Knowledge (XXG)

Nielsen transformation

Source đź“ť

374:), a straightforward combinatorial proof is given that finitely generated subgroups of free groups are free. A generating set is called Nielsen reduced if there is not too much cancellation in products. The paper shows that every finite generating set of a subgroup of a free group is (singularly) Nielsen equivalent to a Nielsen reduced generating set, and that a Nielsen reduced generating set is a free basis for the subgroup, so the subgroup is free. This proof is given in some detail in ( 669: 391: 340: 487:
taking the presentation to the trivial presentation if and only if the group is trivial. A special case is that of "balanced presentations", those finite presentations with equal numbers of generators and relators. For these groups, there is a conjecture that the required transformations are quite a
628:
The generating set used during the course of this algorithm can be proved to vary uniformly over all Nielsen equivalent generating sets. However, this algorithm has a number of statistical and theoretical problems. For instance, there can be more than one Nielsen equivalence class of generators.
488:
bit simpler (in particular, do not involve adding or removing relators). If one allows taking the set of relators to any Nielsen equivalent set, and one allows conjugating the relators, then one gets an equivalence relation on ordered subsets of a relators of a finitely presented group. The
448:
For a given generating set of a given finitely generated group, it is not necessarily true that every automorphism is given by a Nielsen transformation, but for every automorphism, there is a generating set where the automorphism is given by a Nielsen transformation,
223:. Transformations of the first two kinds are analogous to row swaps, and cyclic row permutations. Transformations of the third kind correspond to scaling a row by an invertible scalar. Transformations of the fourth kind correspond to row additions. 269:
being an element of order 5, the two classes of generating sets are represented by and , and each class has 15 distinct elements. A very important generating set of a dihedral group is the generating set from its presentation as a
499:, pp. 131–132), an application of Nielsen transformations is given to solve the generalized word problem for free groups, also known as the membership problem for subgroups given by finite generating sets in free groups. 229:
When dealing with groups that are not free, one instead applies these transformations to finite ordered subsets of a group. In this situation, compositions of the elementary transformations are called
226:
Transformations of the first two types suffice to permute the generators in any order, so the third type may be applied to any of the generators, and the fourth type to any pair of generators.
253:
if there is a Nielsen transformation taking one to the other. If the generating sets have the same size, then it suffices to consider compositions of regular Nielsen transformations.
300:
Unlike and , the generating sets and are equivalent. A transforming sequence using more convenient elementary transformations (all swaps, all inverses, all products) is:
947: 492:
is that the relators of any balanced presentation of the trivial group are equivalent to a set of trivial relators, stating that each generator is the identity element.
555:
methods to generate random generating sets of the group. The "product replacement algorithm" simply uses randomly chosen Nielsen transformations in order to take a
274:. Such a generating set for a dihedral group of order 10 consists of any pair of elements of order 2, such as . This generating set is equivalent to via: 624:
Every time a new random element is desired, repeat the previous two steps, then return one of the generating elements as the desired random element
