Knowledge (XXG)

Neutron reflectometry

Source 📝

124: 22: 784:
that is general to scattering techniques. Finally, neutrons are highly penetrating and typically non-perturbing: which allows for great flexibility in sample environments, and the use of delicate sample materials (e.g., biological specimens). By contrast x-ray exposure may damage some materials, and
763:
Although other reflectivity techniques (in particular optical reflectivity, x-ray reflectometry) operate using the same general principles, neutron measurements are advantageous in a few significant ways. Most notably, since the technique probes nuclear contrast, rather than electron density, it is
504:
onto an extremely flat surface and measuring the intensity of reflected radiation as a function of angle or neutron wavelength. The exact shape of the reflectivity profile provides detailed information about the structure of the surface, including the thickness, density, and roughness of any thin
706:
Off-specular reflectometry gives rise to diffuse scattering and involves momentum transfer within the layer, and is used to determine lateral correlations within the layers, such as those arising from magnetic domains or in-plane correlated roughness.
780:, etc.). Sensitivity to isotopes also allows contrast to be greatly (and selectively) enhanced for some systems of interest using isotopic substitution, and multiple experiments that differ only by isotopic substitution can be used to resolve the 817:
upon exposure to the beam, and insensitivity to the chemical state of constituent atoms. Moreover, the relatively lower flux and higher background of the technique (when compared to x-ray reflectivity) limit the maximum value of
738:
techniques, neutron reflectometry is sensitive to contrast arising from different nuclei (as compared to electron density, which is measured in x-ray scattering). This allows the technique to differentiate between various
805:
is one optical method which provides analogous results to neutron reflectometry at comparable resolution although the underpinning mathematical model is somewhat simpler, i.e. it can only derive a thickness (or
650: 673: 192: 697: 843: 547: 429: 361: 587: 567: 589:-component. A typical neutron reflectometry plot displays the reflected intensity (relative to the incident beam) as a function of the scattering vector: 32: 251: 351: 461:. The technique provides valuable information over a wide variety of scientific and technological applications including chemical aggregation, 383: 512:
mode, where the angle of the incident beam is equal to the angle of the reflected beam. The reflection is usually described in terms of a
422: 813:
Disadvantages of neutron reflectometry include the higher cost of the required infrastructure, the fact that some materials may become
870: 337: 271: 214: 90: 595: 62: 802: 569:
direction is defined to be the direction normal to the surface, and for specular reflection, the scattering vector has only a
415: 209: 187: 69: 47: 393: 379: 204: 76: 908: 247: 375: 403: 58: 748: 345: 333: 367: 549:, which describes the change in momentum of a neutron after reflecting from the material. Conventionally the 700: 481: 387: 261: 219: 156: 731: 266: 509: 446: 182: 138: 83: 703:
or the Parratt recursion can be used to calculate the specular signal arising from the interface.
735: 519: 485: 454: 323: 257: 242: 173: 164: 160: 866: 658: 516: 314: 305: 299: 224: 151: 147: 682: 744: 723: 710:
The wavelength of the neutrons used for reflectivity are typically on the order of 0.2 to 1
291: 821: 525: 123: 888: 719: 715: 572: 552: 287: 902: 865:. Lecture Notes in Physics. Vol. 770. Berlin Heidelberg: Springer. p. 183. 807: 798: 781: 893: 39: 480:
Neutron reflectometery emerged as a new field in the 1980s, after the discovery of
