Knowledge

Neural accommodation

Source đź“ť

71:
Huxley created their physical model of action potential. Later in their life they received a Nobel Prize for their influential discoveries. Neuronal accommodation can be explained in two ways. "First, during the passage of a constant cathodal current through the membrane, the potassium conductance and the degree of inactivation will rise, both factors raising the threshold. Secondly, the steady state ionic current at all strengths of depolarization is outward, so that an applied cathodal current which rises sufficiently slowly will never evoke a regenerative response from the membrane, and excitation will not occur." (quote from Hodgkin and Huxley)
67:) and results in the rapid ascending phase of action potential. In parallel with the depolarisation and sodium channel activation, the inactivation process of the sodium channels is also driven by depolarisation. Since the inactivation is much slower than the activation process, during the regenerative phase of action potential, inactivation is unable to prevent the "chain reaction"-like rapid increase in the membrane voltage. 70:
During neuronal accommodation, the slowly rising depolarisation drives the activation and inactivation, as well as the potassium gates simultaneously and never evokes action potential. Failure to evoke action potential by ramp depolarisation of any strength had been a great puzzle until Hodgkin and
620:
A computational neuroscience source code database containing 4 versions (in different simulators) of the original Hodgkin–Huxley model and hundreds of models that apply the Hodgkin–Huxley model to other channels in many electrically excitable cell
77:
physiologic condition accommodation breaks down, that is long-duration slowly rising current excites nerve fibers at a nearly constant intensity no matter how slowly this intensity is approached.
63:
to flow into the cell and resulting in further depolarisation, which will subsequently open even more sodium channels. At a certain moment this process becomes regenerative (
169:
Vallbo, A. B. (1964). "Accommodation Related to Inactivation of the Sodium Permeability in Single Myelinated Nerve Fibres from Xenopus Laevis".
649: 612: 603: 353:
Parameters of the model can be changed as well as excitation parameters and phase space plottings of all the variables is possible.
639: 634: 48: 599: 360: 101: 40: 556:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 201:"A quantitative description of membrane current and its application to conduction and excitation in nerve" 96: 644: 608: 86: 364: 418:"Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo" 59:
if the depolarisation is strong enough to reach threshold. The open sodium channels allow more
587: 541: 495: 449: 403: 330: 281: 230: 178: 151: 577: 567: 531: 521: 485: 475: 439: 429: 393: 383: 320: 312: 271: 261: 220: 212: 141: 133: 91: 44: 52: 510:"The dual effect of membrane potential on sodium conductance in the giant axon of Loligo" 582: 555: 536: 509: 490: 463: 444: 417: 398: 371: 325: 300: 276: 249: 225: 200: 146: 121: 372:"Measurement of current-voltage relations in the membrane of the giant axon of Loligo" 356: 628: 122:"On the rate of variation of the exciting current as a factor in electric excitation" 64: 56: 32: 301:"Depolarization changes the mechanism of accommodation in rat and human motor axons" 250:"Breakdown of accommodation in nerve: A possible role for persistent sodium current" 572: 526: 480: 434: 388: 316: 216: 137: 60: 43:
also shows accommodation. Sudden depolarisation of a nerve evokes propagated
591: 545: 499: 453: 407: 285: 266: 234: 182: 155: 350: 334: 617: 28: 24: 464:"The components of membrane conductance in the giant axon of Loligo" 248:
Hennings, K.; Arendt-Nielsen, L.; Andersen, O. K. (2005).
596:
Direct link to Hodgkin-Huxley paper #5 via PubMedCentral
550:
Direct link to Hodgkin-Huxley paper #4 via PubMedCentral
504:
Direct link to Hodgkin-Huxley paper #3 via PubMedCentral
458:
Direct link to Hodgkin-Huxley paper #2 via PubMedCentral
412:
Direct link to Hodgkin-Huxley paper #1 via PubMedCentral
370:
Hodgkin, A. L.; Huxley, A. F.; Katz, B. (April 1952).
