Knowledge

Neural circuit reconstruction

Source đź“ť

174:
Connectomes of higher organism's brains requires considerable data. For the fruit fly, for example, roughly 10 terabytes of image data are processed, by humans and computers, to generate several gigabyte of connectome data. Easy interaction with this data requires an interactive query interface,
150:, released in 2021, is a 1.4 petabyte volume of a small sample of human brain tissue imaged at nanoscale-resolution by serial section electron microscopy, reconstructed and annotated by automated computational techniques, and analyzed for preliminary insights into the structure of human cortex. 115:. The second techniques uses computer vision software to identify voxels belonging to the same neuron. The second technique uses Machine Learning software to identify voxels belonging to the same neuron. Popular approaches are U-Net architectures to predict voxel-wise affinities paired with a 119:
segmentation and flood-filling networks. These approaches produce an over-segmentation which can be manually or automatically agglomerated to correctly represent a neuron. Even for automatically agglomerated segmentations, large manual proofreading efforts are employed for highest accuracy.
135:
was the seminal work in this field. This circuit was obtained with great effort using manually cut sections and purely manual annotation on photographic film. For many years this was the only circuit reconstruction
691:
Loomba, Sahil; Straehle, Jakob; Gangadharan, Vijayan; Heike, Natalie; Khalifa, Abdelrahman; Motta, Alessandro; Ju, Niansheng; Sievers, Meike; Gempt, Jens; Meyer, Hanno S.; Helmstaedter, Moritz (2022-07-08).
175:
where researchers can look at the portion of data they are interested in without downloading the whole data set, and without specific training. A specific example of this technology is the
546:
Januszewski, Michał; Kornfeld, Jörgen; Li, Peter H.; Pope, Art; Blakely, Tim; Lindsey, Larry; Maitin-Shepard, Jeremy; Tyka, Mike; Denk, Winfried; Jain, Viren (August 2018).
522: 632: 508: 661:
Shapson-Coe, Alexander; Januszewski, Michał; Berger, Daniel R.; Pope, Art; Wu, Yuelong; Blakely, Tim; Schalek, Richard L.; Li, Peter H.; Wang, Shuohong (2021-11-25),
274:
Bock, Davi D.; Lee, Wei-Chung Allen; Kerlin, Aaron M.; Andermann, Mark L.; Hood, Greg; Wetzel, Arthur W.; Yurgenson, Sergey; Soucy, Edward R.; et al. (2011).
231:
Chklovskii, Dmitri B; Vitaladevuni, Shiv; Scheffer, Louis K (2010). "Semi-automated reconstruction of neural circuits using electron microscopy".
153:
In their 2022 study “Connectomic comparison of mouse and human cortex”, the researchers reconstructed 9 connectomes across species: Datasets of
207:
can diffuse across large distances and still strongly affect function. Currently these features must be obtained through other techniques.
100:, or trimmed using an in-microscope microtome. Then the sample is re-imaged, and the process repeated until the desired volume is processed. 396: 179:
interface to the connectomes generate at HHMI. This mimics the infrastructure of genetics, where interactive query tools such as
89: 116: 93: 183:
are normally used to look at genes of interest, which for most research comprise only a small portion of the genome.
807: 111:
The volume is then annotated using one of two main methods. The first manually identifies the skeletons of each
200: 797: 131: 64: 802: 626: 502: 180: 523:"Large Scale Image Segmentation with Structured Loss based Deep Learning for Connectome Reconstruction" 351: 287: 208: 143:
was released in 2020. This data release introduced the first on-line tools to query the connectome.
32: 28: 389:
Principles and techniques of scanning electron microscopy. Biological applications, fourth edition
614: 441: 256: 768: 713: 662: 606: 567: 490: 433: 392: 369: 313: 248: 191:
Understanding the detailed operation of the reconstructed networks also requires knowledge of