458: 143: 397: 814: 790: 309: 21: 794: 727: 676: 497: 469: 466: 450: 295: 711: 773: 765: 764:
more sensitive for measuring some elements, especially lighter elements (
740: 513: 501: 752: 462: 115: 472:, structure of thin film magnetic systems, biological membranes, etc. 777: 769: 371: 357: 786: 793:). Also, optical techniques may include ambiguity due to optical 751:
density (SLD) and can be used to accurately calculate material
15: 894:
Catalogue of data analysis software at www.reflectometry.net
889:
Catalogue of neutron reflectometers at www.reflectometry.net
645:{\displaystyle q_{z}={\frac {4\pi }{\lambda }}\sin(\theta )} 341: 845:
that can be probed (and hence the measurement resolution).
801:), which complementary neutron measurements can resolve. 43: 824: 685: 661: 598: 575: 555: 528: 453:, similar to the often complementary techniques of 837: 691: 667: 644: 581: 561: 541: 423: 8: 861:Dalliant, Jean; Gibaud, Alain, eds. (2009). 759:Comparison to other reflectometry techniques 508:Neutron reflectometry is most often made in 48:introducing citations to additional sources 430: 416: 110: 829: 823: 684: 660: 612: 603: 597: 574: 554: 533: 527: 449:technique for measuring the structure of 496:The technique involves shining a highly 38:Relevant discussion may be found on the 853: 322: 279: 234: 172: 130: 113: 789:light can modify some materials (e.g. 747:. Neutron reflectometry measures the 7: 755:if the atomic composition is known. 256:Fundamental research with neutrons: 14: 803:Dual polarisation interferometry 505:films layered on the substrate. 252:Prompt gamma activation analysis 122: 31:relies largely or entirely on a 20: 810:) for a uniform layer density. 699:is the angle of incidence. The 863:X-ray and Neutron Reflectivity 639: 633: 188:Small-angle neutron scattering 1: 718:). This technique requires a 488:-coupled multilayered films. 380:ISIS Neutron and Muon Source 205:Inelastic neutron scattering 220:Backscattering spectrometer 215:Time-of-flight spectrometer 925: 749:neutron scattering length 722:, which may be either a 668:{\displaystyle \lambda } 210:Triple-axis spectrometer 701:Abeles matrix formalism 692:{\displaystyle \theta } 482:giant magnetoresistance 272:Neutron capture therapy 59:"Neutron reflectometry" 839: 693: 669: 646: 583: 563: 543: 225:Spin-echo spectrometer 840: 838:{\displaystyle q_{z}} 694: 670: 647: 584: 564: 544: 542:{\displaystyle q_{z}} 486:antiferromagnetically 443:Neutron reflectometry 822: 732:particle accelerator 683: 659: 596: 573: 553: 526: 402:Under construction: 267:Fast neutron therapy 44:improve this article 730:source (based on a 510:specular reflection 447:neutron diffraction 248:Activation analysis 183:Neutron diffraction 139:Neutron temperature 909:Neutron scattering 835: 736:neutron scattering 689: 665: 642: 579: 559: 539: 455:X-ray reflectivity 324:Neutron facilities 258:Ultracold neutrons 243:Neutron tomography 235:Other applications 174:Neutron scattering 625: 582:{\displaystyle z} 562:{\displaystyle z} 440: 439: 300:Neutron moderator 109: 108: 94: 916: 877: 876: 858: 844: 842: 841: 836: 834: 833: 724:research reactor 698: 696: 695: 690: 674: 672: 671: 666: 651: 649: 648: 643: 626: 621: 613: 608: 607: 588: 586: 585: 580: 568: 566: 565: 560: 548: 546: 545: 540: 538: 537: 432: 425: 418: 304:Neutron optics: 292:Research reactor 126: 111: 104: 101: 95: 93: 52: 24: 16: 924: 923: 919: 918: 917: 915: 914: 913: 899: 898: 885: 880: 873: 860: 859: 855: 851: 825: 820: 819: 761: 681: 680: 675:is the neutron 657: 656: 614: 599: 594: 593: 571: 570: 551: 550: 529: 524: 523: 494: 478: 436: 288:Neutron sources 105: 99: 96: 53: 51: 37: 25: 12: 11: 5: 922: 920: 912: 911: 901: 900: 897: 896: 891: 884: 883:External links 881: 879: 878: 871: 852: 850: 847: 832: 828: 