600:Neural Impulses: The Action Potential In Action 31:cell is depolarised by slowly rising current ( 554:Hodgkin, A. L.; Huxley, A. F. (August 1952). 8: 508:Hodgkin, A. L.; Huxley, A. F. (April 1952). 462:Hodgkin, A. L.; Huxley, A. F. (April 1952). 416:Hodgkin, A. L.; Huxley, A. F. (April 1952). 581: 571: 535: 525: 489: 479: 443: 433: 397: 387: 324: 275: 265: 254:Theoretical Biology and Medical Modelling 224: 145: 351:Interactive Java applet of the HH model 112: 199:Hodgkin, A. L.; Huxley, A. F. (1952). 7: 194: 192: 357:Direct link to Hodgkin-Huxley model 613:The Wolfram Demonstrations Project 604:The Wolfram Demonstrations Project 14: 609:Interactive Hodgkin-Huxley model 299:Baker, M.; Bostock, H. (1989). 573:10.1113/jphysiol.1952.sp004764 527:10.1113/jphysiol.1952.sp004719 481:10.1113/jphysiol.1952.sp004718 435:10.1113/jphysiol.1952.sp004717 389:10.1113/jphysiol.1952.sp004716 317:10.1113/jphysiol.1989.sp017589 217:10.1113/jphysiol.1952.sp004764 171:Acta Physiologica Scandinavica 138:10.1113/jphysiol.1907.sp001231 1: 666: 650:Computational neuroscience 560:The Journal of Physiology 514:The Journal of Physiology 468:The Journal of Physiology 422:The Journal of Physiology 376:The Journal of Physiology 305:The Journal of Physiology 205:The Journal of Physiology 126:The Journal of Physiology 267:10.1186/1742-4682-2-16 97:Anode break excitation 21:neuronal accommodation 102:Hodgkin–Huxley model 55:incorporated in the 41:Hodgkin–Huxley model 17:Neural accommodation 87:Accommodation index 33:ramp depolarisation 602:by Garrett Neske, 365:BioModels Database 120:Lucas, K. (1907). 640:Electrophysiology 635:Nonlinear systems 611:by Shimon Marom, 657: 595: 585: 575: 549: 539: 529: 503: 493: 483: 457: 447: 437: 411: 401: 391: 339: 338: 328: 296: 290: 289: 279: 269: 245: 239: 238: 228: 196: 187: 186: 166: 160: 159: 149: 132:(4–5): 253–274. 117: 92:Action potential 45:action potential 665: 664: 660: 659: 658: 656: 655: 654: 625: 624: 553: 507: 461: 415: 369: 347: 342: 298: 297: 293: 247: 246: 242: 198: 197: 190: 168: 167: 163: 119: 118: 114: 110: 83: 53:sodium channels 12: 11: 5: 663: 661: 653: 652: 647: 642: 637: 627: 626: 623: 622: 615: 606: 597: 551: 520:(4): 497–506. 505: 459: 413: 367: 354: 346: 345:External links 343: 341: 340: 291: 240: 211:(4): 500–544. 188: 161: 111: 109: 106: 105: 104: 99: 94: 89: 82: 79: 47:by activating 23:occurs when a 13: 10: 9: 6: 4: 3: 2: 662: 651: 648: 646: 643: 641: 638: 636: 633: 632: 630: 619: 616: 614: 610: 607: 605: 601: 598: 593: 589: 584: 579: 574: 569: 566:(4): 500–44. 565: 561: 557: 552: 547: 543: 538: 533: 528: 523: 519: 515: 511: 506: 501: 497: 492: 487: 482: 477: 474:(4): 473–96. 473: 469: 465: 460: 455: 451: 446: 441: 436: 431: 428:(4): 449–72. 427: 423: 419: 414: 409: 405: 400: 395: 390: 385: 382:(4): 424–48. 381: 377: 373: 368: 366: 362: 358: 355: 352: 349: 348: 344: 336: 332: 327: 322: 318: 314: 310: 306: 302: 295: 292: 287: 283: 278: 273: 268: 263: 259: 255: 251: 244: 241: 236: 232: 227: 222: 218: 214: 210: 206: 202: 195: 193: 189: 184: 180: 176: 172: 165: 162: 157: 153: 148: 143: 139: 135: 131: 127: 123: 116: 113: 107: 103: 100: 98: 95: 93: 90: 88: 85: 84: 80: 78: 76: 72: 68: 66: 65:vicious cycle 62: 58: 57:cell membrane 54: 50: 49:voltage-gated 46: 42: 38: 34: 30: 26: 22: 18: 645:Ion channels 563: 559: 517: 513: 471: 467: 425: 421: 379: 375: 308: 304: 294: 257: 253: 243: 208: 204: 174: 170: 164: 129: 125: 115: 74: 73: 69: 36: 20: 16: 15: 361:Description 311:: 545–561. 177:: 429–444. 61:sodium ions 629:Categories 108:References 592:12991237 546:14946715 500:14946714 454:14946713 408:14946712 286:15826303 235:12991237 183:14209259 156:16992906 81:See also 37:in vitro 618:ModelDB 583:1392413 537:1392212 491:1392209 445:1392213 399:1392219 335:2614732 326:1190540 277:1090618 226:1392413 147:1533589 75:In vivo 621:types. 590:  580:  544:  534:  498:  488:  452:  442:  406:  396:  359:and a 333:  323:  284:  274:  260:: 16. 233:  223:  181:  154:  144:  39:. The 29:muscle 25:neuron 51:fast 588:PMID 542:PMID 496:PMID 450:PMID 404:PMID 331:PMID 282:PMID 231:PMID 179:PMID 152:PMID 578:PMC 568:doi 564:117 532:PMC 522:doi 518:116 486:PMC 476:doi 472:116 440:PMC 430:doi 426:116 394:PMC 384:doi 380:116 363:in 321:PMC 313:doi 309:411 272:PMC 262:doi 221:PMC 213:doi 209:117 142:PMC 134:doi 27:or 19:or 631:: 586:. 576:. 562:. 558:. 540:. 530:. 516:. 512:. 494:. 484:. 470:. 466:. 448:. 438:. 424:. 420:. 402:. 392:. 378:. 374:. 329:. 319:. 307:. 303:. 280:. 270:. 256:. 252:. 229:. 219:. 207:. 203:. 191:^ 175:61 173:. 150:. 140:. 130:36 128:. 124:. 35:) 594:. 570:: 548:. 524:: 502:. 478:: 456:. 432:: 410:. 386:: 337:. 315:: 288:. 264:: 258:2 237:. 215:: 185:. 158:. 136::

Index

neuron
muscle
ramp depolarisation
Hodgkin–Huxley model
action potential
voltage-gated
sodium channels
cell membrane
sodium ions
vicious cycle
Accommodation index
Action potential
Anode break excitation
Hodgkin–Huxley model
"On the rate of variation of the exciting current as a factor in electric excitation"
doi
10.1113/jphysiol.1907.sp001231
PMC
1533589
PMID
16992906
PMID
14209259


"A quantitative description of membrane current and its application to conduction and excitation in nerve"
doi
10.1113/jphysiol.1952.sp004764
PMC
1392413

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