0 7337:: 7333:R 7326:x 7322:{ 7318:= 7314:) 7308:n 7305:1 7300:, 7297:0 7293:( 7289:= 7284:n 7280:I 7256:} 7253:x 7250:{ 7202:n 7198:I 7191:N 7184:n 7125:n 7121:I 7114:N 7107:n 7096:s 7075:N 7068:n 7046:n 7042:I 7035:s 7014:N 7007:n 6985:n 6981:b 6974:s 6966:n 6962:a 6941:) 6938:A 6935:( 6929:= 6926:s 6904:n 6900:b 6879:} 6873:, 6868:2 6864:a 6860:, 6855:1 6851:a 6847:{ 6841:A 6821:] 6816:n 6812:b 6808:, 6803:n 6799:a 6795:[ 6792:= 6787:n 6783:I 6759:N 6752:n 6748:) 6742:n 6738:I 6734:( 6707:R 6678:A 6658:s 6638:A 6618:s 6595:A 6573:n 6569:a 6540:n 6536:a 6509:s 6501:n 6497:a 6490:s 6468:n 6464:I 6457:s 6431:s 6408:N 6401:n 6397:) 6391:n 6387:I 6383:( 6363:A 6343:s 6314:A 6294:s 6273:N 6266:m 6246:s 6238:m 6234:b 6211:m 6207:I 6186:s 6166:s 6160:x 6154:s 6146:m 6142:b 6121:s 6115:x 6107:m 6103:a 6094:m 6090:b 6069:] 6064:m 6060:b 6056:, 6051:m 6047:a 6043:[ 6040:= 6035:m 6031:I 6010:s 6004:x 5984:A 5978:x 5958:A 5938:s 5914:s 5873:n 5869:m 5855:] 5849:n 5845:b 5841:, 5836:n 5832:m 5827:[ 5819:A 5807:n 5803:m 5789:] 5783:n 5779:m 5775:, 5770:n 5766:a 5761:[ 5753:{ 5744:1 5741:+ 5738:n 5734:I 5708:2 5702:n 5698:b 5694:+ 5689:n 5685:a 5673:n 5669:m 5647:N 5640:n 5620:] 5615:n 5611:b 5607:, 5602:n 5598:a 5594:[ 5591:= 5586:n 5582:I 5561:A 5539:1 5535:b 5514:A 5508:c 5488:1 5482:c 5479:= 5474:1 5470:a 5447:1 5443:a 5430:. 5417:N 5410:n 5390:A 5368:n 5364:a 5341:N 5334:n 5314:A 5292:n 5288:b 5264:] 5259:n 5255:b 5251:, 5246:n 5242:a 5238:[ 5235:= 5230:n 5226:I 5202:N 5195:n 5191:) 5185:n 5181:I 5177:( 5156:R 5149:A 5119:R 5112:A 5082:R 5075:B 5055:) 5052:B 5049:( 5024:s 4995:x 4991:: 4988:A 4982:x 4975:: 4972:s 4943:A 4923:s 4902:s 4896:x 4892:: 4889:A 4883:x 4860:A 4840:s 4815:A 4793:) 4790:A 4787:( 4781:= 4778:s 4758:A 4752:x 4732:b 4726:x 4706:b 4685:R 4678:A 4643:k 4638:n 4634:m 4613:n 4591:n 4587:m 4566:y 4546:x 4526:k 4504:k 4500:y 4496:= 4493:x 4473:0 4467:y 4445:j 4441:/ 4437:1 4433:x 4429:= 4423:j 4419:x 4414:= 4411:y 4391:0 4385:x 4382:, 4378:N 4371:j 4367:, 4362:j 4358:y 4354:= 4351:x 4276:n 4272:I 4265:N 4258:n 4204:x 4184:x 4163:N 4156:n 4135:| 4131:y 4125:x 4121:| 4113:| 4107:n 4103:I 4098:| 4070:| 4066:y 4060:x 4056:| 4035:y 4029:x 4007:n 4003:I 3996:N 3989:n 3978:y 3975:, 3972:x 3946:x 3923:N 3916:n 3912:) 3906:n 3902:I 3898:( 3881:. 3867:n 3863:I 3856:N 3849:n 3838:x 3834:: 3830:R 3823:x 3795:n 3791:I 3767:N 3760:n 3756:) 3750:n 3746:I 3742:( 3695:| 3689:n 3685:I 3680:| 3659:N 3653:n 3613:N 3593:0 3574:. 