Knowledge (XXG)

Squared triangular number

Source 📝

1889: 1245: 1884:{\displaystyle {\begin{aligned}\sum _{k=1}^{n}k^{3}&=1+8+27+64+\cdots +n^{3}\\&=\underbrace {1} _{1^{3}}+\underbrace {3+5} _{2^{3}}+\underbrace {7+9+11} _{3^{3}}+\underbrace {13+15+17+19} _{4^{3}}+\cdots +\underbrace {\left(n^{2}-n+1\right)+\cdots +\left(n^{2}+n-1\right)} _{n^{3}}\\&=\underbrace {\underbrace {\underbrace {\underbrace {1} _{1^{2}}+3} _{2^{2}}+5} _{3^{2}}+\cdots +\left(n^{2}+n-1\right)} _{\left({\frac {n^{2}+n}{2}}\right)^{2}}\\&=(1+2+\cdots +n)^{2}\\&=\left(\sum _{k=1}^{n}k\right)^{2}.\end{aligned}}} 544: 38: 4938: 1916: 1038: 809:
of these two triangles, so its size is the square of a triangular number on the right hand side of the Nichomachus identity. The probabilities themselves are respectively the left and right sides of the Nichomachus identity, normalized to make probabilities by dividing both sides
343:, pointed out that if one writes a list of the odd numbers, the first is the cube of 1, the sum of the next two is the cube of 2, the sum of the next three is the cube of 3, and so on. He does not go further than this, but from this it follows that the sum of the first 834: 195: 300: 2117: 1150: 1250: 2452: 637:
grid (or a square made up of three smaller squares on a side) can form 36 different rectangles. The number of squares in a square grid is similarly counted by the square pyramidal numbers.
1240: 1908:
times a triangular number, from which it follows that the sum of all the rows is the square of a triangular number. Alternatively, one can decompose the table into a sequence of nested
1912:, each consisting of the products in which the larger of the two terms is some fixed value. The sum within each gmonon is a cube, so the sum of the whole table is a sum of cubes. 1033:{\displaystyle n^{3}=\underbrace {\left(n^{2}-n+1\right)+\left(n^{2}-n+1+2\right)+\left(n^{2}-n+1+4\right)+\cdots +\left(n^{2}+n-1\right)} _{n{\text{ consecutive odd numbers}}}.} 3040: 45:. The nth coloured region shows n squares of dimension n by n (the rectangle is 1 evenly divided square), hence the area of the nth region is n times n x n. 2675: 2584: 78: 2011: 831:) gives a particularly simple derivation, by expanding each cube in the sum into a set of consecutive odd numbers. He begins by giving the identity 3033: 1057: 2524: 2360: 210: 1985:
study polynomial analogues of the square triangular number formula, in which series of polynomials add to the square of another polynomial.
2386: 3840: 3026: 2644: 2544: 2277: 3835: 1971:, of which the sum of cubes is the simplest and most elegant example. However, in no other case is one power sum a square of another. 3850: 3830: 1173: 41:
A square whose side length is a triangular number can be partitioned into squares and half-squares whose areas add to cubes. From
4543: 4123: 2050: 3845: 2668: 4629: 4972: 3945: 4977: 4295: 3614: 3407: 2853: 2403: 4330: 4300: 3975: 3965: 4471: 3885: 3619: 3599: 2858: 2838: 2171: 2126: 4161: 4325: 4967: 4420: 4043: 3800: 3609: 3591: 3485: 3475: 3465: 2848: 2830: 2729: 2719: 2709: 805:
form isosceles right triangles, and the set counted by the right hand side of the equation of probabilities is the
4305: 4548: 4093: 3500: 3495: 3490: 3480: 3457: 2744: 2739: 2734: 2724: 2701: 2661: 1935:
uses the rectangle-counting interpretation of these numbers to form a geometric proof of the identity (see also
3533: 2223: 31: 3790: 2320:
Kanim, Katherine (2004), "Proofs without words: The sum of cubes—An extension of Archimedes' sum of squares",
4659: 4624: 4410: 4320: 4194: 4169: 4078: 4068: 3680: 3662: 3582: 2919: 2896: 2821: 620:
observes, these numbers also count the number of rectangles with horizontal and vertical sides formed in an
610: 556: 1967:, namely that odd power sums (sums of odd powers) are a polynomial in triangular numbers. These are called 4962: 4919: 4189: 4063: 3694: 3470: 3250: 3177: 2933: 2714: 2491: 1968: 1964: 306: 2392: 4174: 4028: 3955: 3110: 2988: 4883: 4523: 1977:
studies more general conditions under which the sum of a consecutive sequence of cubes forms a square.
4816: 4710: 4674: 4415: 4138: 4118: 3935: 3604: 3392: 3364: 2843: 2593: 2456: 2322: 1939:); he observes that it may also be proved easily (but uninformatively) by induction, and states that 1897: 2309: 4538: 4402: 4397: 4365: 4128: 4103: 4098: 4073: 4003: 3999: 3930: 3820: 3652: 3448: 3417: 2886: 2692: 525: 4937: 4941: 4695: 4690: 4604: 4578: 4476: 4455: 4227: 4108: 4058: 3980: 3950: 3890: 3657: 3637: 3568: 3281: 2914: 2891: 2807: 2575: 2535: 2473: 2339: 2256: 2240: 2218: 2188: 2155: 2143: 2046: 2042: 1928: 1041: 824: 3825: 2268: 761:
is largest is a sum of cubes, the left hand side of the Nichomachus identity. The sets of pairs
471:
claims that "every student of number theory surely must have marveled at this miraculous fact".
4835: 4780: 4634: 4609: 4583: 4360: 4038: 4033: 3960: 3940: 3925: 3647: 3629: 3548: 3538: 3523: 3301: 3286: 2881: 2868: 2787: 2777: 2767: 2624: 2520: 2356: 806: 606: 543: 69: 2641: 4871: 4664: 4250: 4222: 4212: 4204: 4088: 4053: 4048: 4015: 3709: 3672: 3563: 3558: 3553: 3543: 3515: 3402: 3354: 3349: 3306: 3245: 2948: 2906: 2802: 2797: 2792: 2782: 2759: 2601: 2553: 2465: 2370:
Pengelley, David (2002), "The bridge between continuous and discrete via original sources",
2331: 2286: 2232: 2180: 2135: 2567: 2504: 2300: 2252: 4847: 4736: 4669: 4595: 4518: 4492: 4310: 4023: 3880: 3815: 3785: 3775: 3770: 3436: 3344: 3291: 3135: 3075: 2684: 2648: 2563: 2500: 2296: 2248: 2163: 1909: 602: 2628: 2597: 4852: 4720: 4705: 4569: 4533: 4508: 4384: 4355: 4340: 4217: 4113: 4083: 3810: 3765: 3642: 3240: 3235: 3230: 3202: 3187: 3100: 3085: 3063: 3050: 2876: 2200: 2159: 630: 57: 2486: 37: 4956: 4775: 4759: 4700: 4654: 4350: 4335: 4245: 3970: 3528: 3397: 3359: 3316: 3197: 3182: 3172: 3130: 3120: 3095: 2998: 2772: 2512: 2260: 61: 50: 467:
Many early mathematicians have studied and provided proofs of Nicomachus's theorem.
200:
The same equation may be written more compactly using the mathematical notation for
4811: 4800: 4715: 4553: 4528: 4445: 4345: 4315: 4290: 4274: 4179: 4146: 3895: 3869: 3780: 3719: 3296: 3192: 3125: 3105: 3080: 3003: 2958: 2204: 590: 1919:
Visual demonstration that the square of a triangular number equals a sum of cubes.