918: 885: 848: 818: 1255: 1250: 737: 426: 99:
is an automorphism of a free group, but this was not their original definition. The following gives a more constructive definition.
841:
Groups—Korea '94: Proceedings of the International Conference Held at Pusan National University, Pusan, Korea, August 18–25, 1994
1260: 589: 514: 472: 489: 462: 1151: 1128: 1047: 1027: 36: 760:
Indeed all 840 ordered generating sets of size three are equivalent. This is a general feature of Nielsen equivalence of
330: 64: 942: 802: 544: 538: 522: 68: 28: 234:. If one allows removing elements of the subset that are the identity element, then the transformation is called 220: 777: 476: 434: 103: 468: 241:
The image under a Nielsen transformation (elementary or not, regular or not) of a generating set of a group
651:
uniformly at random, and replace the additional element by the product of the additional element with the
425:), it is shown that the automorphism defined by the elementary Nielsen transformations generate the full 261:
The dihedral group of order 10 has two Nielsen equivalence classes of generating sets of size 2. Letting
1156: 1098:
Lustig, Martin; Moriah, Yoav (1993), "Generating systems of groups and Reidemeister-Whitehead torsion",
1039: 732: 644:
In addition to the generating set, store an additional element of the group, initialized to the identity
484: 559:
on the graph of generating sets of the group. The algorithm is well studied, and survey is given in (
700: 508: 629:
Also, the elements of generating sets need be uniformly distributed (for instance, elements of the
483:. This is known to be intractable in general, even though there is a finite sequence of elementary 567:
Take any ordered generating set and append some copies of the identity element, so that there are
1222: 1004: 974: 910: 518: 438: 40: 914: 881: 844: 814: 720: 630: 1191:, Ohio State Univ. Math. Res. Inst. Publ., vol. 8, Walter de Gruyter, pp. 301–347, 836: 1212: 1173: 1165: 1140: 1107: 1079: 1051: 994: 966: 956: 806: 773: 636:
Most of these problems are quickly remedied in the following modification called "rattle", (
430: 24: 1234: 1196: 1121: 1091: 1063: 1016: 928: 895: 858: 828: 1230: 1192: 1177: 1144: 1117: 1087: 1059: 1012: 970: 924: 891: 877: 854: 824: 633:
can never occur in a generating set of minimal size, but more subtle problems occur too).
1131:(1921), "Om regning med ikke-kommutative faktorer og dens anvendelse i gruppeteorien", 1023: 902: 795: 1034:, De Gruyter Studies in mathematics, vol. 29, Berlin: Walter de Gruyter & Co. 668: 390: 339: 1244: 480: 271: 48: 869: 761: 552: 548: 865: 556: 76: 20: 1083: 1055: 44: 810: 1044:
Computational and statistical group theory (Las Vegas, NV/Hoboken, NJ, 2001)
1112: 1184: 708: 72: 60: 711:
formulation of the obstruction to Nielsen equivalence was described in (
1226: 1169: 1070:
Lustig, Martin (1991), "Nielsen equivalence and simple-homotopy type",
1008: 978: 575: 1203:
Rapaport, Elvira Strasser (1959), "Note on Nielsen transformations",
723:
of the group ring and the Nielsen equivalence classes of generators.
1217: 1187:(2001), "What do we know about the product replacement algorithm?", 999: 961: 521:, which can be solved using Nielsen transformations and a method of 16:
Set of mathematical functions concerning algebraic group isomorphism
699:
To understand Nielsen equivalence of non-minimal generating sets,
1042:; Murray, Scott H. (2002), "Variants of product replacement", 985:
Evans, Martin J. (1989), "Primitive elements in free groups",
835:
Fine, Benjamin; Rosenberger, Gerhard; Stille, Michael (1995),
663: 385: 334: 574:
Repeat the following for a certain number of times (called a
801:, London Mathematical Society Student Texts, vol. 14, 67:), but are now used in a variety of mathematics, including 1032:
Discontinuous groups of isometries in the hyperbolic plane
441:
of free groups. This is also described in the textbook (
51:
and one of the main tools used in studying free groups, (
680: 402: 351: 87:) devotes all of chapter 3 to Nielsen transformations. 1154:(1924), "Die Isomorphismengruppe der freien Gruppen", 563:). One version of the algorithm, called "shake", is: 945:(1928), "Topological invariants of knots and links", 517:
concerns the fundamental groups of three-dimensional
427:
automorphism group of a finitely generated free group
52: 839:, in Kim, Ann Chi; Kim, A.C.; Johnson, D.L. (eds.), 837:"Nielsen transformations and applications: a survey" 526: 496: 442: 375: 106:
free group with ordered basis can be factored into
84: 1046:, Contemp. Math., vol. 298, Providence, R.I.: 772:+ 1 are equivalent. There are similar results for 719:). These show an important connection between the 637: 547:, it is important to generate random elements of a 797:Combinatorial group theory: a topological approach 794: 948:Transactions of the American Mathematical Society 1205:Proceedings of the American Mathematical Society 1189:Groups and computation, III (Columbus, OH, 1999) 987:Proceedings of the American Mathematical Society 219:These transformations are the analogues of the 1072:Proceedings of the London Mathematical Society 768:generators, then all generating sets of size 513:A particularly important special case of the 8: 905:; Karrass, Abraham; Solitar, Donald (2004), 716: 647:Every time a generator is replaced, choose 1216: 1111: 998: 960: 764:. If a finite group can be generated by 703:investigations have been useful, as in ( 450: 47:which are a non-commutative analogue of 753: 551:. Popular methods of doing this apply 422: 371: 56: 843:, Walter de Gruyter, pp. 69–105, 712: 704: 607:th generator with the product of the 95:One of the simplest definitions of a 7: 560: 53:Fine, Rosenberger & Stille 1995 738:Automorphism group of a free group 600:uniformly at random from { 1, -1 } 527:Magnus, Karrass & Solitar 2004 497:Magnus, Karrass & Solitar 2004 467:A particularly simple case of the 443:Magnus, Karrass & Solitar 2004 376:Magnus, Karrass & Solitar 2004 249:. Two generating sets are called 108:elementary Nielsen transformations 85:Magnus, Karrass & Solitar 2004 14: 1030:(2003), Schmidt, Asmus L. (ed.), 707:). Continuing in these lines, a 315:, multiply 2nd generator into 3rd 312:, multiply 2nd generator into 3rd 309:, multiply 3rd generator into 2nd 306:, multiply 2nd generator into 3rd 667: 389: 338: 638:Leedham-Green & Murray 2002 515:isomorphism problem for groups 473:isomorphism problem for groups 265:be an element of order 2, and 102:A Nielsen transformation on a 1: 1048:American Mathematical Society 539:product replacement algorithm 533:Product replacement algorithm 63:of a free group is free (the 245:is also a generating set of 55:). They were introduced in ( 23:, especially in the area of 615:th generator raised to the 1277: 1256:Computational group theory 1251:Combinatorial group theory 907:Combinatorial Group Theory 874:Combinatorial group theory 803:Cambridge University Press 545:computational group theory 536: 506: 460: 328: 81:Combinatorial Group Theory 69:computational group theory 29:combinatorial group theory 793:Cohen, Daniel E. (1989), 778:finitely generated groups 490:Andrews–Curtis conjecture 463:Andrews–Curtis conjecture 433:used these ideas to give 221:elementary row operations 1084:10.1112/plms/s3-62.3.537 811:10.1017/CBO9780511565878 717:Lustig & Moriah 1993 477:finitely presented group 445:, p. 131, Th 3.2). 