760: 757: 720:neutron source 688: 664: 653: 652: 641: 638: 635: 632: 629: 624: 620: 617: 611: 606: 602: 578: 558: 536: 532: 493: 490: 477: 474: 438: 437: 435: 434: 427: 420: 412: 409: 408: 407: 406: 400: 390: 364: 354: 348: 327: 326: 320: 319: 318: 317: 312: 302: 282: 281: 280:Infrastructure 277: 276: 275: 274: 269: 264: 262:Interferometry 254: 245: 237: 236: 232: 231: 230: 229: 228: 227: 222: 217: 212: 202: 201: 200: 195: 190: 177: 176: 170: 169: 168: 167: 154: 141: 133: 132: 128: 127: 119: 118: 107: 106: 42:. Please help 28: 26: 19: 13: 10: 9: 6: 4: 3: 2: 921: 910: 907: 906: 904: 895: 892: 890: 887: 886: 882: 874: 872:9783540885870 868: 864: 857: 854: 848: 846: 830: 826: 816: 811: 809: 808:birefringence 804: 800: 799:birefringence 796: 792: 788: 783: 782:phase problem 779: 775: 771: 767: 758: 756: 754: 750: 746: 742: 737: 733: 729: 725: 721: 717: 713: 708: 704: 702: 686: 678: 662: 636: 630: 627: 622: 618: 615: 609: 604: 600: 592: 591: 590: 576: 556: 534: 530: 521: 518: 515: 511: 506: 503: 499: 491: 489: 487: 483: 475: 473: 471: 468: 464: 460: 456: 452: 448: 444: 433: 428: 426: 421: 419: 414: 413: 411: 410: 405: 401: 399: 395: 391: 389: 385: 381: 377: 373: 369: 365: 363: 359: 355: 353: 349: 347: 343: 339: 335: 331: 330: 329: 328: 325: 321: 316: 313: 311: 307: 303: 301: 297: 293: 289: 286: 285: 284: 283: 278: 273: 270: 268: 265: 263: 259: 255: 253: 249: 246: 244: 241: 240: 239: 238: 233: 226: 223: 221: 218: 216: 213: 211: 208: 207: 206: 203: 199: 198:Reflectometry 196: 194: 191: 189: 186: 185: 184: 181: 180: 179: 178: 175: 171: 166: 162: 158: 157:Cross section 155: 153: 149: 145: 142: 140: 137: 136: 135: 134: 129: 125: 121: 120: 117: 114:Science with 112: 103: 92: 89: 85: 82: 78: 75: 71: 68: 64: 61: –  60: 56: 55:Find sources: 49: 45: 41: 35: 34: 33:single source 29:This article 27: 23: 18: 17: 862: 856: 812: 791:photoresists 762: 734:). Like all 709: 705: 654: 507: 495: 479: 459:ellipsometry 442: 441: 197: 100:October 2022 97: 87: 80: 73: 66: 54: 30: 815:radioactive 350:Australia: 310:Supermirror 131:Foundations 849:References 795:anisotropy 728:spallation 677:wavelength 522:, denoted 498:collimated 470:adsorption 467:surfactant 451:thin films 392:Historic: 332:America: 296:Spallation 165:Activation 161:Absorption 70:newspapers 714:(2 to 10 687:θ 663:λ 637:θ 631:⁡ 623:λ 619:π 492:Technique 315:Detection 306:Reflector 152:Transport 148:Radiation 40:talk page 903:Category 774:nitrogen 766:hydrogen 745:elements 741:isotopes 517:transfer 514:momentum 502:neutrons 500:beam of 366:Europe: 342:NIST CNR 116:neutrons 753:density 476:History 463:polymer 84:scholar 869:  778:oxygen 770:carbon 679:, and 655:where 520:vector 372:FRM II 368:BER II 362:HANARO 358:J-PARC 356:Asia: 338:LANSCE 193:GISANS 86:  79:  72:  65:  57:  787:laser 726:or a 445:is a 91:JSTOR 77:books 867:ISBN 465:and 457:and 398:HFBR 394:IPNS 388:SINQ 384:JINR 352:OPAL 334:HFIR 144:Flux 63:news 743:of 628:sin 484:in 404:ESS 376:ILL 346:SNS 46:by 905:: 776:, 772:, 768:, 712:nm 396:, 386:, 382:, 378:, 374:, 370:, 360:, 340:, 336:, 308:, 298:, 294:, 290:: 260:, 250:, 163:, 159:, 150:, 146:, 875:. 831:z 827:q 797:( 716:Å 640:) 634:( 616:4 610:= 605:z 601:q 577:z 557:z 535:z 531:q 431:e 424:t 417:v 344:- 102:) 98:( 88:· 81:· 74:· 67:· 50:. 36:.

Index


single source
talk page
improve this article
introducing citations to additional sources
"Neutron reflectometry"
news
newspapers
books
scholar
JSTOR
neutrons

Neutron temperature
Flux
Radiation
Transport
Cross section
Absorption
Activation
Neutron scattering
Neutron diffraction
Small-angle neutron scattering
GISANS
Reflectometry
Inelastic neutron scattering
Triple-axis spectrometer
Time-of-flight spectrometer
Backscattering spectrometer
Spin-echo spectrometer

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.