17: 190:{\displaystyle 1^{3}+2^{3}+3^{3}+\cdots +n^{3}=\left(1+2+3+\cdots +n\right)^{2}.} 4770: 4645: 4450: 3914: 3805: 3760: 3755: 3505: 3412: 3311: 3140: 3115: 3090: 2993: 2749: 2001: 640:
The identity also admits a natural probabilistic interpretation as follows. Let
586: 4907: 4888: 4184: 3795: 2371: 582: 578: 574: 514: 476: 314: 3018: 658:
be four integer numbers independently and uniformly chosen at random between
4513: 4440: 4432: 4237: 4151: 3269: 2973: 2633: 510: 492: 484: 201: 2606: 1915: 4614: 509:
mentions several additional early mathematical works on this formula, by
2379:, National Center for Mathematics Education, Univ. of Gothenburg, Sweden 2192: 4619: 4278: 2477: 2343: 2244: 2147: 295:{\displaystyle \sum _{k=1}^{n}k^{3}=\left(\sum _{k=1}^{n}k\right)^{2}.} 2184: 502: 480: 2579: 2469: 2335: 2236: 2139: 2653: 2558: 2291: 1914: 1170:. Applying this property, along with another well-known identity: 542: 488: 36: 4905: 4869: 4833: 4797: 4757: 4382: 4271: 3997: 3912: 3867: 3744: 3434: 3381: 3333: 3267: 3219: 3157: 3061: 3022: 2657: 670:
is the largest of the four numbers equals the probability that
2580:"On the formation of powers from arithmetical progressions" 2005: 539:
Numeric values; geometric and probabilistic interpretation
605:, a four-dimensional hyperpyramidal generalization of the 475:
finds references to the identity not only in the works of
2112:{\displaystyle \textstyle \sum k^{3}={n+1 \choose 2}^{2}} 1896:
obtains another proof by summing the numbers in a square
2487:"On the sum of consecutive cubes being a perfect square" 1145:{\displaystyle n^{3}=\sum _{k=T_{n-1}+1}^{T_{n}}(2k-1),} 1963:
A similar result to Nicomachus's theorem holds for all
1158:
start off just after those forming all previous values
30:
For triangular numbers that are themselves square, see
2407: 2054: 2406: 2400:
Stein, Robert G. (1971), "A combinatorial proof that
2053: 1248: 1176: 1060: 837: 735:
so (adding the size of this cube over all choices of
213: 81: 4729: 4683: 4643: 4594: 4568: 4501: 4485: 4464: 4431: 4396: 4236: 4203: 4160: 4137: 4014: 3702: 3693: 3671: 3628: 3590: 3581: 3514: 3456: 3447: 2981: 2971: 2941: 2932: 2905: 2867: 2829: 2820: 2758: 2700: 2691: 535:, India); he reproduces Nilakantha's visual proof. 2447:{\displaystyle \textstyle \sum k^{3}=(\sum k)^{2}} 2446: 2111: 1936: 1883: 1234: 1144: 1032: 294: 189: 2308:Gulley, Ned (March 4, 2010), Shure, Loren (ed.), 2221:(1957), "Sums of powers of the natural numbers", 372:odd numbers, that is, the odd numbers from 1 to 1948: 2267:Garrett, Kristina C.; Hummel, Kristen (2004), 570:The sequence of squared triangular numbers is 3034: 2669: 2373:Study the Masters: The Abel-Fauvel Conference 2096: 2075: 1978: 596:441, 784, 1296, 2025, 3025, 4356, 6084, 8281, 8: 2206:Calculus before Newton and Leibniz, Part III 1943:provides "an interesting old Arabic proof". 1923:In the more recent mathematical literature, 1235:{\displaystyle n^{2}=\sum _{k=1}^{n}(2k-1),} 483:in the 1st century CE, but also in those of 383:. The average of these numbers is obviously 339:Nicomachus, at the end of Chapter 20 of his 4902: 4866: 4830: 4794: 4754: 4428: 4393: 4379: 4268: 4011: 3994: 3909: 3864: 3741: 3699: 3587: 3453: 3444: 3431: 3378: 3335:Possessing a specific set of other numbers 3330: 3264: 3216: 3154: 3058: 3041: 3027: 3019: 2978: 2938: 2826: 2697: 2676: 2662: 2654: 2585:Proceedings of the Royal Society of London 828: 2605: 2557: 2437: 2415: 2405: 2290: 2102: 2095: 2074: 2072: 2062: 2052: 2012:On-Line Encyclopedia of Integer Sequences 1868: 1854: 1843: 1817: 1771: 1749: 1742: 1736: 1707: 1681: 1676: 1656: 1651: 1631: 1626: 1616: 1612: 1608: 1604: 1585: 1580: 1551: 1510: 1498: 1480: 1475: 1445: 1433: 1428: 1404: 1392: 1387: 1369: 1357: 1352: 1342: 1325: 1278: 1268: 1257: 1249: 1247: 1205: 1194: 1181: 1175: 1113: 1108: 1089: 1078: 1065: 1059: 1020: 1016: 987: 940: 899: 864: 852: 842: 836: 472: 283: 269: 258: 239: 229: 218: 212: 178: 131: 112: 99: 86: 80: 1974: 1940: 506: 468: 2025: 1993: 1982: 1924: 2642:A visual proof of Nicomachus's theorem 2164:"Summing cubes by counting rectangles" 1952: 1900:in two different ways. The sum of the 42: 2269:"A combinatorial proof of the sum of 1944: 1932: 617: 7: 2388:Geometric Exercises in Paper Folding 491:in the 5th century, and in those of 2545:Electronic Journal of Combinatorics 2278:Electronic Journal of Combinatorics 2047:"Two quick combinatorial proofs of 1951:provide two additional proofs, and 1893: 1242:produces the following derivation: 563:(red), in a 3 Ă— 3 square 2079: 347:cubes equals the sum of the first 25: 4936: 4544:Perfect digit-to-digit invariant 2517:The Calculus, a Genetic Approach 1947:provides a purely visual proof, 1937:Benjamin, Quinn & Wurtz 2006 739:) the number of combinations of 633:. For instance, the points of a 2519:, University of Chicago Press, 601:These numbers can be viewed as 2540:-analogue of the sum of cubes" 2434: 2424: 2355:, Cambridge University Press, 1955:gives seven geometric proofs. 