331:Nielsen–Schreier theorem 325:Nielsen–Schreier theorem 110:of the following sorts: 65:Nielsen–Schreier theorem 469:word problem for groups 33:Nielsen transformations 1261:Combinatorics on words 1113:10.1006/jabr.1993.1096 1056:10.1090/conm/298/05116 485:Tietze transformations 429:. Nielsen, and later 97:Nielsen transformation 59:) to prove that every 1157:Mathematische Annalen 787:Textbooks and surveys 733:Tietze transformation 611:th generator and the 1040:Leedham-Green, C. R. 776:, and certain other 509:Alexander polynomial 435:finite presentations 1050:, pp. 97–104, 590:uniformly at random 571:elements in the set 503:Isomorphism problem 439:automorphism groups 382:Automorphism groups 130:Cyclically permute 1170:10.1007/BF01556078 1133:Math. Tidsskrift B 1100:Journal of Algebra 911:Dover Publications 679:. You can help by 401:. You can help by 350:. You can help by 251:Nielsen equivalent 104:finitely generated 920:978-0-486-43830-6 887:978-3-540-41158-1 850:978-3-11-014793-3 820:978-0-521-34133-2 774:polycyclic groups 697: 696: 631:Frattini subgroup 495:In the textbook ( 419: 418: 368: 367: 1268: 1237: 1220: 1199: 1180: 1164:(3–4): 169–209, 1147: 1124: 1115: 1094: 1066: 1035: 1019: 1002: 981: 964: 943:Alexander, J. W. 931: 898: 870:Lyndon, Roger C. 861: 831: 800: 781: 758: 701:module theoretic 692: 689: 671: 664: 581:Choose integers 431:Bernhard Neumann 414: 411: 393: 386: 363: 360: 342: 335: 79:. The textbook 25:abstract algebra 1276: 1275: 1271: 1270: 1269: 1267: 1266: 1265: 1241: 1240: 1218:10.2307/2033582 1202: 1183: 1150: 1127: 1097: 1069: 1038: 1024:Fenchel, Werner 1022: 1000:10.2307/2048805 984: 962:10.2307/1989123 941: 938: 936:Primary sources 921: 903:Magnus, Wilhelm 901: 888: 878:Springer-Verlag 866:Schupp, Paul E. 864: 851: 834: 821: 792: 789: 784: 759: 755: 751: 746: 729: 721:Whitehead group 693: 687: 684: 677:needs expansion 662: 541: 535: 523:J. W. Alexander 511: 505: 465: 459: 415: 409: 406: 399:needs expansion 384: 364: 358: 355: 348:needs expansion 333: 327: 322: 259: 215: 208: 201: 192: 185: 175: 168: 159: 152: 143: 136: 127: 120: 93: 17: 12: 11: 5: 1274: 1272: 1264: 1263: 1258: 1253: 1243: 1242: 1239: 1238: 1211:(2): 228–235, 1200: 1181: 1152:Nielsen, Jakob 1148: 1129:Nielsen, Jakob 1125: 1106:(1): 170–198, 1095: 1078:(3): 537–562, 1074:, 3rd Series, 1067: 1036: 1028:Nielsen, Jakob 1020: 982: 955:(2): 275–306, 937: 934: 933: 932: 919: 899: 886: 862: 849: 832: 819: 788: 785: 783: 782: 752: 750: 747: 745: 742: 741: 740: 735: 728: 725: 695: 694: 674: 672: 661: 658: 657: 656: 645: 626: 625: 622: 621: 620: 601: 572: 537:Main article: 534: 531: 507:Main article: 504: 501: 461:Main article: 458: 455: 417: 416: 396: 394: 383: 380: 366: 365: 345: 343: 329:Main article: 326: 323: 321: 318: 317: 316: 313: 310: 307: 304: 298: 297: 294: 291: 288: 285: 282: 279: 258: 255: 217: 216: 213: 206: 199: 193: 190: 183: 177: 173: 164: 157: 148: 141: 134: 128: 125: 118: 92: 89: 39:, are certain 35:, named after 15: 13: 10: 9: 6: 4: 3: 2: 1273: 1262: 1259: 1257: 1254: 1252: 1249: 1248: 1246: 1236: 1232: 1228: 1224: 1219: 1214: 1210: 1206: 1201: 1198: 1194: 1190: 1186: 1182: 1179: 1175: 1171: 1167: 1163: 1160:(in German), 1159: 1158: 1153: 1149: 1146: 1142: 1138: 1135:(in Danish), 1134: 1130: 1126: 1123: 1119: 1114: 1109: 1105: 1101: 1096: 1093: 1089: 1085: 1081: 1077: 1073: 1068: 1065: 1061: 1057: 1053: 1049: 1045: 1041: 1037: 1033: 1029: 1025: 1021: 1018: 1014: 1010: 1006: 1001: 996: 992: 988: 983: 980: 976: 972: 968: 963: 958: 954: 950: 949: 944: 940: 939: 935: 930: 926: 922: 916: 912: 908: 904: 900: 897: 893: 889: 883: 879: 875: 871: 867: 863: 860: 856: 852: 846: 842: 838: 833: 830: 826: 822: 816: 812: 808: 804: 799: 798: 791: 790: 786: 779: 775: 771: 767: 763: 762:finite groups 757: 754: 748: 743: 739: 736: 734: 731: 730: 726: 724: 722: 718: 714: 710: 706: 702: 691: 682: 678: 675:This section 673: 670: 666: 665: 659: 655:th generator. 