758: 705: 668: 598: 559: 480: 472: 425: 359: 335: 303: 295: 240: 196: 97: 108:
The first step is to align the individual images into a coherent three dimensional volume.
147: 355: 291: 792: 485: 460: 308: 275: 204: 20: 693: 786: 618: 260: 192: 586: 547: 476: 445: 40: 36: 459:
Saalfeld, Stephan, Albert Cardona, Volker Hartenstein, and Pavel Tomančák (2009).
548:"High-precision automated reconstruction of neurons with flood-filling networks" 602: 429: 244: 672: 563: 52: 717: 571: 461:"CATMAID: collaborative annotation toolkit for massive amounts of image data" 709: 587:"Semi-automated reconstruction of neural circuits using electron microscopy" 340:"The structure of the nervous system of the nematode Caenorhabditis elegans" 85: 772: 763: 746: 647: 610: 494: 437: 373: 364: 339: 317: 252: 23:(or a portion of the nervous system) of an animal. It is sometimes called 585:
Chklovskii, Dmitri B., Shiv Vitaladevuni, and Louis K. Scheffer. (2010).
60: 299: 112: 664:
A connectomic study of a petascale fragment of human cerebral cortex
413: 276:"Network anatomy and in vivo physiology of visual cortical neurons" 747:"Beyond the connectome: how neuromodulators shape neural circuits" 56: 51:
Some of the model systems used for circuit reconstruction are the
731: 414:"Volume electron microscopy for neuronal circuit reconstruction" 76:
The sample must be fixed, stained, and embedded in plastic.
162: 158: 154: 195:(hard to see with existing techniques), the identity of 19:
is the reconstruction of the detailed circuitry of the
35:of human-made devices, and is part of the field of 694:"Connectomic comparison of mouse and human cortex" 92:. Alternatively, the sample may be imaged with a 338:; Nichol Thomson, J.; Brenner, Sydney (1986). 226: 224: 84:The sample may be cut into thin slices with a 8: 631:: CS1 maint: multiple names: authors list ( 507:: CS1 maint: multiple names: authors list ( 762: 484: 412:Briggman, Kevin L.; Davi D. Bock (2012). 363: 307: 31:(EM). This field is a close relative of 648:"Connectomes: Mapping the mind of a fly" 329: 327: 220: 624: 500: 7: 199:and the locations and identities of 211:may provide an alternative method. 139:The central brain of the fruit fly 96:, then the surface abraded using a 734:. Howard Hughes Medical Institute. 344:Philos Trans R Soc Lond B Biol Sci 39:, which in turn is a sub-field of 27:since the main method used is the 14: 732:"Analysis tools for connectomics" 90:transmission electron microscopy 591:Current Opinion in Neurobiology 418:Current Opinion in Neurobiology 233:Current Opinion in Neurobiology 745:Bargmann, Cornelia I. (2012). 391:. Cambridge University Press. 1: 477:10.1093/bioinformatics/btp266 17:Neural circuit reconstruction 646:Jason Pipkin (Oct 8, 2020). 94:scanning electron microscope 187:Limitations and future work 824: 603:10.1016/j.conb.2010.08.002 430:10.1016/j.conb.2011.10.022 245:10.1016/j.conb.2010.08.002 673:10.1101/2021.05.29.446289 564:10.1038/s41592-018-0049-4 710:10.1126/science.abo0924 387:Hayat, M. Arif (2000). 170:Querying the connectome 141:Drosophila Melanogaster 764:10.1002/bies.201100185 365:10.1098/rstb.1986.0056 209:Expansion microscopy 88:, then imaged using 356:1986RSPTB.314....1W 300:10.1038/nature09802 292:2011Natur.471..177B 33:reverse engineering 29:electron microscope 527:scholar.google.com 129:The connectome of 72:Sample preparation 650:. Elife Sciences. 471:(15): 1984–1986. 336:Southgate, Eileen 197:neurotransmitters 146:The Human Cortex 25:EM reconstruction 815: 808:Neuroinformatics 777: 776: 766: 742: 736: 735: 728: 722: 721: 688: 682: 681: 680: 679: 658: 652: 651: 643: 637: 636: 630: 622: 582: 576: 575: 543: 537: 536: 534: 533: 519: 513: 512: 506: 498: 488: 456: 450: 449: 409: 403: 402: 384: 378: 377: 367: 334:White, John G.; 331: 322: 321: 311: 286:(7337): 177–82. 