1814: 1789: 1226: 1211: 1152:and thus the summands forming 1136: 1121: 696:. For any particular value of 1: 3383:Expressible via specific sums 2854:Centered dodecahedral numbers 1949:Benjamin & Orrison (2002) 1022: consecutive odd numbers 666:. Then, the probability that 565:(4 Ă— 4 vertex) grid 529: 518: 495: 325: 318: 27:Square of a triangular number 2859:Centered icosahedral numbers 2839:Centered tetrahedral numbers 1040:That identity is related to 4472:Multiplicative digital root 2849:Centered octahedral numbers 2730:Centered heptagonal numbers 2720:Centered pentagonal numbers 2710:Centered triangular numbers 2172:College Mathematics Journal 2127:College Mathematics Journal 1979:Garrett & Hummel (2004) 4994: 2954:Squared triangular numbers 2745:Centered decagonal numbers 2740:Centered nonagonal numbers 2735:Centered octagonal numbers 2725:Centered hexagonal numbers 2002:Sloane, N. J. A. 341:Introduction to Arithmetic 29: 4932: 4915: 4901: 4879: 4865: 4843: 4829: 4807: 4793: 4766: 4753: 4549:Perfect digital invariant 4392: 4378: 4286: 4267: 4124:Superior highly composite 4010: 3993: 3921: 3908: 3876: 3863: 3751: 3740: 3443: 3430: 3388: 3377: 3340: 3329: 3277: 3263: 3226: 3215: 3168: 3153: 3071: 3057: 2351:Nelsen, Roger B. (1993), 2162:; Wurtz, Calyssa (2006), 2045:; Orrison, M. E. (2002), 433:of them, so their sum is 4162:Euler's totient function 3946:Euler–Jacobi pseudoprime 3221:Other polynomial numbers 2920:Square pyramidal numbers 2897:Stella octangula numbers 2534:Warnaar, S. Ole (2004), 2485:Stroeker, R. J. (1995), 2385:Row, T. Sundara (1893), 2224:The Mathematical Gazette 682:is at least as large as 674:is at least as large as 611:square pyramidal numbers 555:) rectangles, including 32:square triangular number 3976:Somer–Lucas pseudoprime 3966:Lucas–Carmichael number 3801:Lazy caterer's sequence 2715:Centered square numbers 2285:(1), Research Paper 9, 2006:"Sequence A000537" 1927:provides a proof using 513:(10th century Arabia), 53:, the sum of the first 3851:Wedderburn–Etherington 3251:Lucky numbers of Euler 2629:"Nicomachus's theorem" 2607:10.1098/rspl.1854.0036 2492:Compositio Mathematica 2448: 2113: 1920: 1885: 1859: 1273: 1236: 1210: 1146: 1120: 1054:in the following way: 1034: 825:Charles Wheatstone 700:, the combinations of 567: 296: 274: 234: 191: 46: 4139:Prime omega functions 3956:Frobenius pseudoprime 3746:Combinatorial numbers 3615:Centered dodecahedral 3408:Primary pseudoperfect 2844:Centered cube numbers 2449: 2114: 1969:Faulhaber polynomials 1918: 1886: 1839: 1253: 1237: 1190: 1147: 1074: 1035: 546: 297: 254: 214: 192: 40: 4973:Algebraic identities 4598:-composition related 4398:Arithmetic functions 4000:Arithmetic functions 3936:Elliptic pseudoprime 3620:Centered icosahedral 3600:Centered tetrahedral 2887:Dodecahedral numbers 2457:Mathematics Magazine 2404: 2353:Proofs without Words 2323:Mathematics Magazine 2311:Nicomachus's Theorem 2051: 1898:multiplication table 1246: 1174: 1058: 835: 716:largest form a cube 315:Nicomachus of Gerasa 311:Nicomachus's theorem 309:is sometimes called 211: 79: 4978:Proof without words 4524:Kaprekar's constant 4044:Colossally abundant 3931:Catalan pseudoprime 3831:Schröder–Hipparchus 3610:Centered octahedral 3486:Centered heptagonal 3476:Centered pentagonal 3466:Centered triangular 3066:and related numbers 3004:8-hypercube numbers 2999:7-hypercube numbers 2994:6-hypercube numbers 2989:5-hypercube numbers 2959:Tesseractic numbers 2915:Tetrahedral numbers 2892:Icosahedral numbers 2808:Dodecagonal numbers 2598:1854RSPS....7..145W 2391:, Madras: Addison, 2156:Benjamin, Arthur T. 2043:Benjamin, Arthur T. 526:Nilakantha Somayaji 4942:Mathematics portal 4884:Aronson's sequence 4630:Smarandache–Wellin 4387:-dependent numbers 4094:Primitive abundant 3981:Strong pseudoprime 3971:Perrin pseudoprime 3951:Fermat pseudoprime 3891:Wolstenholme prime 3715:Squared triangular 3501:Centered decagonal 3496:Centered nonagonal 3491:Centered octagonal 3481:Centered hexagonal 2882:Octahedral numbers 2788:Heptagonal numbers 2778:Pentagonal numbers 2768:Triangular numbers 2647:2019-10-19 at the 2625:Weisstein, Eric W. 2444: 2443: 2219:Edmonds, Sheila M. 2160:Quinn, Jennifer J. 2109: 2108: 1929:summation by parts 1921: 1881: 1879: 1778: 1734: 1688: 1674: 1663: 1649: 1638: 1624: 1592: 1578: 1487: 1473: 1440: 1426: 1399: 1385: 1364: 1350: 1232: 1142: 1042:triangular numbers 1030: 1026: 1014: 607:triangular numbers 568: 292: 187: 47: 18:Nicomachus theorem 4968:Integer sequences 4950: 4949: 4928: 4927: 4897: 4896: 4861: 4860: 4825: 4824: 4789: 4788: 4749: 4748: 4745: 4744: 4564: 4563: 4374: 4373: 4263: 4262: 4259: 4258: 4205:Aliquot sequences 4016:Divisor functions 3989: 3988: 3961:Lucas pseudoprime 3941:Euler pseudoprime 3926:Carmichael number 3904: 3903: 3859: 3858: 3736: 3735: 3732: 3731: 3728: 3727: 3689: 3688: 3577: 3576: 3534:Square triangular 3426: 3425: 3373: 3372: 3325: 3324: 3259: 3258: 3211: 3210: 3149: 3148: 3016: 3015: 3012: 3011: 2967: 2966: 2949:Pentatope numbers 2928: 2927: 2816: 2815: 2803:Decagonal numbers 2798:Nonagonal numbers 2793:Octagonal numbers 2783:Hexagonal numbers 2526:978-0-226-80667-9 2362:978-0-88385-700-7 2094: 2015:, OEIS Foundation 1765: 1617: 1615: 1613: 1611: 1609: 1607: 1605: 1603: 1499: 1497: 1446: 1444: 1405: 1403: 1370: 1368: 1343: 1341: 1023: 853: 851: 807:Cartesian product 70:triangular number 16:(Redirected from 4985: 4940: 4903: 4872:Natural language 4867: 4831: 4799:Generated via a 4795: 4755: 4660:Digit-reassembly 4625:Self-descriptive 4429: 4394: 4380: 4331:Lucas–Carmichael 4321:Harmonic divisor 4269: 4195:Sparsely totient 4170:Highly