654: 650: 646: 643: 642: 641: 639: 634: 632: 623: 618: 614: 610: 606: 602: 599: 596:, and choose 595: 591: 588: 584: 580: 579: 577: 573: 570: 566: 565: 564: 562: 558: 554: 550: 546: 540: 532: 530: 528: 524: 520: 516: 510: 502: 500: 498: 493: 491: 486: 482: 481:trivial group 478: 474: 470: 464: 456: 454: 452: 451:Rapaport 1959 446: 444: 440: 436: 432: 428: 424: 413: 404: 400: 397:This section 395: 392: 388: 387: 381: 379: 377: 373: 362: 353: 349: 346:This section 344: 341: 337: 336: 332: 324: 319: 314: 311: 308: 305: 303: 302: 301: 295: 292: 289: 286: 283: 280: 277: 276: 275: 273: 272:Coxeter group 268: 264: 256: 254: 252: 248: 244: 239: 237: 233: 227: 224: 222: 212: 205: 198: 194: 189: 182: 178: 172: 167: 163: 156: 151: 147: 140: 133: 129: 124: 117: 113: 112: 111: 109: 105: 100: 98: 90: 88: 86: 82: 78: 74: 70: 66: 62: 58: 54: 50: 49:row reduction 46: 42: 41:automorphisms 38: 37:Jakob Nielsen 34: 30: 26: 22: 1208: 1204: 1188: 1161: 1155: 1136: 1132: 1103: 1099: 1075: 1071: 1043: 1031: 993:(2): 313–6, 990: 986: 952: 946: 906: 873: 840: 796: 769: 765: 756: 698: 685: 681:adding to it 676: 652: 648: 635: 627: 616: 612: 608: 604: 603:Replace the 597: 593: 586: 582: 568: 553:markov chain 549:finite group 542: 512: 494: 466: 457:Word problem 447: 423:Nielsen 1924 420: 407: 403:adding to it 398: 372:Nielsen 1921 369: 356: 352:adding to it 347: 320:Applications 299: 266: 262: 260: 250: 246: 242: 240: 235: 231: 228: 225: 218: 210: 203: 196: 187: 180: 170: 165: 161: 154: 149: 145: 138: 131: 122: 115: 107: 101: 96: 94: 80: 57:Nielsen 1921 32: 18: 713:Lustig 1991 709:K-theoretic 557:random walk 529:, Ch 3.4). 378:, Ch 3.2). 91:Definitions 77:knot theory 21:mathematics 1245:Categories 1178:50.0078.04 1145:48.0123.03 971:54.0603.03 744:References 705:Evans 1989 592:from 1 to 475:asks if a 45:free group 1185:Pak, Igor 1139:: 78–94, 780:as well. 688:July 2008 410:July 2008 359:July 2008 27:known as 872:(2001), 727:See also 660:K-theory 619:th power 561:Pak 2001 471:and the 296:, type 3 293:, type 1 290:, type 3 287:, type 4 284:, type 3 281:, type 1 278:, type 3 257:Examples 236:singular 195:Replace 179:Replace 73:k-theory 61:subgroup 1235:0104724 1227:2033582 1197:1829489 1122:1219664 1092:1095232 1064:1929718 1017:0952315 1009:2048805 979:1989123 929:0207802 896:0577064 859:1476950 829:1020297 715:) and ( 576:burn in 479:is the 437:of the 232:regular 160:, ..., 144:, ..., 114:Switch 1233:  1225:  1195:  1176:  1143:  1120:  1090:  1062:  1015:  1007:  977:  969:  927:  917:  894:  884:  857:  847:  827:  817:  75:, and 1223:JSTOR 1005:JSTOR 975:JSTOR 749:Notes 519:knots 202:with 186:with 153:, to 43:of a 1137:1921 915:ISBN 882:ISBN 845:ISBN 815:ISBN 585:and 421:In ( 370:In ( 121:and 1213:doi 1174:JFM 1166:doi 1141:JFM 1108:doi 1104:157 1080:doi 1052:doi 995:doi 991:106 967:JFM 957:doi 807:doi 683:. 640:): 543:In 453:). 405:. 354:. 19:In 1247:: 1231:MR 1229:, 1221:, 1209:10 1207:, 1193:MR 1172:, 1162:91 1118:MR 1116:, 1102:, 1088:MR 1086:, 1076:62 1060:MR 1058:, 1026:; 1013:MR 1011:, 1003:, 989:, 973:, 965:, 953:30 951:, 925:MR 923:, 913:, 909:, 892:MR 890:, 880:, 876:, 868:; 855:MR 853:, 825:MR 823:, 813:, 805:, 578:) 238:. 169:, 137:, 71:, 31:, 1215:: 1168:: 1110:: 1082:: 1054:: 997:: 959:: 809:: 770:d 766:d 690:) 686:( 653:k 649:k 617:e 613:j 609:i 605:i 598:e 594:n 587:j 583:i 569:n 525:( 449:( 412:) 408:( 361:) 357:( 267:y 263:x 247:G 243:G 214:2 211:x 209:· 207:1 204:x 200:1 197:x 191:1 188:x 184:1 181:x 176:. 174:1 171:x 166:n 162:x 158:2 155:x 150:n 146:x 142:2 139:x 135:1 132:x 126:2 123:x 119:1 116:x 83:(

Index

mathematics
abstract algebra
combinatorial group theory
Jakob Nielsen
automorphisms
free group
row reduction
Fine, Rosenberger & Stille 1995
Nielsen 1921
subgroup
Nielsen–Schreier theorem
computational group theory
k-theory
knot theory
Magnus, Karrass & Solitar 2004
finitely generated
elementary row operations
Coxeter group
Nielsen–Schreier theorem

adding to it
Nielsen 1921
Magnus, Karrass & Solitar 2004

adding to it
Nielsen 1924
automorphism group of a finitely generated free group
Bernhard Neumann
finite presentations
automorphism groups

Text is available under the Creative Commons Attribution-ShareAlike License. Additional terms may apply.

↑