3555:| 3549:N 3545:I 3540:| 3534:: 3530:N 3523:N 3516:0 3483:n 3479:I 3470:1 3467:+ 3464:n 3460:I 3454:: 3450:N 3443:n 3409:N 3402:n 3398:) 3392:n 3388:I 3384:( 3362:n 3358:a 3349:n 3345:b 3337:| 3331:n 3327:I 3322:| 3301:] 3296:n 3292:b 3288:, 3283:n 3279:a 3275:[ 3272:= 3267:n 3263:I 3239:N 3232:n 3228:) 3222:n 3218:I 3214:( 3201:] 3147:+ 3126:R 3034:( 2957:7 2953:/ 2926:7 2879:6 2859:n 2839:n 2836:2 2785:1 2771:Ď€ 2734:x 2706:n 2702:c 2679:x 2657:x 2649:2 2645:k 2624:] 2621:k 2618:, 2615:0 2612:[ 2609:= 2604:1 2600:I 2578:] 2572:n 2568:c 2564:, 2557:n 2553:c 2549:x 2543:[ 2534:1 2531:+ 2528:n 2524:I 2511:. 2498:) 2490:n 2486:c 2482:x 2477:+ 2472:n 2468:c 2463:( 2454:2 2451:1 2441:1 2438:+ 2435:n 2431:c 2404:N 2397:n 2393:) 2387:n 2383:c 2379:( 2359:0 2353:x 2331:x 2237:= 2168:] 2162:, 2156:[ 2153:= 2148:5 2144:I 2122:= 2117:2 2112:5 2108:m 2092:= 2086:2 2079:+ 2069:= 2060:5 2056:m 2048:] 2042:, 2036:[ 2033:= 2028:5 2024:I 2002:= 1997:2 1992:4 1988:m 1972:= 1966:2 1959:+ 1956:4 1949:= 1940:4 1936:m 1928:] 1922:, 1919:4 1916:[ 1913:= 1908:4 1904:I 1882:= 1877:2 1872:3 1868:m 1852:= 1846:2 1842:5 1839:+ 1836:4 1829:= 1820:3 1816:m 1808:] 1805:5 1802:, 1799:4 1796:[ 1793:= 1788:3 1784:I 1762:= 1757:2 1752:2 1748:m 1735:4 1732:= 1726:2 1722:5 1719:+ 1716:3 1709:= 1700:2 1696:m 1688:] 1685:5 1682:, 1679:3 1676:[ 1673:= 1668:2 1664:I 1645:9 1642:= 1637:2 1632:1 1628:m 1615:3 1612:= 1606:2 1602:5 1599:+ 1596:1 1589:= 1580:1 1576:m 1523:] 1520:5 1517:, 1514:1 1511:[ 1503:1 1499:I 1476:2 1472:5 1457:2 1453:1 1396:y 1392:/ 1388:1 1382:x 1362:1 1356:y 1352:/ 1348:1 1328:1 1322:y 1316:0 1294:y 1267:x 1244:| 1238:n 1234:I 1229:| 1206:1 1203:+ 1200:n 1196:I 1187:x 1163:1 1160:+ 1157:n 1153:I 1130:x 1106:x 1082:n 1078:I 1047:x 1039:2 1034:n 1030:m 1015:] 1009:n 1005:m 1001:, 996:n 992:a 987:[ 979:x 971:2 966:n 962:m 947:] 941:n 937:b 933:, 928:n 924:m 919:[ 911:{ 902:1 899:+ 896:n 892:I 866:1 862:I 839:n 835:I 812:2 806:n 802:b 798:+ 793:n 789:a 782:= 777:n 773:m 747:N 740:n 737:, 734:] 729:n 725:b 721:, 716:n 712:a 708:[ 705:= 700:n 696:I 672:] 669:k 666:, 663:1 660:[ 657:= 652:1 648:I 627:x 619:2 615:k 591:x 571:] 568:x 565:, 562:1 559:[ 556:= 551:1 547:I 526:x 518:x 510:1 490:1 484:x 435:N 428:n 406:n 402:I 366:( 329:n 325:b 316:1 313:+ 310:n 306:b 283:n 279:a 270:1 267:+ 264:n 260:a 237:n 233:I 208:N 163:n 159:I 136:1 133:+ 130:n 126:I 98:, 95:3 92:, 89:2 86:, 83:1 80:= 77:n 48:n 44:I

Index


mathematics
intervals
real number line
natural numbers
Babylonians
method for computing square roots
Archimedes
circle
circle number Pi
intersection
complete
field
algorithms
perfect square
recursively
reciprocal
Babylonian method
converges
Newton's method
Pi § Polygon approximation era
Diagram of a hexagon and pentagon circumscribed outside a circle
Archimedes of Syracuse
hexagons
Ludolph van Ceulen
calculus
differentiation
integration
computer science
Bisection method

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