cototient 4079:Multiply perfect 4069:Highly composite 4012: 3995: 3910: 3865: 3846:Telephone number 3742: 3700: 3681:Square pyramidal 3663:Stella octangula 3588: 3454: 3445: 3437:Figurate numbers 3432: 3379: 3331: 3265: 3217: 3155: 3059: 3043: 3036: 3029: 3020: 2979: 2939: 2827: 2698: 2685:Figurate numbers 2678: 2671: 2664: 2655: 2638: 2637: 2610: 2609: 2570: 2561: 2539: 2529: 2507: 2499:(1–2): 295–307, 2480: 2453: 2451: 2450: 2445: 2442: 2441: 2420: 2419: 2395: 2380: 2378: 2365: 2346: 2315: 2314:, Matlab Central 2303: 2294: 2272: 2263: 2231:(337): 187–188, 2213: 2211: 2195: 2185:10.2307/27646391 2168: 2150: 2123: 2118: 2116: 2115: 2110: 2107: 2106: 2101: 2100: 2099: 2090: 2078: 2067: 2066: 2029: 2023: 2017: 2016: 1998: 1907: 1903: 1890: 1888: 1887: 1882: 1880: 1873: 1872: 1867: 1863: 1858: 1853: 1826: 1822: 1821: 1782: 1777: 1776: 1775: 1770: 1766: 1761: 1754: 1753: 1743: 1735: 1730: 1729: 1725: 1712: 1711: 1687: 1686: 1685: 1675: 1670: 1662: 1661: 1660: 1650: 1645: 1637: 1636: 1635: 1625: 1596: 1591: 1590: 1589: 1579: 1574: 1573: 1569: 1556: 1555: 1532: 1528: 1515: 1514: 1486: 1485: 1484: 1474: 1469: 1439: 1438: 1437: 1427: 1422: 1398: 1397: 1396: 1386: 1381: 1363: 1362: 1361: 1351: 1334: 1330: 1329: 1283: 1282: 1272: 1267: 1241: 1239: 1238: 1233: 1209: 1204: 1186: 1185: 1169: 1161: 1157: 1151: 1149: 1148: 1143: 1119: 1118: 1117: 1107: 1100: 1099: 1070: 1069: 1053: 1039: 1037: 1036: 1031: 1025: 1024: 1021: 1015: 1010: 1009: 1005: 992: 991: 968: 964: 945: 944: 927: 923: 904: 903: 886: 882: 869: 868: 847: 846: 815: 804: 794: 782: 772: 760: 756: 738: 734: 715: 711: 707: 703: 699: 695: 685: 681: 677: 673: 669: 665: 661: 657: 636: 629: 603:figurate numbers 597: 594: 566: 560: 554: 550: 534: 531: 523: 520: 500: 497: 473:Pengelley (2002) 463: 459: 457: 456: 453: 450: 432: 431: 429: 428: 425: 422: 408:, and there are 407: 406: 404: 403: 400: 397: 382: 371: 370: 368: 367: 364: 361: 346: 330: 327: 323: 320: 301: 299: 298: 293: 288: 287: 282: 278: 273: 268: 244: 243: 233: 228: 196: 194: 193: 188: 183: 182: 177: 173: 136: 135: 117: 116: 104: 103: 91: 90: 67: 56: 21: 4993: 4992: 4988: 4987: 4986: 4984: 4983: 4982: 4953: 4952: 4951: 4946: 4924: 4920:Strobogrammatic 4911: 4893: 4875: 4857: 4839: 4821: 4803: 4785: 4762: 4741: 4725: 4684:Divisor-related 4679: 4639: 4590: 4560: 4497: 4481: 4460: 4427: 4400: 4388: 4370: 4282: 4281:related numbers 4255: 4232: 4199: 4190:Perfect totient 4156: 4133: 4064:Highly abundant 4006: 3985: 3917: 3900: 3872: 3855: 3841:Stirling second 3747: 3724: 3685: 3667: 3624: 3573: 3510: 3471:Centered square 3439: 3422: 3384: 3369: 3336: 3321: 3273: 3272:defined numbers 3255: 3222: 3207: 3178:Double Mersenne 3164: 3145: 3067: 3053: 3051:natural numbers 3047: 3017: 3008: 2963: 2924: 2901: 2863: 2812: 2754: 2687: 2682: 2649:Wayback Machine 2623: 2622: 2619: 2614: 2574: 2537: 2533: 2527: 2511: 2484: 2470:10.2307/2688231 2433: 2411: 2402: 2401: 2399: 2384: 2376: 2369: 2363: 2350: 2336:10.2307/3219288 2319: 2307: 2270: 2266: 2237:10.2307/3609189 2217: 2209: 2201:Bressoud, David 2199: 2166: 2154: 2140:10.2307/1559017 2121: 2080: 2073: 2071: 2058: 2049: 2048: 2041: 2037: 2032: 2024: 2020: 2000: 1999: 1995: 1991: 1975:Stroeker (1995) 1961: 1959:Generalizations 1941:Toeplitz (1963) 1905: 1901: 1878: 1877: 1838: 1834: 1833: 1824: 1823: 1813: 1780: 1779: 1745: 1744: 1738: 1737: 1703: 1702: 1698: 1677: 1652: 1627: 1614: 1610: 1606: 1594: 1593: 1581: 1547: 1546: 1542: 1506: 1505: 1501: 1500: 1476: 1447: 1429: 1406: 1388: 1371: 1353: 1332: 1331: 1321: 1284: 1274: 1244: 1243: 1177: 1172: 1171: 1163: 1159: 1153: 1109: 1085: 1061: 1056: 1055: 1052: 1044: 983: 982: 978: 936: 935: 931: 895: 894: 890: 860: 859: 855: 854: 838: 833: 832: 822: 811: 796: 784: 774: 762: 758: 740: 736: 717: 713: 709: 705: 701: 697: 687: 683: 679: 675: 671: 667: 663: 659: 641: 634: 621: 599: 595: 573: 564: 558: 552: 548: 541: 532: 524:, France), and 521: 507:Bressoud (2004) 498: 479:in what is now 469:Stroeker (1995) 462: 454: 451: 441: 440: 438: 437: 434: 426: 423: 413: 412: 410: 409: 401: 398: 388: 387: 385: 384: 373: 365: 362: 352: 351: 349: 348: 344: 337: 328: 321: 253: 249: 248: 235: 209: 208: 145: 141: 140: 127: 108: 95: 82: 77: 76: 65: 54: 35: 28: 23: 22: 15: 12: 11: 5: 4991: 4989: 4981: 4980: 4975: 4970: 4965: 4955: 4954: 4948: 4947: 4945: 4944: 4933: 4930: 4929: 4926: 4925: 4923: 4922: 4916: 4913: 4912: 4906: 4899: 4898: 4895: 4894: 4892: 4891: 4886: 4880: 4877: 4876: 4870: 4863: 4862: 4859: 4858: 4856: 4855: 4853:Sorting number 4850: 4848:Pancake number 4844: 4841: 4840: 4834: 4827: 4826: 4823: 4822: 4820: 4819: 4814: 4808: 4805: 4804: 4798: 4791: 4790: 4787: 4786: 4784: 4783: 4778: 4773: 4767: 4764: 4763: 4760:Binary numbers 4758: 4751: 4750: 4747: 4746: 4743: 4742: 4740: 4739: 4733: 4731: 4727: 4726: 4724: 4723: 4718: 4713: 4708: 4703: 4698: 4693: 4687: 4685: 4681: 4680: 4678: 4677: 4672: 4667: 4662: 4657: 4651: 4649: 4641: 4640: 4638: 4637: 4632: 4627: 4622: 4617: 4612: 4607: 4601: 4599: 4592: 4591: 4589: 4588: 4587: 4586: 4575: 4573: 4570:P-adic numbers 4566: 4565: 4562: 4561: 4559: 4558: 4557: 4556: 4546: 4541: 4536: 4531: 4526: 4521: 4516: 4511: 4505: 4503: 4499: 4498: 4496: 4495: 4489: 4487: 4486:Coding-related 4483: 4482: 4480: 4479: 4474: 4468: 4466: 4462: 4461: 4459: 4458: 4453: 4448: 4443: 4437: 4435: 4426: 4425: 4424: 4423: 