271: 265: 264: 228: 203:. In addition, 124:Notable examples 104:Image processing 98:focused ion beam 823: 822: 818: 817: 816: 814: 813: 812: 783: 782: 781: 780: 744: 743: 739: 730: 729: 725: 690: 689: 685: 677: 675: 660: 659: 655: 645: 644: 640: 623: 584: 583: 579: 545: 544: 540: 531: 529: 521: 520: 516: 499: 458: 457: 453: 411: 410: 406: 399: 386: 385: 381: 350:(1165): 1–340. 333: 332: 325: 273: 272: 268: 230: 229: 222: 217: 205:neuromodulators 189: 172: 126: 106: 82: 74: 49: 12: 11: 5: 821: 819: 811: 810: 805: 800: 795: 785: 784: 779: 778: 757:(6): 458–465. 737: 723: 683: 653: 638: 597:(5): 667–675. 577: 558:(8): 605–610. 552:Nature Methods 538: 514: 465:Bioinformatics 451: 424:(1): 154–161. 404: 398:978-0521632874 397: 379: 323: 266: 219: 218: 216: 213: 188: 185: 171: 168: 167: 166: 151: 144: 137: 125: 122: 105: 102: 81: 78: 73: 70: 48: 45: 21:nervous system 13: 10: 9: 6: 4: 3: 2: 820: 809: 806: 804: 801: 799: 798:Neural coding 796: 794: 791: 790: 788: 774: 770: 765: 760: 756: 752: 748: 741: 738: 733: 727: 724: 719: 715: 711: 707: 703: 699: 695: 687: 684: 674: 670: 666: 665: 657: 654: 649: 642: 639: 634: 628: 620: 616: 612: 608: 604: 600: 596: 592: 588: 581: 578: 573: 569: 565: 561: 557: 553: 549: 542: 539: 528: 524: 518: 515: 510: 504: 496: 492: 487: 482: 478: 474: 470: 466: 462: 455: 452: 447: 443: 439: 435: 431: 427: 423: 419: 415: 408: 405: 400: 394: 390: 383: 380: 375: 371: 366: 361: 357: 353: 349: 345: 341: 337: 330: 328: 324: 319: 315: 310: 305: 301: 297: 293: 289: 285: 281: 277: 270: 267: 262: 258: 254: 250: 246: 242: 239:(5): 667–75. 238: 234: 227: 225: 221: 214: 212: 210: 206: 202: 198: 194: 193:gap junctions 186: 184: 182: 178: 169: 164: 160: 156: 152: 149: 145: 142: 138: 134: 133: 128: 127: 123: 121: 118: 114: 109: 103: 101: 99: 95: 91: 87: 79: 77: 71: 69: 67: 66: 62: 58: 54: 47:Model systems 46: 44: 42: 38: 34: 30: 26: 22: 18: 803:Neuroimaging 754: 750: 740: 726: 701: 697: 686: 676:, retrieved 663: 656: 641: 627:cite journal 594: 590: 580: 555: 551: 541: 530:. Retrieved 526: 517: 503:cite journal 468: 464: 454: 421: 417: 407: 388: 382: 347: 343: 283: 279: 269: 236: 232: 190: 176: 173: 140: 130: 110: 107: 83: 75: 63: 50: 41:neuroanatomy 37:connectomics 24: 16: 15: 787:Categories 678:2024-02-14 532:2024-02-14 215:References 136:available. 132:C. elegans 65:C. elegans 59:, and the 751:BioEssays 718:0036-8075 619:206950616 572:1548-7105 261:206950616 201:receptors 117:watershed 86:microtome 53:fruit fly 773:22396302 704:(6602). 611:20833533 495:19376822 446:22657332 438:22119321 374:22462104 318:21390124 253:20833533 177:NeuPrint 61:nematode 698:Science 486:2712332 352:Bibcode 309:3095821 288:Bibcode 159:Macaque 113:neurite 80:Imaging 771:  716:  617:  609:  570:  493:  483:  444:  436:  395:  372:  316:  306:  280:Nature 259:  251:  55:, the 793:Brain 615:S2CID 442:S2CID 257:S2CID 181:BLAST 163:Human 155:Mouse 57:mouse 769:PMID 714:ISSN 633:link 607:PMID 568:ISSN 509:link 491:PMID 434:PMID 393:ISBN 370:PMID 314:PMID 249:PMID 161:and 759:doi 706:doi 702:377 669:doi 599:doi 560:doi 481:PMC 473:doi 426:doi 360:doi 348:314 304:PMC 296:doi 284:471 241:doi 148:H01 789:: 767:. 755:34 753:. 749:. 712:. 700:. 696:. 667:, 629:}} 625:{{ 613:. 605:. 595:20 593:. 589:. 566:. 556:15 554:. 550:. 525:. 505:}} 501:{{ 489:. 479:. 469:25 467:. 463:. 440:. 432:. 422:22 420:. 416:. 368:. 358:. 346:. 342:. 326:^ 312:. 302:. 294:. 282:. 278:. 255:. 247:. 237:20 235:. 223:^ 157:, 68:. 43:. 775:. 761:: 720:. 708:: 671:: 635:) 621:. 601:: 574:. 562:: 535:. 511:) 497:. 475:: 448:. 428:: 401:. 376:. 362:: 354:: 320:. 298:: 290:: 263:. 243:: 165:.

Index

nervous system
electron microscope
reverse engineering
connectomics
neuroanatomy
fruit fly
mouse
nematode
C. elegans
microtome
transmission electron microscopy
scanning electron microscope
focused ion beam
neurite
watershed
C. elegans
H01
Mouse
Macaque
Human
BLAST
gap junctions
neurotransmitters
receptors
neuromodulators
Expansion microscopy


doi
10.1016/j.conb.2010.08.002

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