4421:Multiplicative 4418: 4407: 4405: 4390: 4389: 4385:Numeral system 4383: 4376: 4375: 4372: 4371: 4369: 4368: 4363: 4358: 4353: 4348: 4343: 4338: 4333: 4328: 4323: 4318: 4313: 4308: 4303: 4298: 4293: 4287: 4284: 4283: 4272: 4265: 4264: 4261: 4260: 4257: 4256: 4254: 4253: 4248: 4242: 4240: 4234: 4233: 4231: 4230: 4225: 4220: 4215: 4209: 4207: 4201: 4200: 4198: 4197: 4192: 4187: 4182: 4177: 4175:Highly totient 4172: 4166: 4164: 4158: 4157: 4155: 4154: 4149: 4143: 4141: 4135: 4134: 4132: 4131: 4126: 4121: 4116: 4111: 4106: 4101: 4096: 4091: 4086: 4081: 4076: 4071: 4066: 4061: 4056: 4051: 4046: 4041: 4036: 4031: 4029:Almost perfect 4026: 4020: 4018: 4008: 4007: 3998: 3991: 3990: 3987: 3986: 3984: 3983: 3978: 3973: 3968: 3963: 3958: 3953: 3948: 3943: 3938: 3933: 3928: 3922: 3919: 3918: 3913: 3906: 3905: 3902: 3901: 3899: 3898: 3893: 3888: 3883: 3877: 3874: 3873: 3868: 3861: 3860: 3857: 3856: 3854: 3853: 3848: 3843: 3838: 3836:Stirling first 3833: 3828: 3823: 3818: 3813: 3808: 3803: 3798: 3793: 3788: 3783: 3778: 3773: 3768: 3763: 3758: 3752: 3749: 3748: 3745: 3738: 3737: 3734: 3733: 3730: 3729: 3726: 3725: 3723: 3722: 3717: 3712: 3706: 3704: 3697: 3691: 3690: 3687: 3686: 3684: 3683: 3677: 3675: 3669: 3668: 3666: 3665: 3660: 3655: 3650: 3645: 3640: 3634: 3632: 3626: 3625: 3623: 3622: 3617: 3612: 3607: 3602: 3596: 3594: 3585: 3579: 3578: 3575: 3574: 3572: 3571: 3566: 3561: 3556: 3551: 3546: 3541: 3536: 3531: 3526: 3520: 3518: 3512: 3511: 3509: 3508: 3503: 3498: 3493: 3488: 3483: 3478: 3473: 3468: 3462: 3460: 3451: 3441: 3440: 3435: 3428: 3427: 3424: 3423: 3421: 3420: 3415: 3410: 3405: 3400: 3395: 3389: 3386: 3385: 3382: 3375: 3374: 3371: 3370: 3368: 3367: 3362: 3357: 3352: 3347: 3341: 3338: 3337: 3334: 3327: 3326: 3323: 3322: 3320: 3319: 3314: 3309: 3304: 3299: 3294: 3289: 3284: 3278: 3275: 3274: 3268: 3261: 3260: 3257: 3256: 3254: 3253: 3248: 3243: 3238: 3233: 3227: 3224: 3223: 3220: 3213: 3212: 3209: 3208: 3206: 3205: 3200: 3195: 3190: 3185: 3180: 3175: 3169: 3166: 3165: 3158: 3151: 3150: 3147: 3146: 3144: 3143: 3138: 3133: 3128: 3123: 3118: 3113: 3108: 3103: 3098: 3093: 3088: 3083: 3078: 3072: 3069: 3068: 3062: 3055: 3054: 3048: 3046: 3045: 3038: 3031: 3023: 3014: 3013: 3010: 3009: 3007: 3006: 3001: 2996: 2991: 2985: 2983: 2976: 2969: 2968: 2965: 2964: 2962: 2961: 2956: 2951: 2945: 2943: 2936: 2930: 2929: 2926: 2925: 2923: 2922: 2917: 2911: 2909: 2903: 2902: 2900: 2899: 2894: 2889: 2884: 2879: 2873: 2871: 2865: 2864: 2862: 2861: 2856: 2851: 2846: 2841: 2835: 2833: 2824: 2818: 2817: 2814: 2813: 2811: 2810: 2805: 2800: 2795: 2790: 2785: 2780: 2775: 2773:Square numbers 2770: 2764: 2762: 2756: 2755: 2753: 2752: 2747: 2742: 2737: 2732: 2727: 2722: 2717: 2712: 2706: 2704: 2695: 2689: 2688: 2683: 2681: 2680: 2673: 2666: 2658: 2652: 2651: 2639: 2618: 2617:External links 2615: 2613: 2612: 2576:Wheatstone, C. 2572: 2552:(1), Note 13, 2531: 2525: 2513:Toeplitz, Otto 2509: 2482: 2464:(3): 161–162, 2440: 2436: 2432: 2429: 2426: 2423: 2418: 2414: 2410: 2397: 2382: 2367: 2361: 2348: 2330:(4): 298–299, 2317: 2305: 2264: 2215: 2197: 2179:(5): 387–389, 2152: 2134:(5): 406–408, 2105: 2098: 2093: 2089: 2086: 2083: 2077: 2070: 2065: 2061: 2057: 2038: 2036: 2033: 2031: 2030: 2026:Edmonds (1957) 2018: 1992: 1990: 1987: 1983:Warnaar (2004) 1960: 1957: 1925:Edmonds (1957) 1876: 1871: 1866: 1862: 1857: 1852: 1849: 1846: 1842: 1837: 1832: 1829: 1827: 1825: 1820: 1816: 1812: 1809: 1806: 1803: 1800: 1797: 1794: 1791: 1788: 1785: 1783: 1781: 1774: 1769: 1764: 1760: 1757: 1752: 1748: 1741: 1733: 1728: 1724: 1721: 1718: 1715: 1710: 1706: 1701: 1697: 1694: 1691: 1684: 1680: 1673: 1669: 1666: 1659: 1655: 1648: 1644: 1641: 1634: 1630: 1623: 1620: 1602: 1599: 1597: 1595: 1588: 1584: 1577: 1572: 1568: 1565: 1562: 1559: 1554: 1550: 1545: 1541: 1538: 1535: 1531: 1527: 1524: 1521: 1518: 1513: 1509: 1504: 1496: 1493: 1490: 1483: 1479: 1472: 1468: 1465: 1462: 1459: 1456: 1453: 1450: 1443: 1436: 1432: 1425: 1421: 1418: 1415: 1412: 1409: 1402: 1395: 1391: 1384: 1380: 1377: 1374: 1367: 1360: 1356: 1349: 1346: 1340: 1337: 1335: 1333: 1328: 1324: 1320: 1317: 1314: 1311: 1308: 1305: 1302: 1299: 1296: 1293: 1290: 1287: 1285: 1281: 1277: 1271: 1266: 1263: 1260: 1256: 1252: 1251: 1231: 1228: 1225: 1222: 1219: 1216: 1213: 1208: 1203: 1200: 1197: 1193: 1189: 1184: 1180: 1141: 1138: 1135: 1132: 1129: 1126: 1123: 1116: 1112: 1106: 1103: 1098: 1095: 1092: 1088: 1084: 1081: 1077: 1073: 1068: 1064: 1048: 1029: 1019: 1013: 1008: 1004: 1001: 998: 995: 990: 986: 981: 977: 974: 971: 967: 963: 960: 957: 954: 951: 948: 943: 939: 934: 930: 926: 922: 919: 916: 913: 910: 907: 902: 898: 893: 889: 885: 881: 878: 875: 872: 867: 863: 858: 850: 845: 841: 821: 818: 572: 540: 537: 460: 435: 336: 333: 303: 302: 291: 286: 281: 277: 272: 267: 264: 261: 257: 252: 247: 242: 238: 232: 227: 224: 221: 217: 198: 197: 186: 181: 176: 172: 169: 166: 163: 160: 157: 154: 151: 148: 144: 139: 134: 130: 126: 123: 120: 115: 111: 107: 102: 98: 94: 89: 85: 26: 24: 14: 13: 10: 9: 6: 4: 3: 2: 4990: 4979: 4976: 4974: 4971: 4969: 4966: 4964: 4963:Number theory 4961: 4960: 4958: 4943: 4939: 4935: 4934: 4931: 4921: 4918: 4917: 4914: 4909: 4904: 4900: 4890: 4887: 4885: 4882: 4881: 4878: 4873: 4868: 4864: 4854: 4851: 4849: 4846: 4845: 4842: 4837: 4832: 4828: 4818: 4815: 4813: 4810: 4809: 4806: 4802: 4796: 4792: 4782: 4779: 4777: 4774: 4772: 4769: 4768: 4765: 4761: 4756: 4752: 4738: 4735: 4734: 4732: 4728: 4722: 4719: 4717: 4714: 4712: 4711:Polydivisible 4709: 4707: 4704: 4702: 4699: 4697: 4694: 4692: 4689: 4688: 4686: 4682: 4676: 4673: 4671: 4668: 4666: 4663: 4661: 4658: 4656: 4653: 4652: 4650: 4647: 4642: 4636: 4633: 4631: 4628: 4626: 4623: 4621: 4618: 4616: 4613: 4611: 4608: 4606: 4603: 4602: 4600: 4597: 4593: 4585: 4582: 4581: 4580: 4577: 4576: 4574: 4571: 4567: 4555: 4552: 4551: 4550: 4547: 4545: 4542: 4540: 4537: 4535: 4532: 4530: 4527: 4525: 4522: 4520: 4517: 4515: 4512: 4510: 4507: 4506: 4504: 4500: 4494: 4491: 4490: 4488: 4484: 4478: 4475: 4473: 4470: 4469: 4467: 4465:Digit product 4463: 4457: 4454: 4452: 4449: 4447: 4444: 4442: 4439: 4438: 4436: 4434: 4430: 4422: 4419: 4417: 4414: 4413: 4412: 4409: 4408: 4406: 4404: 4399: 4395: 4391: 4386: 4381: 4377: 4367: 4364: 4362: 4359: 4357: 4354: 4352: 4349: 4347: 4344: 4342: 4339: 4337: 4334: 4332: 4329: 4327: 4324: 4322: 4319: 4317: 4314: 4312: 4309: 4307: 4304: 4302: 4301:ErdƑs–Nicolas 4299: 4297: 4294: 4292: 4289: 4288: 4285: 4280: 4276: 4270: 4266: 4252: 4249: 4247: 4244: 4243: 4241: 4239: 4235: 4229: 4226: 4224: 4221: 4219: 4216: 4214: 4211: 4210: 4208: 4206: 4202: 4196: 4193: 4191: 4188: 4186: 4183: 4181: 4178: 4176: 4173: 4171: 4168: 4167: 4165: 4163: 4159: 4153: 4150: 4148: 4145: 4144: 4142: 4140: 4136: 4130: 4127: 4125: 4122: 4120: 4119:Superabundant 4117: 4115: 4112: 4110: 4107: 4105: 4102: 4100: 4097: 4095: 4092: 4090: 4087: 4085: 4082: 4080: 4077: 4075: 4072: 4070: 4067: 4065: 4062: 4060: 4057: 4055: 4052: 4050: 4047: 4045: 4042: 4040: 4037: 4035: 4032: 4030: 4027: 4025: 4022: 4021: 4019: 4017: 4013: 4009: 4005: 4001: 3996: 3992: 3982: 3979: 3977: 3974: 3972: 3969: 3967: 3964: 3962: 3959: 3957: 3954: 3952: 3949: 3947: 3944: 3942: 3939: 3937: 3934: 3932: 3929: 3927: 3924: 3923: 3920: 3916: 3911: 3907: 3897: 3894: 3892: 3889: 3887: 3884: 3882: 3879: 3878: 3875: 3871: 3866: 3862: 3852: 3849: 3847: 3844: 3842: 3839: 3837: 3834: 3832: 3829: 3827: 3824: 3822: 3819: 3817: 3814: 3812: 3809: 3807: 3804: 3802: 3799: 3797: 3794: 3792: 3789: 3787: 3784: 3782: 3779: 3777: 3774: 3772: 3769: 3767: 3764: 3762: 3759: 3757: 3754: 3753: 3750: 3743: 3739: 3721: 3718: 3716: 3713: 3711: 3708: 3707: 3705: 3701: 3698: 3696: 3695:4-dimensional 3692: 3682: 3679: 3678: 3676: 3674: 3670: 3664: 3661: 3659: 3656: 3654: 3651: 3649: 3646: 3644: 3641: 3639: 3636: 3635: 3633: 3631: 3627: 3621: 3618: 3616: 3613: 3611: 3608: 3606: 3605:Centered cube 3603: 3601: 3598: 3597: 3595: 3593: 3589: 3586: 3584: 3583:3-dimensional 3580: 3570: 3567: 3565: 3562: 3560: 3557: 3555: 3552: 3550: 3547: 3545: 3542: 3540: 3537: 3535: 3532: 3530: 3527: 3525: 3522: 3521: 3519: 3517: 3513: 3507: 3504: 3502: 3499: 3497: 3494: 3492: 3489: 3487: 3484: 3482: 3479: 3477: 3474: 3472: 3469: 3467: 3464: 3463: 3461: 3459: 3455: 3452: 3450: 3449:2-dimensional 3446: 3442: 3438: 3433: 3429: 3419: 3416: 3414: 3411: 3409: 3406: 3404: 3401: 3399: 3396: 3394: 3393:Nonhypotenuse 3391: 3390: 3387: 3380: 3376: 3366: 3363: 3361: 3358: 3356: 3353: 3351: 3348: 3346: 3343: 3342: 3339: 3332: 3328: 3318: 3315: 3313: 3310: 3308: 3305: 3303: 3300: 3298: 3295: 3293: 3290: 3288: 3285: 3283: 3280: 3279: 3276: 3271: 3266: 3262: 3252: 3249: 3247: 3244: 3242: 3239: 3237: 3234: 3232: 3229: 3228: 3225: 3218: 3214: 3204: 3201: 3199: 3196: 3194: 3191: 3189: 3186: 3184: 3181: 3179: 3176: 3174: 3171: 3170: 3167: 3162: 3156: 3152: 3142: 3139: 3137: 3134: 3132: 3131:Perfect power 3129: 3127: 3124: 3122: 3121:Seventh power 3119: 3117: 3114: 3112: 3109: 3107: 3104: 3102: 3099: 3097: 3094: 3092: 3089: 3087: 3084: 3082: 3079: 3077: 3074: 3073: 3070: 3065: 3060: 3056: 3052: 3044: 3039: 3037: 3032: 3030: 3025: 3024: 3021: 3005: 3002: 3000: 2997: 2995: 2992: 2990: 2987: 2986: 2984: 2980: 2977: 2975: 2970: 2960: 2957: 2955: 2952: 2950: 2947: 2946: 2944: 2940: 2937: 2935: 2934:4-dimensional 2931: 2921: 2918: 2916: 2913: 2912: 2910: 2908: 2904: 2898: 2895: 2893: 2890: 2888: 2885: 2883: 2880: 2878: 2875: 2874: 2872: 2870: 2866: 2860: 2857: 2855: 2852: 2850: 2847: 2845: 2842: 2840: 2837: 2836: 2834: 2832: 2828: 2825: 2823: 2822:3-dimensional 2819: 2809: 2806: 2804: 2801: 2799: 2796: 2794: 2791: 2789: 2786: 2784: 2781: 2779: 2776: 2774: 2771: 2769: 2766: 2765: 2763: 2761: 2757: 2751: 2748: 2746: 2743: 2741: 2738: 2736: 2733: 2731: 2728: 2726: 2723: 2721: 2718: 2716: 2713: 2711: 2708: 2707: 2705: 2703: 2699: 2696: 2694: 2693:2-dimensional 2690: 2686: 2679: 2674: 2672: 2667: 2665: 2660: 2659: 2656: 2650: 2646: 2643: 2640: 2636: 2635: 2630: 2626: 2621: 2620: 2616: 2608: 2603: 2599: 2595: 2591: 2587: 2586: 2581: 2577: 2573: 2569: 2565: 2560: 2559:10.37236/1854 2555: 2551: 2547: 2546: 2541: 2532: 2528: 2522: 2518: 2514: 2510: 2506: 2502: 2498: 2494: 2493: 2488: 2483: 2479: 2475: 2471: 2467: 2463: 2459: 2458: 2438: 2430: 2427: 2421: 2416: 2412: 2408: 2398: 2394: 2390: 2389: 2383: 2375: 2374: 2368: 2364: 2358: 2354: 2349: 2345: 2341: 2337: 2333: 2329: 2325: 2324: 2318: 2313: 2312: 2306: 2302: 2298: 2293: 2292:10.37236/1762 2288: 2284: 2280: 2279: 2274: 2265: 2262: 2258: 2254: 2250: 2246: 2242: 2238: 2234: 2230: 2226: 2225: 2220: 2216: 2208: 2207: 2202: 2198: 2194: 2190: 2186: 2182: 2178: 2174: 2173: 2165: 2161: 2157: 2153: 2149: 2145: 2141: 2137: 2133: 2129: 2128: 2120: 2103: 2091: 2087: 2084: 2081: 2068: 2063: 2059: 2055: 2044: 2040: 2039: 2034: 2027: 2022: 2019: 2014: 2013: 2007: 2003: 1997: 1994: 1988: 1986: 1984: 1980: 1976: 1972: 1970: 1966: 1958: 1956: 1954: 1953:Nelsen (1993) 1950: 1946: 1942: 1938: 1934: 1930: 1926: 1917: 1913: 1911: 1899: 1895: 1891: 1874: 1869: 1864: 1860: 1855: 1850: 1847: 1844: 1840: 1835: 1830: 1828: 1818: 1810: 1807: 1804: 1801: 1798: 1795: 1792: 1786: 1784: 1772: 1767: 1762: 1758: 1755: 1750: 1746: 1739: 1731: 1726: 1722: 1719: 1716: 1713: 1708: 1704: 1699: 1695: 1692: 1689: 1682: 1678: 1671: 1667: 1664: 1657: 1653: 1646: 1642: 1639: 1632: 1628: 1621: 1618: 1600: 1598: 1586: 1582: 1575: 1570: 1566: 1563: 1560: 1557: 1552: 1548: 1543: 1539: 1536: 1533: 1529: 1525: 1522: 1519: 1516: 1511: 1507: 1502: 1494: 1491: 1488: 1481: 1477: 1470: 1466: 1463: 1460: 1457: 1454: 1451: 1448: 1441: 1434: 1430: 1423: 1419: 1416: 1413: 1410: 1407: 1400: 1393: 1389: 1382: 1378: 1375: 1372: 1365: 1358: 1354: 1347: 1344: 1338: 1336: 1326: 1322: 1318: 1315: 1312: 1309: 1306: 1303: 1300: 1297: 1294: 1291: 1288: 1286: 1279: 1275: 1269: 1264: 1261: 1258: 1254: 1229: 1223: 1220: 1217: 1214: 1206: 1201: 1198: 1195: 1191: 1187: 1182: 1178: 1167: 1156: 1139: 1133: 1130: 1127: 1124: 1114: 1110: 1104: 1101: 1096: 1093: 1090: 1086: 1082: 1079: 1075: 1071: 1066: 1062: 1051: 1047: 1043: 1027: 1017: 1011: 1006: 1002: 999: 996: 993: 988: 984: 979: 975: 972: 969: 965: 961: 958: 955: 952: 949: 946: 941: 937: 932: 928: 924: 920: 917: 914: 911: 908: 905: 900: 896: 891: 887: 883: 879: 876: 873: 870: 865: 861: 856: 848: 843: 839: 830: 826: 819: 817: 814: 808: 803: 799: 792: 788: 783:and of pairs 781: 777: 770: 766: 755: 751: 747: 743: 733: 729: 725: 721: 694: 690: 656: 652: 648: 644: 638: 632: 628: 624: 619: 614: 612: 608: 604: 592: 588: 584: 580: 576: 571: 562: 549:= (1 + 2 + 3) 545: 538: 536: 527: 516: 512: 508: 504: 494: 490: 486: 482: 478: 474: 470: 465: 448: 444: 420: 416: 395: 391: 380: 376: 359: 355: 342: 334: 332: 329: 120 CE 316: 312: 308: 289: 284: 279: 275: 270: 265: 262: 259: 255: 250: 245: 240: 236: 230: 225: 222: 219: 215: 207: 206: 205: 203: 184: 179: 174: 170: 167: 164: 161: 158: 155: 152: 149: 146: 142: 137: 132: 128: 124: 121: 118: 113: 109: 105: 100: 96: 92: 87: 83: 75: 74: 73: 71: 63: 59: 52: 51:number theory 44: 43:Gulley (2010) 39: 33: 19: 4675:Transposable 4539:Narcissistic 4446:Digital root 4366:Super-Poulet 4326:Jordan–PĂłlya 4275:prime factor 4180:Noncototient 4147:Almost prime 4129:Superperfect 4104:Refactorable 4099:Quasiperfect 4074:Hyperperfect 3915:Pseudoprimes 3886:Wall–Sun–Sun 3821:Ordered Bell 3791:Fuss–Catalan 3714: 3703:non-centered 3653:Dodecahedral 3630:non-centered 3516:non-centered 3418:Wolstenholme 3163:× 2 ± 1 3160: 3159:Of the form 3126:Eighth power 3106:Fourth power 2982:non-centered 2953: 2942:non-centered 2877:Cube numbers 2869:non-centered 2760:non-centered 2750:Star numbers 2632: 2589: 2583: 2549: 2543: 2516: 2496: 2490: 2461: 2455: 2387: 2372: 2352: 2327: 2321: 2310: 2282: 2276: 2228: 2222: 2212:, AP Central 2205: 2176: 2170: 2131: 2125: 2021: 2009: 1996: 1973: 1962: 1945:Kanim (2004) 1933:Stein (1971) 1922: 1892: 1165: 1154: 1049: 1045: 823: 812: 801: 797: 790: 786: 779: 775: 768: 764: 753: 749: 745: 741: 731: 727: 723: 719: 692: 688: 654: 650: 646: 642: 639: 626: 622: 618:Stein (1971) 615: 600: 569: 466: 446: 442: 418: 414: 393: 389: 378: 374: 357: 353: 340: 338: 310: 304: 199: 48: 4696:Extravagant 4691:Equidigital 4646:permutation 4605:Palindromic 4579:Automorphic 4477:Sum-product 4456:Sum-product 4411:Persistence 4306:ErdƑs–Woods 4228:Untouchable 4109:Semiperfect 4059:Hemiperfect 3720:Tesseractic 3658:Icosahedral 3638:Tetrahedral 3569:Dodecagonal 3270:Recursively 3141:Prime power 3116:Sixth power 3111:Fifth power 3091:Power of 10 3049:Classes of 2974:dimensional 2592:: 145–151, 686:. That is, 559:= 1 + 2 + 3 533: 1500 522: 1300 499: 1000 72:. That is, 4957:Categories 4908:Graphemics 4781:Pernicious 4635:Undulating 4610:Pandigital 4584:Trimorphic 4185:Nontotient 4034:Arithmetic 3648:Octahedral 3549:Heptagonal 3539:Pentagonal 3524:Triangular 3365:SierpiƄski 3287:Jacobsthal 3086:Power of 3 3081:Power of 2 2035:References 1965:power sums 1904:th row is 1894:Row (1893) 757:for which 712:that make 515:Gersonides 477:Nicomachus 4665:Parasitic 4514:Factorion 4441:Digit sum 4433:Digit sum 4251:Fortunate 4238:Primorial 4152:Semiprime 4089:Practical 4054:Descartes 4049:Deficient 4039:Betrothed 3881:Wieferich 3710:Pentatope 3673:pyramidal 3564:Decagonal 3559:Nonagonal 3554:Octagonal 3544:Hexagonal 3403:Practical 3350:Congruent 3282:Fibonacci 3246:Loeschian 2907:pyramidal 2634:MathWorld 2428:∑ 2409:∑ 2393:pp. 47–48 2261:126165678 2056:∑ 1841:∑ 1805:⋯ 1732:⏟ 1720:− 1693:⋯ 1672:⏟ 1647:⏟ 1622:⏟ 1576:⏟ 1564:− 1537:⋯ 1517:− 1492:⋯ 1471:⏟ 1424:⏟ 1383:⏟ 1348:⏟ 1316:⋯ 1255:∑ 1221:− 1192:∑ 1131:− 1094:− 1076:∑ 1012:⏟ 1000:− 973:⋯ 947:− 906:− 871:− 718:1 ≀  678:and that 561:) squares 553:1 + 2 + 3 511:Al-Qabisi 493:Al-Karaji 485:Aryabhata 322: 60 256:∑ 216:∑ 202:summation 165:⋯ 122:⋯ 4737:Friedman 4670:Primeval 4615:Repdigit 4572:-related 4519:Kaprekar 4493:Meertens 4416:Additive 4403:dynamics 4311:Friendly 4223:Sociable 4213:Amicable 4024:Abundant 4004:dynamics 3826:Schröder 3816:Narayana 3786:Eulerian 3776:Delannoy 3771:Dedekind 3592:centered 3458:centered 3345:Amenable 3302:Narayana 3292:Leonardo 3188:Mersenne 3136:Powerful 3076:Achilles 2831:centered 2702:centered 2645:Archived 2578:(1854), 2536:"On the 2515:(1963), 2203:(2004), 2193:27646391 810:by  547:All 36 ( 381:+ 1) − 1 313:, after 307:identity 4910:related 4874:related 4838:related 4836:Sorting 4721:Vampire 4706:Harshad 4648:related 4620:Repunit 4534:Lychrel 4509:Dudeney 4361:StĂžrmer 4356:Sphenic 4341:Regular 4279:divisor 4218:Perfect 4114:Sublime 4084:Perfect 3811:Motzkin 3766:Catalan 3307:Padovan 3241:Leyland 3236:Idoneal 3231:Hilbert 3203:Woodall 2972:Higher 2594:Bibcode 2568:2114194 2505:1355130 2478:2688231 2344:3219288 2301:2034423 2273:-cubes" 2253:0096615 2245:3609189 2148:1559017 2004:(ed.), 1910:gnomons 827: ( 458:⁠ 439:⁠ 430:⁠ 411:⁠ 405:⁠ 386:⁠ 369:⁠ 350:⁠ 335:History 64:of the 60:is the 4776:Odious 4701:Frugal 4655:Cyclic 4644:Digit- 4351:Smooth 4336:Pronic 4296:Cyclic 4273:Other 4246:Euclid 3896:Wilson 3870:Primes 3529:Square 3398:Polite 3360:Riesel 3355:Knödel 3317:Perrin 3198:Thabit 3183:Fermat 3173:Cullen 3096:Square 3064:Powers 2566:  2523:  2503:  2476:  2359:  2342:  2299:  2259:  2251:  2243:  2191:  2146:  1162:up to 820:Proofs 708:, and 593:, 225, 503:Persia 481:Jordan 62:square 4817:Prime 4812:Lucky 4801:sieve 4730:Other 4716:Smith 4596:Digit 4554:Happy 4529:Keith 4502:Other 4346:Rough 4316:Giuga 3781:Euler 3643:Cubic 3297:Lucas 3193:Proth 2474:JSTOR 2377:(PDF) 2340:JSTOR 2257:S2CID 2241:JSTOR 2210:(PDF) 2189:JSTOR 2167:(PDF) 2144:JSTOR 2122:(PDF) 1989:Notes 795:with 773:with 635:4 × 4 598:... . 489:India 305:This 58:cubes 4771:Evil 4451:Self 4401:and 4291:Blum 4002:and 3806:Lobb 3761:Cake 3756:Bell 3506:Star 3413:Ulam 3312:Pell 3101:Cube 2521:ISBN 2357:ISBN 2010:The 1981:and 1168:− 1) 829:1854 662:and 631:grid 609:and 557:14 ( 449:+ 1) 421:+ 1) 396:+ 1) 360:+ 1) 4889:Ban 4277:or 3796:Lah 2602:doi 2554:doi 2466:doi 2454:", 2332:doi 2287:doi 2233:doi 2181:doi 2136:doi 616:As 591:100 501:in 487:in 331:). 68:th 49:In 4959:: 2631:, 2627:, 2600:, 2588:, 2582:, 2564:MR 2562:, 2550:11 2548:, 2542:, 2501:MR 2497:97 2495:, 2489:, 2472:, 2462:44 2460:, 2338:, 2328:77 2326:, 2297:MR 2295:, 2283:11 2281:, 2275:, 2255:, 2249:MR 2247:, 2239:, 2229:41 2227:, 2187:, 2177:37 2175:, 2169:, 2158:; 2142:, 2132:33 2130:, 2124:, 2008:, 1931:. 1467:19 1461:17 1455:15 1449:13 1420:11 1310:64 1304:27 816:. 800:≀ 789:, 778:≀ 767:, 752:, 748:, 744:, 730:≀ 726:, 722:, 704:, 691:= 653:, 649:, 645:, 625:× 613:. 589:, 587:36 585:, 581:, 577:, 551:= 530:c. 519:c. 505:. 496:c. 464:. 326:c. 324:– 319:c. 204:: 3161:a 3042:e 3035:t 3028:v 2677:e 2670:t 2663:v 2611:. 2604:: 2596:: 2590:7 2571:. 2556:: 2538:q 2530:. 2508:. 2481:. 2468:: 2439:2 2435:) 2431:k 2425:( 2422:= 2417:3 2413:k 2396:. 2381:. 2366:. 2347:. 2334:: 2316:. 2304:. 2289:: 2271:q 2235:: 2214:. 2196:. 2183:: 2151:. 2138:: 2119:" 2104:2 2097:) 2092:2 2088:1 2085:+ 2082:n 2076:( 2069:= 2064:3 2060:k 2028:. 1906:i 1902:i 1875:. 1870:2 1865:) 1861:k 1856:n 1851:1 1848:= 1845:k 1836:( 1831:= 1819:2 1815:) 1811:n 1808:+ 1802:+ 1799:2 1796:+ 1793:1 1790:( 1787:= 1773:2 1768:) 1763:2 1759:n 1756:+ 1751:2 1747:n 1740:( 1727:) 1723:1 1717:n 1714:+ 1709:2 1705:n 1700:( 1696:+ 1690:+ 1683:2 1679:3 1668:5 1665:+ 1658:2 1654:2 1643:3 1640:+ 1633:2 1629:1 1619:1 1601:= 1587:3 1583:n 1571:) 1567:1 1561:n 1558:+ 1553:2 1549:n 1544:( 1540:+ 1534:+ 1530:) 1526:1 1523:+ 1520:n 1512:2 1508:n 1503:( 1495:+ 1489:+ 1482:3 1478:4 1464:+ 1458:+ 1452:+ 1442:+ 1435:3 1431:3 1417:+ 1414:9 1411:+ 1408:7 1401:+ 1394:3 1390:2 1379:5 1376:+ 1373:3 1366:+ 1359:3 1355:1 1345:1 1339:= 1327:3 1323:n 1319:+ 1313:+ 1307:+ 1301:+ 1298:8 1295:+ 1292:1 1289:= 1280:3 1276:k 1270:n 1265:1 1262:= 1259:k 1230:, 1227:) 1224:1 1218:k 1215:2 1212:( 1207:n 1202:1 1199:= 1196:k 1188:= 1183:2 1179:n 1166:n 1164:( 1160:1 1155:n 1140:, 1137:) 1134:1 1128:k 1125:2 1122:( 1115:n 1111:T 1105:1 1102:+ 1097:1 1091:n 1087:T 1083:= 1080:k 1072:= 1067:3 1063:n 1050:n 1046:T 1028:. 1018:n 1007:) 1003:1 997:n 994:+ 989:2 985:n 980:( 976:+ 970:+ 966:) 962:4 959:+ 956:1 953:+ 950:n 942:2 938:n 933:( 929:+ 925:) 921:2 918:+ 915:1 912:+ 909:n 901:2 897:n 892:( 888:+ 884:) 880:1 877:+ 874:n 866:2 862:n 857:( 849:= 844:3 840:n 813:n 802:W 798:Z 793:) 791:W 787:Z 785:( 780:Y 776:X 771:) 769:Y 765:X 763:( 759:W 754:W 750:Z 746:Y 742:X 737:W 732:n 728:Z 724:Y 720:X 714:W 710:Z 706:Y 702:X 698:W 693:P 689:P 684:Z 680:W 676:X 672:Y 668:W 664:n 660:1 655:W 651:Z 647:Y 643:X 627:n 623:n 583:9 579:1 575:0 528:( 517:( 461:) 455:2 452:/ 447:n 445:( 443:n 436:( 427:2 424:/ 419:n 417:( 415:n 402:2 399:/ 394:n 392:( 390:n 379:n 377:( 375:n 366:2 363:/ 358:n 356:( 354:n 345:n 317:( 290:. 285:2 280:) 276:k 271:n 266:1 263:= 260:k 251:( 246:= 241:3 237:k 231:n 226:1 223:= 220:k 185:. 180:2 175:) 171:n 168:+ 162:+ 159:3 156:+ 153:2 150:+ 147:1 143:( 138:= 133:3 129:n 125:+ 119:+ 114:3 110:3 106:+ 101:3 97:2 93:+ 88:3 84:1 66:n 55:n 34:. 20:)

Index

Nicomachus theorem
square triangular number

Gulley (2010)
number theory
cubes
square
triangular number
summation
identity
Nicomachus of Gerasa
Stroeker (1995)
Pengelley (2002)
Nicomachus
Jordan
Aryabhata
India
Al-Karaji
Persia
Bressoud (2004)
Al-Qabisi
Gersonides
Nilakantha Somayaji

14 (= 1 + 2 + 3) squares
0
1
9
36
100

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